RESEARCH ARTICLE

Multi-functional 3D N-doped TiO2 microspheres used as scattering layers for dye-sensitized solar cells

  • Zijian Cui 1,2 ,
  • Kaiyue Zhang 1,2 ,
  • Guangyu Xing 1,2 ,
  • Yaqing Feng 1,2 ,
  • Shuxian Meng , 1,2
Expand
  • 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
  • 2. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350, China

Received date: 02 Dec 2016

Accepted date: 19 Feb 2017

Published date: 23 Aug 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Three-dimensional TiO2 microspheres doped with N were synthesized by a simple single-step solvothermal method and the sample treated for 15 h (hereafter called TMF) was then used as scattering layers in the photoanodes of dye-sensitized solar cells (DSSCs). The TMF was characterized using scanning electron microscopy, high resolution transmission electron microscopy, Brunauer-Emmett-Teller measurements, X-ray diffraction, and X-ray photoelectron spectroscopy. The TMF had a high surface area of 93.2 m2·g1 which was beneficial for more dye-loading. Five photoanode films with different internal structures were fabricated by printing different numbers of TMF scattering layers on fluorine-doped tin oxide glass. UV-vis diffuse reflection spectra, incident photon-to-current efficiencies, photocurrent-voltage curves and electrochemical impedance spectroscopy were used to investigate the optical and electrochemical properties of these photoanodes in DSSCs. The presence of nitrogen in the TMF changed the TMF microstructure, which led to a higher open circuit voltage and a longer electron lifetime. In addition, the presence of the nitrogen significantly improved the light utilization and photocurrent. The highest photoelectric conversion efficiency achieved was 8.08%, which is much higher than that derived from typical P25 nanoparticles (6.52%).

Cite this article

Zijian Cui , Kaiyue Zhang , Guangyu Xing , Yaqing Feng , Shuxian Meng . Multi-functional 3D N-doped TiO2 microspheres used as scattering layers for dye-sensitized solar cells[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(3) : 395 -404 . DOI: 10.1007/s11705-017-1643-1

Acknowledgements

This work was supported by the Key Project of the National Natural Science Foundation of China for international academic exchanges (Grant Nos. 21676187 and 21476162), and by National Key Technologies R&D Program (No. 51020105010).
1
O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740

DOI

2
Grätzel M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2003, 4(2): 145–153

DOI

3
Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells. Chemical Reviews, 2010, 110(11): 6595–6663

DOI

4
Yella A, Lee H, Tsao H, Yi C, Chandiran A, Nazeeruddin M, Diau E, Yeh C, Zakeeruddin S, Grätzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056): 629–634

DOI

5
Chen W, Qiu Y, Yang S. A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2010, 12(32): 9494–9501

DOI

6
Chen X, Mao S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews, 2007, 107(7): 2891–2959

DOI

7
Tao X, Wang Y, Zhang X, Sun H, Zhang Q, Niu L, Liu J, Zhou X. Visible-light wavelength matched microsphere assembly of TiO2 superfine nanorods and the enhanced photovoltaic performance. Journal of Alloys and Compounds, 2015, 631: 202–208

DOI

8
Ke W, Fang G, Tao H, Qin P, Wang J, Lei H, Liu Q, Zhao X. In situ synthesis of NiS nanowall networks on Ni foam as a TCO-free counter electrode for dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2014, 6(8): 5525–5530

DOI

9
Liu Y, Wang S, Shan Z, Li X, Tian J, Mei Y, Ma H, Zhu K. Anatase TiO2 hollow spheres with small dimension fabricated via a simple preparation method for dye-sensitized solar cells with an ionic liquid electrolyte. Electrochimica Acta, 2012, 60: 422–427

DOI

10
Ding Y, Xia X, Chen W, Hu L, Mo L, Huang Y, Dai S. Inside-out Ostwald ripening: A facile process towards synthesizing anatase TiO2. Nano Research, 2016, 9(7): 1891–1903

DOI

11
Haid S, Marszalek M, Mishra A, Wielopolski M, Teuscher J, Moser J, Humphry-Baker R, Zakeeruddin S, Grätzel M, Bäuerle P. Significant improvement of dye-sensitized solar cell performance by small structural modification in π-conjugated donor-acceptor dyes. Advanced Functional Materials, 2012, 22(6): 1291–1302

DOI

12
Bach U, Daeneke T. A solid advancement for dye-sensitized solar cells. Angewandte Chemie International Edition, 2012, 51(42): 10451–10452

DOI

13
Gao Y, Feng Y, Zhang B, Zhang F, Peng X, Liu L, Meng S. Double-N doping: A new discovery about N-doped TiO2 applied in dye-sensitized solar cells. RSC Advances, 2014, 4(33): 16992–16998

DOI

14
Zhang Z, Cui Z, Zhang K, Feng Y, Meng S. Samarium ions doped titania photoelectrodes for efficiency influence of dye-sensitized solar cells. Journal of the Electrochemical Society, 2016, 163(5): A644–A649

DOI

15
Cahen D, Hodes G, Grätzel M, Guillemoles J, Riess I. Nature of photovoltaic action in dye-sensitized solar cells. Journal of Physical Chemistry B, 2000, 104(9): 2053–2059

DOI

16
Pan H, Qian J, Cui Y, Xie H, Zhou X. Hollow anatase TiO2 porous microspheres with V-shaped channels and exposed (101) facets: Anisotropic etching and photovoltaic properties. Journal of Materials Chemistry, 2012, 22(13): 6002–6009

DOI

17
He X, Li X, Zhu M. The application of hollow box TiO2 as scattering centers in dye-sensitized solar cells. Journal of Power Sources, 2016, 333: 10–16

DOI

18
Bakhshayesh A, Azadfar S. Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dye-sensitized solar cells. Frontiers of Chemical Science and Engineering, 2015, 9(4): 532–540

DOI

19
Li W, Yang J, Jiang Q, Luo Y, Hou Y, Zhou S, Zhou Z. Bi-layer of nanorods and three-dimensional hierarchical structure of TiO2 for high efficiency dye-sensitized solar cells. Journal of Power Sources, 2015, 284: 428–434

DOI

20
Kim D, Kim J, Shin S, Cho J, Cho I. Facile one-pot synthesis of self-assembled quantum-rod TiO2 spheres with enhanced charge transport properties for dye-sensitized solar cells and solar water-splitting. Journal of Alloys and Compounds, 2017, 697: 222–230

DOI

21
Wang G, Zhu X, Yu J. Bilayer hollow/spindle-like anatase TiO2 photoanode for high efficiency dye-sensitized solar cells. Journal of Power Sources, 2015, 278: 344–351

DOI

22
Zhao P, Yao S, Wang M, Wang B, Sun P, Liu F, Liang X, Sun Y, Lu G. High-efficiency dye-sensitized solar cells with hierarchical structures titanium dioxide to transfer photogenerated charge. Electrochimica Acta, 2015, 170: 276–283

DOI

23
Sun X, Zhou X, Xu Y, Sun P, Huang N, Sun Y. Mixed P25 nanoparticles and large rutile particles as a top scattering layer to enhance performance of nanocrystalline TiO2 based dye-sensitized solar cells. Applied Surface Science, 2015, 337: 188–194

DOI

24
Ding Y, Mo L, Tao L, Ma Y, Hu L, Huang Y, Fang X, Yao J, Xi X, Dai S. TiO2 nanocrystalline layer as a bridge linking TiO2 sub-microspheres layer and substrates for high-efficiency dye-sensitized solar cells. Journal of Power Sources, 2014, 272: 1046–1052

DOI

25
Yan K, Qiu Y, Chen W, Zhang M, Yang S. A double layered photoanode made of highly crystalline TiO2 nanooctahedra and agglutinated mesoporous TiO2 microspheres for high efficiency dye sensitized solar cells. Energy & Environmental Science, 2011, 4(6): 2168–2176

DOI

26
Chen D, Huang F, Cheng Y, Caruso R. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Advanced Materials, 2009, 21(21): 2206–2210

DOI

27
Kim Y, Lee M, Kim H, Lim G, Choi Y, Park N, Kim K, Lee W. Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Advanced Materials, 2009, 21(36): 3668–3673

DOI

28
Son S, Hwang S, Kim C, Yun J, Jang J. Designed, synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2013, 5(11): 4815–4820

DOI

29
Xiong Y, He D, Jin Y, Cameron P, Edler K. Ordered mesoporous particles in titania films with hierarchical structure as scattering layers in dye-sensitized solar cells. Journal of Physical Chemistry C, 2015, 119(39): 22552–22559

DOI

30
Hwang D, Sung S. Controlled fabrication of mesoporous TiO2 hierarchical structures as scattering layers to enhance the power conversion efficiency of dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18(44): 30254–30260

DOI

31
Huber E, Frost M. Light scattering by small particles. Journal of Water Supply: Research & Technology—Aqua, 1998, 47(2): 87–94

DOI

32
Peng X, Feng Y, Meng S, Zhang B. Preparation of hierarchical TiO2 films with uniformly or gradually changed pore size for use as photoelectrodes in dye-sensitized solar cells. Electrochimica Acta, 2014, 115: 255–262

DOI

33
Liu M, Piao L, Zhao L, Ju S, Yan Z, He T, Zhou C, Wang W. Anatase TiO2 single crystals with exposed {001} and {110} facets: Facile synthesis and enhanced photocatalysis. Chemical Communications, 2010, 46(10): 1664–1666

DOI

34
Lin J, Zhao L, Heo Y, Wang L, Bijarbooneh F, Mozer A, Nattestad A, Yamauchi Y, Dou S, Kim J. Mesoporous anatase single crystals for efficient Co(2+/3+)-based dye-sensitized solar cells. Nano Energy, 2015, 11: 557–567

DOI

35
Zhang Y, Zhang B, Peng X, Liu L, Dong S, Lin L, Chen S, Meng S, Feng Y. Preparation of dye sensitized solar cells with high photocurrent and photovoltage by using mesoporous TiO2 particles as photoanode material. Nano Research, 2015, 8(12): 3830–3841

DOI

36
Biswas S, Hossain M, Takahashi T. Fabrication of Grätzel solar cell with TiO2/CdS bilayered photoelectrode. Thin Solid Films, 2008, 517(3): 1284–1288

DOI

37
Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985, 57(4): 603–619

DOI

38
Ramasamy E, Lee J. Ordered mesoporous Zn-doped SnO2 synthesized by exotemplating for efficient dye-sensitized solar cells. Energy & Environmental Science, 2011, 4(7): 2529–2536

DOI

39
Guo W, Shen Y, Wu L, Gao Y, Ma T. Effect of N dopant amount on the performance of dye-sensitized solar cells based on N-doped TiO2 electrodes. Journal of Physical Chemistry C, 2011, 115(43): 21494–21499

DOI

40
Qiu X, Burda C. Chemically synthesized nitrogen-doped metal oxide nanoparticles. Chemical Physics, 2007, 339(1): 1–10

DOI

41
Fu Y, Du H, Zhang S, Huang W. XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate. Materials Science and Engineering A, 2005, 403(1): 25–31

DOI

42
Huo K, Wang H, Zhang X, Cao Y, Chu P. Heterostructured TiO2 nanoparticles/nanotube arrays: In situ formation from amorphous TiO2 nanotube arrays in water and enhanced photocatalytic activity. ChemPlusChem, 2012, 77(4): 323–329

DOI

43
Yu I, Kim Y, Kim H, Lee C, Lee W. Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21(2): 532–538

DOI

44
Xu J, Wang G, Fan J, Liu B, Cao S, Yu J. g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells. Journal of Power Sources, 2015, 274: 77–84

DOI

45
Park N, van de Lagemaat J, Frank A. Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. Journal of Physical Chemistry B, 2000, 104(38): 8989–8994

DOI

46
Kang T, Chun K, Hong J, Moon S, Kim K. Enhanced stability of photocurrent-voltage curves in Ru(II)-dye-sensitized nanocrystalline TiO2 electrodes with carboxylic acids. Journal of the Electrochemical Society, 2000, 147(8): 3049–3053

DOI

47
Tian H, Hu L, Zhang C, Liu W, Huang Y, Mo L, Guo L, Sheng J, Dai S. Retarded charge recombination in dye-sensitized nitrogen-doped TiO2 solar cells. Journal of Physical Chemistry C, 2010, 114(3): 1627–1632

DOI

48
Chang H, Lo Y. Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells. Solar Energy, 2010, 84(10): 1833–1837

DOI

49
Dai G, Zhao L, Li J, Wan L, Hu F, Xu Z, Dong B, Lu H, Wang S, Yu J. A novel photoanode architecture of dye-sensitized solar cells based on TiO2 hollow sphere/nanorod array double-layer film. Journal of Colloid and Interface Science, 2012, 365(1): 46–52

DOI

50
Yang J, Gao Z, Tian L, Ma P, Wu D, Yang L. Spindle-like TiO2 with high crystallinity and its application in dye sensitised solar cell. Micro & Nano Letters, 2011, 6(8): 737–740

DOI

51
Liu W, Liang Z, Kou D, Hu L, Dai S. Wide frequency range diagnostic impedance behavior of the multiple interfaces charge transport and transfer processes in dye-sensitized solar cells. Electrochimica Acta, 2013, 88: 395–403

DOI

52
Nakade S, Saito Y, Kubo W, Kitamura T, Wada Y, Yanagida S. Influence of TiO2 nanoparticle size on electron diffusion and Recombination in dye-sensitized TiO2 solar cells. Journal of Physical Chemistry B, 2003, 107(33): 8607–8611

DOI

53
Liao J, Lei B, Kuang D, Su C. Tri-functional hierarchical TiO2 spheres consisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solar cells. Energy & Environmental Science, 2011, 4(10): 4079–4085

DOI

Outlines

/