Frontiers of Chemical Science and Engineering >
Nucleic acid crystallization and X-ray crystallography facilitated by single selenium atom
Received date: 03 Dec 2015
Accepted date: 20 Jan 2016
Published date: 19 May 2016
Copyright
X-ray crystallography is a powerful strategy for 3-D structure determination of macromolecules, such as nucleic acids and protein-nucleic acid complexes. However, the crystallization and phase determination are the major bottle-neck problems in crystallography. Recently we have successfully developed synthesis and strategy of selenium-derivatized nucleic acids (SeNA) for nucleic acid crystallography. SeNA might not only provide the rational strategies to solve the phase determination problem, but also offer a potential strategy to explore crystallization solutions.
Key words: selenium; DNA; RNA; nucleic acid; crystallization
Wen Zhang , Jack W. Szostak , Zhen Huang . Nucleic acid crystallization and X-ray crystallography facilitated by single selenium atom[J]. Frontiers of Chemical Science and Engineering, 2016 , 10(2) : 196 -202 . DOI: 10.1007/s11705-016-1565-3
1 |
Eddy S R. Non-coding RNA genes and the modern RNA world. Nature Reviews. Genetics, 2001, 2(12): 919–929
|
2 |
Blount K F, Uhlenbeck O C. The structure-function dilemma of the hammerhead ribozyme. Annual Review of Biophysics and Biomolecular Structure, 2005, 34(1): 415–440
|
3 |
Watson J D, Crick F H. Molecular structure of nucleic acids. Nature, 1953, 171(4356): 737–738
|
4 |
Doherty E A, Doudna J A. Ribozyme structures and mechanisms. Annual Review of Biophysics and Biomolecular Structure, 2001, 30(1): 457–475
|
5 |
Shu Y, Pi F, Sharma A, Rajabi M, Haque F, Shu D, Leggas M, Evers B M, Guo P. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Advanced Drug Delivery Reviews, 2014, 66: 74–89
|
6 |
Zhang W, Huang Z. Synthesis of the 5′-se-thymidine phosphoramidite and convenient labeling of DNA oligonucleotide. Organic Letters, 2011, 13(8): 2000–2003
|
7 |
Sha R, Birktoft J J, Nguyen N, Chandrasekaran A R, Zheng J, Zhao X, Mao C, Seeman N C. Self-assembled DNA crystals: The impact on resolution of 5′-phosphates and the DNA source. Nano Letters, 2013, 13(2): 793–797
|
8 |
Han D, Jiang S, Samanta A, Liu Y, Yan H. Unidirectional scaffold–strand arrangement in DNA origami. Angewandte Chemie International Edition, 2013, 52(34): 9031–9034
|
9 |
Frank-Kamenetskii M D, Mirkin S M. Triplex DNA structures. Annual Review of Biochemistry, 1995, 64(1): 65–95
|
10 |
Lim K W, Phan A T. Structural basis of DNA quadruplex-duplex junction formation. Angewandte Chemie, 2013, 125(33): 8728–8731
|
11 |
Ho P S, Eichman B F. The crystal structures of DNA Holliday junctions. Current Opinion in Structural Biology, 2001, 11(3): 302–308
|
12 |
Egli M. Nucleic acid crystallography: Current progress. Current Opinion in Chemical Biology, 2004, 8(6): 580–591
|
13 |
Lin L, Sheng J, Huang Z. Nucleic acid X-ray crystallography via direct selenium derivatization. Chemical Society Reviews, 2011, 40(9): 4591–4602
|
14 |
Zheng J, Birktoft J J, Chen Y, Wang T, Sha R, Constantinou P E, Ginell S L, Mao C, Seeman N C. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature, 2009, 461(7260): 74–77
|
15 |
Egli M, Saenger W. In Principles of Nucleic Acid Structure. New York: Springer, 2013, 29–50
|
16 |
Berzelius J, Lettre de M, Berzelius à M. Berthollet sur deux métaux nouveaux. Letter from Mr.Berzelius to Mr. Berthollet on two new metals. Annales de chimie et de physique, series, 1818, 2: 199–206
|
17 |
Stadtman T C. Selenium biochemistry. Annual Review of Biochemistry, 1990, 59(1): 111–127
|
18 |
Stadtman T C. Selenium biochemistry: Mammalian selenoenzymes. Annals of the New York Academy of Sciences, 2000, 899(1): 399–402
|
19 |
Zinoni F, Birkmann A, Stadtman T C, Böck A. Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(13): 4650–4654
|
20 |
Böck A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F. Selenocysteine: The 21st amino acid. Molecular Microbiology, 1991, 5(3): 515–520
|
21 |
Hoffman J L, McConnell K P. The presence of 4-selenouridine in Escherichia coli tRNA. Biochimica et Biophysica Acta (BBA)-. Nucleic Acids and Protein Synthesis, 1974, 366(1): 109–113
|
22 |
Veres Z, Tsai L, Scholz T D, Politino M, Balaban R S, Stadtman T C. Synthesis of 5-methylaminomethyl-2-selenouridine in tRNAs: 31P NMR studies show the labile selenium donor synthesized by the selD gene product contains selenium bonded to phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(7): 2975–2979
|
23 |
Hendrickson W A, Pähler A, Smith J L, Satow Y, Merritt E A, Phizackerley R P. Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(7): 2190–2194
|
24 |
Hendrickson W A, Smith J L, Phizackerley R P, Merritt E A. Crystallographic structure analysis of lamprey hemoglobin from anomalous dispersion of synchrotron radiation. Proteins, 1988, 4(2): 77–88
|
25 |
Hendrickson W A, Horton J R, Murthy H K, Pahler A, Smith J L. Multiwavelength anomalous diffraction as a direct phasing vehicle in macromolecular crystallography. In Synchrotron Radiation in Structural Biology. New York: Springer, 1989, 317–324
|
26 |
Hendrickson W A, Horton J R, LeMaster D M. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): A vehicle for direct determination of three-dimensional structure. EMBO Journal, 1990, 9(5): 1665–1672
|
27 |
Deacon A, Ealick S. Selenium-based MAD phasing: Setting the sites on larger structures. Structure (London, England), 1999, 7(7): 161–166
|
28 |
Carrasco N, Ginsburg D, Du Q, Huang Z. Synthesis of selenium-derivatized nucleosides and oligonucleotides for X-ray crystallography. Nucleosides, Nucleotides & Nucleic Acids, 2001, 20(9): 1723–1734
|
29 |
Sheng J, Huang Z. Selenium derivatization of nucleic acids for X-ray crystal–structure and function studies. Chemistry & Biodiversity, 2010, 7(4): 753–785
|
30 |
Zhang W, Sheng J, Huang Z. Structures and functions of nucleic acids modified with S, Se, and Te and complexed with small molecules. Medicinal Chemistry of Nucleic Acids, 2011: 101–141
|
31 |
Jiang J, Sheng J, Carrasco N, Huang Z. Selenium derivatization of nucleic acids for crystallography. Nucleic Acids Research, 2007, 35(2): 477–485
|
32 |
Teplova M, Wilds C J, Wawrzak Z, Tereshko V, Du Q, Carrasco N, Huang Z, Egli M. Covalent incorporation of selenium into oligonucleotides for X-ray crystal structure determination via MAD: Proof of principle. Biochimie, 2002, 84(9): 849–858
|
33 |
Ferré-D’Amaré A R, Zhou K, Doudna J A. A general module for RNA crystallization. Journal of Molecular Biology, 1998, 279(3): 621–631
|
34 |
Ke A, Doudna J A. Crystallization of RNA and RNA-protein complexes. Methods (San Diego, Calif.), 2004, 34(3): 408–414
|
35 |
Salon J, Chen G, Portilla Y, Germann M W, Huang Z. Synthesis of a 2'-Se-uridine phosphoramidite and its incorporation into oligonucleotides for structural study. Organic Letters, 2005, 7(25): 5645–5648
|
36 |
Du Q, Carrasco N, Teplova M, Wilds C J, Egli M, Huang Z. Internal derivatization of oligonucleotides with selenium for X-ray crystallography using MAD. Journal of the American Chemical Society, 2002, 124(1): 24–25
|
37 |
Carrasco N, Buzin Y, Tyson E, Halpert E, Huang Z. Selenium derivatization and crystallization of DNA and RNA oligonucleotides for X-ray crystallography using multiple anomalous dispersion. Nucleic Acids Research, 2004, 32(5): 1638–1646
|
38 |
Sheng J, Salon J, Gan J, Huang Z. Synthesis and crystal structure study of 2′-Se-adenosine-derivatized DNA. Science China. Chemistry, 2010, 53(1): 78–85
|
39 |
Salon J, Sheng J, Gan J, Huang Z. Synthesis and crystal structure of 2′-Se-modified guanosine containing DNA. Journal of Organic Chemistry, 2010, 75(3): 637–641
|
40 |
Sheng J, Jiang J, Salon J, Huang Z. Synthesis of a 2'-Se-thymidine phosphoramidite and its incorporation into oligonucleotides for crystal structure study. Organic Letters, 2007, 9(5): 749–752
|
41 |
Moroder H, Kreutz C, Lang K, Serganov A, Micura R. Synthesis, oxidation behavior, crystallization and structure of 2'-methylseleno guanosine containing RNAs. Journal of the American Chemical Society, 2006, 128(30): 9909–9918
|
42 |
Höbartner C, Rieder R, Kreutz C, Puffer B, Lang K, Polonskaia A, Serganov A, Micura R. Syntheses of RNAs with up to 100 nucleotides containing site-specific 2'-methylseleno labels for use in X-ray crystallography. Journal of the American Chemical Society, 2005, 127(34): 12035–12045
|
43 |
Olieric V, Rieder U, Lang K, Serganov A, Schulze-Briese C, Micura R, Dumas P, Ennifar E. A fast selenium derivatization strategy for crystallization and phasing of RNA structures. RNA (New York, N.Y.), 2009, 15(4): 707–715
|
44 |
Sheng J, Gan J, Soars A S, Salon J, Huang Z. Structural insights of non-canonical U·U pair and Hoogsteen interaction probed with Se atom. Nucleic Acids Research, 2013, 41(22): 10476–10487
|
45 |
Salon J, Gan J, Abdur R, Liu H, Huang Z. Synthesis of 6-Se-guanosine RNAs for structural study. Organic Letters, 2013, 15(15): 3934–3937
|
46 |
Abdur R, Gerlits O O, Gan J, Jiang J, Salon J, Kovalevsky A Y, Chumanevich A A, Weber I T, Huang Z. Novel complex MAD phasing and RNase H structural insights using selenium oligonucleotides. Acta Crystallographica. Section D, Biological Crystallography, 2014, 70(2): 354–361
|
47 |
Hassan A E, Sheng J, Zhang W, Huang Z. High fidelity of base pairing by 2-selenothymidine in DNA. Journal of the American Chemical Society, 2010, 132(7): 2120–2121
|
48 |
Zhang L, Yang Z, Sefah K, Bradley K M, Hoshika S, Kim M J, Kim H J, Zhu G, Jimenez E, Cansiz S, Teng I T, Champanhac C, McLendon C, Liu C, Zhang W, Gerloff D L, Huang Z, Tan W, Benner S A. Evolution of functional six-nucleotide DNA. Journal of the American Chemical Society, 2015, 137(21): 6734–6737
|
/
〈 | 〉 |