RESEARCH ARTICLE

Interactions between nano-TiO2 particles and algal cells at moderate particle concentration

  • Mingyu LIN 1 ,
  • Yao Hsiang TSENG 2 ,
  • Chin-Pao HUANG , 1
Expand
  • 1. Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA
  • 2. Department of Chemical Engineering, Taiwan University of Science and Technology, Taipei, Taiwan, China

Received date: 08 Jan 2015

Accepted date: 02 Apr 2015

Published date: 14 Jul 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Nano-sized titanium dioxide (nano-TiO2) has wide industrial applications and therefore considerable chances of exposure are created for human beings and ecosystems. To better understand the interactions between nano-TiO2 and aquatic organisms, we first studied TiO2 uptake by algae exemplified by Pseudokirchneriella subcapitata. P. subcapitata were exposed to nano-TiO2 in a series of concentrations and at various pH. TiO2 uptake was quantified using a sedimentation curve analysis technique. After exposure of algae to TiO2, the variation of zeta potential was measured and the morphology of algae-TiO2 aggregate was observed with scanning electron microscopy and the optical microscopy. The steady-state TiO2 uptake was found to be pH-dependent and the isotherms can be described well by Freundlich model. TiO2 deposited on algal surfaces causes the shift of pHzpc of TiO2-covered algae from that of algae toward that of TiO2. The attraction between TiO2-covered algal cells induces the agglomeration of algae and TiO2 and thus the formation of algae-TiO2 aggregates in the size of 12 to 50 µm. The 2-D fractal dimension of the aggregates is pH-dependent and ranges from 1.31 to 1.67. The theoretical analysis of the Gibbs energy of interaction indicates that both TiO2 uptake by algae and the formation of algae-TiO2 aggregate are influenced by the interaction between TiO2 particles.

Cite this article

Mingyu LIN , Yao Hsiang TSENG , Chin-Pao HUANG . Interactions between nano-TiO2 particles and algal cells at moderate particle concentration[J]. Frontiers of Chemical Science and Engineering, 2015 , 9(2) : 242 -257 . DOI: 10.1007/s11705-015-1513-7

Acknowledgements

This research was funded by USEPA STAR Grant # R-83172101. Results, discussions, and conclusions are those of the authors and should not be interpret as endorsement of the funding agency. Sources of nanoparticles studied came from Degussa Corp. The authors have no direct financial interest in or relationship with any of the above companies.
1
Colvin V L. The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 2013, 21(10): 1166–1170

2
Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761): 622–627

3
Karakoti A S, Hench L L, Seal S. The potential toxicity of nanomaterials: The role of surfaces. JOM, 2006, 58(7): 77–82

4
Long T C, Saleh N, Tilton R D, Lowry G V, Veronesi B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environmental Science & Technology, 2016, 40(14): 4346–4352

5
Kuempel E D, Attfield M D, Vallyathan V, Lapp N L, Hale J M, Smith R J, Castranova V. Pulmonary inflammation and crystalline silica in respirable coal mine dust: Dose-response. Journal of Bio-Science, 2003, 28(1): 61–69

6
Tsuji J S, Maynard A D, Howard P C, James J T, Lam C W, Warheit D B, Santamaria A B. Research strategies for safety evaluation of nanomaterials, part IV: Risk assessment of nanoparticles. Toxicological Sciences, 2006, 89(1): 42–50

7
Linkous C A, Carter G J, Locuson D B, Ouellette A J, Slattery D K, Smitha L A. Photocatalytic inhibition of algae growth using TiO2, WO3, and cocatalyst modifications. Environmental Science & Technology, 2000, 34(22): 4754–4758

8
Oberdörster E. Manufactured nanomaterials (Fullerenes, C-60) induce oxidative stress in the brain of juvenile largemouth bass. Environmental Health Perspectives, 2004, 112(10): 1058–1062

9
Kim S C, Lee D K. Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water. Microchemical Journal, 2005, 80(2): 227–232

10
Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environmental Science and Pollution Research International, 2006, 13(4): 225–232

11
Lovern S B, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environmental Toxicology and Chemistry, 2006, 25(4): 1132–1137

12
Lovern S B, Strickler J R, Klaper R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environmental Science & Technology, 2007, 41(12): 4465–4470

13
Manier N, Bado-Nilles A, Delalain P, Aguerre-Chariol O, Pandard P. Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environmental Pollution, 2013, 180: 67–70

14
Wick P, Manser P, Limbachd L K, Dettlaff-Weglikowskab U, Krumeichc F, Rothb S, Starkd W J, Bruininkaet A. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicology Letters, 2007, 168(2): 121–131

15
Geiser M, Rothen-Rutishauser B, Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M. Im Hof V, Heyder J, Gehr P. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environmental Health Perspectives, 2005, 113(11): 1555–1560

16
Limbach L K, Li Y C, Grass R N, Brunner T J, Hintermann M A, Muller M, Gunther D, Stark W J. Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration, and diffusion at low concentrations. Environmental Science & Technology, 2005, 39(23): 9370–9376

17
Chang E, Thek N, Yu W W, Colvin V L, Drezek R. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small, 2006, 2(12): 1412–1417

18
Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank A M. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environmental Science & Technology, 2006, 40(19): 6151–6156

19
Kashiwada S. Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environmental Health Perspectives, 2006, 114(11): 1697–1702

20
Crist R, Oberholser H K, Shank N, Nguyen M. Nature of bonding between metallic ions and algal cell walls. Environmental Science & Technology, 1981, 15(10): 1212–1217

21
Robinson K A, Baird D J, Wrona F J. Surface metal adsorption on zooplankton carapaces: Implications for exposure and effects in consumer organisms. Environmental Pollution, 2003, 122(2): 159–167

22
Taylor G, Baird D J, Soares A M V M. Surface binding of contaminants by algae: Consequences for lethal toxicity and feeding to Daphnia magna straus. Environmental Toxicology and Chemistry, 1998, 17(3): 412–419

23
Gong N, Shao K, Feng W, Lin Z, Liang C, Sun Y. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere, 2011, 83(4): 510–516

24
Ji J, Long Z, Lin D. Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chemical Engineering Journal, 2011, 170(2–3): 525–530

25
Sadip M, Dalai S, Chandrasekaran N, Mukheriee A. Ectotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicity and Environmental Safety, 2011, 74(5): 1180–1187

26
Metzler D M, Li M H, Erdem A, Huang C P. Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chemical Engineering Journal, 2011, 170(2-3): 538–546

27
Perreault F, Oukarroum A, Melegari S P, Matias W G, Popovic R. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere, 2012, 87(11): 1388–1394

28
Chen P Y, Powell B H, Mortimer M, Ke P C. Adaptive interactions between zinc oxide nanoparticles and Chlorella sp. Environmental Science & Technology, 2012, 46(21): 12178–12185

29
Ma S, Zhou K, Yang K, Lin D. Heteroagglomeration of oxide nanoparticles with algal cells: Effects of particle type, ionic strength and pH. Environmental Science & Technology, 2005, 49(2): 932–939

30
Xia B, Chen B, Sun X, Qu K, Ma F, Du M. Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization. Science of the Total Environment, 2015, 508: 525–533

31
Vigneault B, Percot A, Lafleur M, Campbell P G C. Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances. Environmental Science & Technology, 2000, 34(18): 3907–3913

32
Moye H A, Miles C J, Phlips E J, Sargent B, Merritt K K. Kinetics and uptake mechanisms for monomethylmercury between freshwater algae and water. Environmental Science & Technology, 2002, 36(16): 3550–3555

33
Kaulbach E S, Szymanowski J E S, Fein J B. Surface complexation modeling of proton and Cd adsorption onto an algal cell wall. Environmental Science & Technology, 2005, 39(11): 4060–4065

34
Konstantinou I K, Albanis T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 2004, 49(1): 1–14

35
Choi H, Stathatos E, Dionysiou D D. Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Applied Catalysis B-Environmental, 2006, 63(1-2): 60–67

36
Nohynek G J, Lademann J, Ribaud C J, Roberts M S. Grey goo on the skin nanotechnology, cosmetic and sunscreen safety. Critical Reviews in Toxicology, 2007, 37(3): 251–277

37
Kirchnerova J, Cohen M L H, Guy C, Klvana D. Photocatalytic oxidation of n-butanol under fluorescent visible light lamp over commercial TiO2 (Hombicat UV100 and Degussa P25). Applied Catalysis A, General, 2005, 282(1-2): 321–332

38
Lin H, Huang C P, Li W, Ni C, Shah S I, Tseng Y H. Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Applied Catalysis B: Environmental, 2006, 68(1-2): 1–11

39
Nicolosi V, Vrbanic V, Mrzel A, McCauley J, O’Flaherty S, McGuinness C, Compagnini G, Mihailovic D, Blau W J, Coleman J N. Solubility of Mo6S4.5I4.5 nanowires in common solvents: A sedimentation study. Journal of Physical Chemistry B, 2005, 109(15): 7124–7133

40
Burger R. Phenomenological foundation and mathematical theory of sedimentation-consolidation processes. Chemical Engineering Journal, 2000, 80(1-3): 177–188

41
Reynolds C S. The Ecology of Freshwater Phytoplankton. London: Cambridge University Press, 1984, 384

42
Smoluchowski M. Versuch einer mathematischen theorie der koagulations kinetic kolloider lösungen. Zeitschrift für Physikalische Chemie, 1917, 92: 129–168

43
Jiang Q, Logan B E. Fractal dimensions of aggregates determined from steady-state size distributions. Environmental Science & Technology, 1991, 25(12): 2031–2038

44
Chakraborti R K, Gardner K H, Atkinson J F, van Benschoten J E. Changes in fractal dimension during aggregation. Water Research, 2003, 37(4): 873–883

45
Phenrat T, Saleh N, Sirk K, Tilton R D, Lowry G V. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 2007, 41(1): 284–290

46
McCarthy D N, Nicolosi V, Vengust D, Mihailovic D, Blau W J, Coleman J N. Dispersion and purification of Mo6S3I6 nanowires in organic solvents. Journal of Applied Physics, 2007, 101(1): 014317

47
Kim A S, Yuan R. Hydrodynamics of an ideal aggregate with quadratically increasing permeability. Journal of Colloid and Interface Science, 2005, 285(2): 627–633

48
Adamson A W, Gast A P. Physical Chemistry of Surfaces. New York: John Wiley & Sons Inc, 1997, 511, 522

49
Russel W B, Saville D A, Schowalter W R. Colloidal Dispersions. London: Cambridge University Press, 1989, 506

50
Chithrani B D, Ghazani A A, Chan W C W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 2006, 6(4): 662–668

51
Weber W J, Micginley P M, Katz L E. Sorption phenomena in subsurface systems: Concepts, models and effects on contaminant fate and transport. Water Research, 1991, 25(5): 499–528

52
Elimelech M, O’Melia C R. Effect of particle-size on collision efficiency in the deposition of brownian particles with electrostatic energy barriers. Langmuir, 1990, 6(6): 1153–1163

53
Elimelech M. Kinetics of capture of colloidal particles in packed beds under attractive double layer interactions. Journal of Colloid and Interface Science, 1991, 146(2): 337–352

54
Adamczyk Z. Particle adsorption and deposition: Role of electrostatic interactions. Advances in Colloid and Interface Science, 2003, 100: 267–347

55
Bremer M G E G, Duval J F L, Norde W, Lyklema J. Electrostatic interactions between immunoglobulin (IgG) molecules and a charged sorbent. Colloids and Surfaces, 2004, A 250: 29–42

56
McClements D J. Theoretical analysis of factors affecting the formation and stability of multilayered colloidal dispersions. Langmuir, 2005, 21(21): 9777–9785

57
Hogg R, Healy T W, Fuerstenau D W. Mutual coagulation of colloidal dispersions. Transactions of the Faraday Society, 1996, 62(522P): 1638

58
Gregory J. Interaction of unequal double-layers at constant charge. Journal of Colloid and Interface Science, 1975, 51(1): 44–51

59
Yaremko Z M, Tkachenko N H, Bellmann C, Pich A. Redispergation of TiO2 particles in aqueous solutions. Journal of Colloid and Interface Science, 2006, 296(2): 565–571

60
Zhang J. Surface forces between silica surfaces in CnTACl solutions and surface free energy characterization of talc. Dissertation for the Doctoral Degree. Blacksburg: Virginia Polytechnic Institute and State University, 2006

61
Han M Y, Kim W. A theoretical consideration of algae removal with clays. Microchemical Journal, 68(2-3): 157–161

62
Jarvis P, Jefferson B, Gregory J, Parsons S A. A review of floc strength and breakage. Water Research, 2005, 39(14): 3121–3137

63
Alince B. Colloidal particles deposition on pulp fibers. Colloids and Surfaces, 1989, 39(1-3): 39–51

64
Khan S S, Srivashan P, Vaishnvavi N, Mukherjee A, Chandrasekaran N. Interaction of silver nanoparticles with bacterial extracellul<?Pub Caret?>ar proteins and its adsorption isotherms and kinetics. Journal of Hazardous Materials, 2011, 192: 299–306

Outlines

/