RESEARCH ARTICLE

Polydimethylsiloxane assisted supercritical CO2 foaming behavior of high melt strength polypropylene grafted with styrene

  • Weixia Wang 1 ,
  • Shuai Zhou 1 ,
  • Zhong Xin , 1,2 ,
  • Yaoqi Shi 1,3 ,
  • Shicheng Zhao 1
Expand
  • 1. Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • 2. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • 3. Shanghai Key Laboratory of Catalysis Technology for Polyolefin, Shanghai Research Institute of Chemical Industry, Shanghai 200062, China

Received date: 26 Jan 2016

Accepted date: 11 May 2016

Published date: 23 Aug 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Foamable high melt strength polypropylene (HMSPP) was prepared by grafting styrene (St) onto polypropylene (PP) and simultaneously introducing polydimethylsiloxane (PDMS) through a one-step melt extrusion process. The effect of PDMS viscosity on the foaming behavior of HMSPP was systematically investigated using supercritical CO2 as the foaming agent. The results show that the addition of PDMS has little effect on the grafting reaction of St and HMSPP exhibits enhanced elastic response and obvious strain hardening effect. Though the CO2 solubility of HMSPP with PDMS (PDMS-HMSPP) is lower than that of HMSPP without PDMS, especially for PDMS with low viscosity, the PDMS-HMSPP foams exhibit narrow cell size distribution and high cell density. The fracture morphology of PDMS-HMSPP shows that PDMS with low viscosity disperses more easily and uniformly in HMSPP matrix, leading to form small domains during the extrusion process. These small domains act as bubble nucleation sites and thus may be responsible for the improved foaming performance of HMSPP.

Cite this article

Weixia Wang , Shuai Zhou , Zhong Xin , Yaoqi Shi , Shicheng Zhao . Polydimethylsiloxane assisted supercritical CO2 foaming behavior of high melt strength polypropylene grafted with styrene[J]. Frontiers of Chemical Science and Engineering, 2016 , 10(3) : 396 -404 . DOI: 10.1007/s11705-016-1577-z

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 21476085 and 21306047), Fundamental Research Funds for the Central Universities of China (22A201514016; 222201314051).
1
Oh K, Seo Y, Hong S, Takahara A, Lee K, Seo Y. Dispersion and reaggregation of nanoparticles in the polypropylene copolymer foamed by supercritical carbon dioxide. Physical Chemistry Chemical Physics, 2013, 15(26): 11061–11069

DOI

2
Lan X, Zhai W, Zheng W. Critical effects of polyethylene addition on the autoclave foaming behavior of polypropylene and the melting behavior of polypropylene foams blown with n-pentane and CO2. Industrial & Engineering Chemistry Research, 2013, 52(16): 5655–5665

DOI

3
Ding J, Ma W, Song F, Zhong Q. Effect of nano-calcium carbonate on microcellular foaming of polypropylene. Journal of Materials Science, 2013, 48(6): 2504–2511

DOI

4
Naguib H, Park C, Reichelt N. Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. Journal of Applied Polymer Science, 2004, 91(4): 2661–2668

DOI

5
Wang K, Wu F, Zhai W, Zheng W. Effect of polytetrafluoroethylene on the foaming behaviors of linear polypropylene in continuous extrusion. Journal of Applied Polymer Science, 2013, 129(4): 2253–2260

DOI

6
Chaudhary A, Jayaraman K. Extrusion of linear polypropylene-clay nanocomposite foams. Polymer Engineering and Science, 2011, 51(9): 1749–1756

DOI

7
Li Y, Yao Z, Chen Z, Qiu S, Zeng C, Cao K. High melt strength polypropylene by ionic modification: Preparation, rheological properties and foaming behaviors. Polymer, 2015, 70: 207–214

DOI

8
Li S, Xiao M, Guan Y, Wei D, Xiao H, Zheng A. A novel strategy for the preparation of long chain branching polypropylene and the investigation on foamability and rheology. European Polymer Journal, 2012, 48(2): 362–371

DOI

9
Zhang Z, Wan D, Xing H, Tan H, Wang L, Zheng J, An Y, Tang T. A new grafting monomer for synthesizing long chain branched polypropylene through melt radical reaction. Polymer, 2012, 53(1): 121–129

DOI

10
Zhou S, Zhao S, Xin Z. Preparation and foamability of high melt strength polypropylene based on grafting vinyl polydimethylsiloxane and styrene. Polymer Engineering and Science, 2015, 55(2): 251–259

DOI

11
Antunes M, Realinho V, Velasco J. Foaming behaviour, structure, and properties of polypropylene nanocomposites foams. Journal of Nanomaterials, 2010, 2010(4): 1–11

DOI

12
Bhattacharya S, Gupta R, Jollands M, Bhattacharya S. Foaming behavior of high-melt strength polypropylene/clay nanocomposites. Polymer Engineering and Science, 2009, 49(10): 2070–2084

DOI

13
Wang M, Ma J, Chu R, Park C, Nanqiao Z. Effect of the introduction of polydimethylsiloxane on the foaming behavior of block-copolymerized polypropylene. Journal of Applied Polymer Science, 2012, 123(5): 2726–2732

DOI

14
Bing L, Wu Q, Zhou N, Shi B. Batch foam processing of polypropylene/polydimethylsiloxane blends. International Journal of Polymeric Materials, 2010, 60(1): 51–61

DOI

15
Spitael P, Macosko C, McClurg R. Block copolymer micelles for nucleation of microcellular thermoplastic foams. Macromolecules, 2004, 37(18): 6874–6882

DOI

16
Prakashan K, Gupta A, Maiti S. Effect of compatibilizer on micromehanical deformations and morphology of dispersion in PP/PDMS blend. Journal of Applied Polymer Science, 2007, 105(5): 2858–2867

DOI

17
Wu Q, Park C, Zhou N, Zhu W. Effect of temperature on foaming behaviors of homo-and co-polymer polypropylene/polydimethylsiloxane blends with CO2. Journal of Cellular Plastics, 2009, 45(4): 303–319

DOI

18
Wang W, Zhou S, Xin Z, Shi Y, Zhao S, Meng X. Preparation and foaming mechanism of foamable polypropylene based on self-assembled nanofibrils from sorbitol nucleating agents. Journal of Materials Science, 2016, 51(2): 788–796

DOI

19
Chen J, Liu T, Zhao L, Yuan W. Determination of CO2 solubility in isotactic polypropylene melts with different polydispersities using magnetic suspension balance combined with swelling correction. Thermochimica Acta, 2012, 530: 79–86

DOI

20
Kumar V, Suh N. A process for making microcellular thermoplastic parts. Polymer Engineering and Science, 1990, 30(20): 1323–1329

DOI

21
Deng Q, Fu Z, Sun F, Xu J, Fan Z. Structure and rheological properties of the products of solid-state graft polymerization of styrene in annealed polypropylene reactor granules. Polymer-Plastics Technology and Engineering, 2009, 48(5): 516–524

DOI

22
Lagendijk R, Hogt A, Buijtenhuijs A, Gotsis A. Peroxydicarbonate modification of polypropylene and extensional flow properties. Polymer, 2001, 42(25): 10035–10043

DOI

23
Tian J, Yu W, Zhou C. The preparation and rheology characterization of long chain branching polypropylene. Polymer, 2006, 47(23): 7962–7969

DOI

24
Wood-Adams P, Dealy J, Degroot A, Redwine O. Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules, 2000, 33(20): 7489–7499

DOI

25
Xu Z, Zhang Z, Guan Y, Wei D, Zheng A. Investigation of extensional rheological behaviors of polypropylene for foaming. Journal of Cellular Plastics, 2013, 49(4): 317–334

DOI

26
Auhl D, Stadler F, Muenstedt H. Comparison of molecular structure and rheological properties of electron-beam- and gamma-irradiated polypropylene. Macromolecules, 2012, 45(4): 2057–2065

DOI

27
Jalbert C, Koberstein J, Yilgor I, Gallagher P, Krukonis V. Molecular weight dependence and end-group effects on the surface tension of poly(dimethylsiloxane). Macromolecules, 1993, 26(12): 3069–3074

DOI

28
Zhai W, Kuboki T, Wang L, Park C, Lee E, Naguib H. Cell structure evolution and the crystallization behavior of polypropylene/clay nanocomposites foams blown in continuous extrusion. Industrial & Engineering Chemistry Research, 2010, 49(20): 9834–9845

DOI

Outlines

/