VIEWS & COMMENTS

Combining innovative science and policy to improve air quality in cities with refining and chemicals manufacturing: The case study of Houston, Texas, USA

  • David T. Allen
Expand
  • University of Texas Austin, Department of Chemical Engineering and Center for Energy and Environmental Resources, Austin, TX 78759, USA

Received date: 10 Dec 2016

Accepted date: 21 Apr 2017

Published date: 23 Aug 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In Houston, a combination of urban emissions from a city of 4 million people, coupled with emissions from extensive petroleum refining and chemical manufacturing, leads to conditions for photochemistry that are unique in the United States, and historically, the city had experienced some of the highest ozone concentrations recorded in the United States. Large air quality field studies (the Texas Air Quality Studies or TexAQS I and II) were conducted to determine root causes of the high ozone concentrations. Hundreds of air quality investigators, from around the world, deployed instruments on aircraft, on ships, and at fixed ground sites to make extensive air quality measurements; detailed photochemical modeling was used to interpret and assess the implications of the measurements. The Texas Air Quality Studies revealed that both continuous and episodic emissions of light alkenes, which came to be called highly reactive volatile organic compounds, played a critical role in the formation of ozone and other photochemical oxidants in the region. Understanding and quantifying the role of these emissions in regional air quality required innovations in characterizing emissions and in photochemical modeling. Reducing emissions required innovative policy approaches. These coupled scientific and policy innovations are described, and the result, substantially cleaner air for Houston, is documented. The lessons learned from the Houston air quality experience are relevant to cities with similar population and industrial profiles around the world.

Cite this article

David T. Allen . Combining innovative science and policy to improve air quality in cities with refining and chemicals manufacturing: The case study of Houston, Texas, USA[J]. Frontiers of Chemical Science and Engineering, 0 , 11(3) : 293 -304 . DOI: 10.1007/s11705-017-1660-0

1
Texas Commission on Environmental Quality. 2016, https://www.tceq.texas.gov/cgi-bin/compliance/monops/select_summary.pl

2
University of Texas. Accelerated science evaluation, overview. 2002, http://www.utexas.edu/research/ceer/texaqsarchive/accelerated.htm

3
Kleinman L I, Daum P H, Imre D, Lee Y N, Nunnermacker L J, Springston S R, Weinstein-Lloyd J, Rudolph J. Ozone production rate and hydrocarbon reactivity in 5 urban areas: A cause of high ozone concentration in Houston. Geophysical Research Letters, 2002, 29(10): 1467

DOI

4
Ryerson T B, Trainer M, Angevine W M, Brock C A, Dissly R W, Fehsenfeld F C, Frost G J, Goldan P D, Holloway J S, Hubler G,  Effect of petrochemical industrial emissions of reactive alkenes and NOx on tropospheric ozone formation in Houston,Texas. Journal of Geophysical Research, 2003, 108(D8): 4249

DOI

5
University of Texas. Accelerated science evaluation, atmospheric chemistry version 2.0. 2002, http://www.utexas.edu/research/ceer/texaqsarchive/accelerated.htm

6
University of Texas. Accelerated science evaluation, emission inventories version 3.0. 2002, http://www.utexas.edu/research/ceer/texaqsarchive/accelerated.htm

7
University of Texas. Accelerated science evaluation, meteorology version 2.0. 2002, http://www.utexas.edu/research/ceer/texaqsarchive/accelerated.htm

8
University of Texas. Accelerated science evaluation, air quality modeling version 1.3. 2002, http://www.utexas.edu/research/ceer/texaqsarchive/accelerated.htm

9
TAC (Texas Administrative Code). Environmental Quality, Part 1 Texas Commission on Environmental Quality, Chapter 101 General Air Quality Rules, 2002

10
Texas Commission on Environmental Quality. Status of electronic reporting of air emission incidents. 2003, http://www2.tceq.texas.gov/oce/eer/

11
Murphy C F, Allen D T. Hydrocarbon emissions from industrial release events in the Houston-Galveston area and their impact on ozone formation. Atmospheric Environment, 2005, 39(21): 3785–3798

DOI

12
Nam J, Kimura Y, Vizuete W, Murphy C, Allen D T. Modeling the impacts of emission events on ozone formation in Houston, Texas. Atmospheric Environment, 2006, 40(28): 5329–5341

DOI

13
Vizuete W, Kimura Y, Jeffries H, Allen D T. Modeling ozone formation from industrial emission events in Houston, Texas. Atmospheric Environment, 2008, 42(33): 7641–7650

DOI

14
Webster M, Nam J, Kimura Y, Jeffries H, Vizuete W, Allen D T. The effect of variability in industrial emissions on ozone formation in Houston, Texas. Atmospheric Environment, 2007, 41(40): 9580–9593

DOI

15
Wang L, Thompson T, McDonald-Buller E C, Webb A, Allen D T. Photochemical modeling of emissions trading of highly reactive volatile organic compounds (HRVOCs) in Houston, Texas. Part 1. Potential for ozone hot spot formation and reactivity based trading. Environmental Science & Technology, 2007, 41: 2095–2102

DOI

16
Wang L, Thompson T, McDonald-Buller E C, Webb A, Allen D T. Photochemical modeling of emissions trading of highly reactive volatile organic compounds (HRVOCs) in Houston, Texas. Part 2. Incorporation of chlorine emissions. Environmental Science & Technology, 2007, 41(7): 2103–2107

DOI

17
Torres V M, Herndon S, Kodesh Z, Nettles R, Allen D T. Industrial flare performance at low flow conditions: Part 1. Study overview. Industrial & Engineering Chemistry Research, 2012, 51: 12559–12568

DOI

18
Torres V M, Herndon S, Allen D T. Industrial flare performance at low flow conditions: Part 2. Air and steam assisted flares. Industrial & Engineering Chemistry Research, 2012, 51(39): 12569–12576

DOI

19
Parrish D D, Allen D T, Bates T S, Estes M, Fehsenfeld F C, Feingold G, Ferrare R, Hardesty R M, Meagher J F, Nielsen-Gammon J W, . Overview of the second Texas air quality study (TexAQS II) and the gulf of Mexico atmospheric composition and climate study (GoMACCS). Journal of Geophysical Research, D, Atmospheres, 2009, 114: D00F13

DOI

20
Texas Commission on Environmental Quality. Air quality successes. 2015, http://www.tceq.state.tx.us/airquality/airsuccess/airSuccessMetro

21
Allen D T, Turner J R. Transport of atmospheric fine particulate matter. Part 1: Findings from recent field programs on the extent of regional transport within North America. Journal of the Air & Waste Management Association, 2008, 58(2): 254–264

DOI

22
Berlin S R, Langford A O, Estes M, Dong M, Parrish D D. Magnitude, decadal changes and impact of regional background ozone transported into the greater Houston, Texas area. Environmental Science & Technology, 2013, 47(24): 13985–13992

DOI

23
Turner J R, Allen D T. Transport of atmospheric fine particulate matter: Part 2. Findings from recent field programs on the intraurban variability in fine particulate matter. Journal of the Air & Waste Management Association, 2008, 58(2): 196–215

DOI

Outlines

/