RESEARCH ARTICLE

Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3

  • Zhenhua LI ,
  • Jia HE ,
  • Haiyang WANG ,
  • Baowei WANG ,
  • Xinbin MA
Expand
  • Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Received date: 12 Mar 2014

Accepted date: 19 May 2014

Published date: 07 Apr 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

A series of unsupported MoS2 catalysts with or without Al2O3 modification was prepared using a modified thermal decomposition approach. The catalysts were tested for the methanation of carbon monoxide and the optimum one has 25.6 wt-% Al2O3 content. The catalysts were characterized by nitrogen adsorption measurement, X-ray diffraction and transmission electron microscopy. The results show that adding appropriate amount of Al2O3 increases the dispersion of MoS2, and the increased interaction force between MoS2 and Al2O3 can inhibit the sintering of active MoS2 to some extent.

Cite this article

Zhenhua LI , Jia HE , Haiyang WANG , Baowei WANG , Xinbin MA . Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3[J]. Frontiers of Chemical Science and Engineering, 2015 , 9(1) : 33 -39 . DOI: 10.1007/s11705-014-1446-6

Acknowledgments

The authors gratefully acknowledge the financial support from Tianjin Municipal Science and Technology Commission (No. 14JCZDJC37500).
1
Zhang H, Dong Y Y, Fang W P, Lian Y X. Effects of composite oxide supports on catalytic performance of Ni-based catalysts for CO methanation. Chinese Journal of Catalysis, 2013, 34(2): 330–335

2
Kopyscinski J, Schildhauer T J, Biollaz S M. Production of synthetic natural gas (SNG) from coal and dry biomass—A technology review from 1950 to 2009. Fuel, 2010, 89(8): 1763–1783

3
Turner J A. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974

4
Galletti C, Specchia S, Specchia V. CO selective methanation in H2-rich gas for fuel cell application: Microchannel reactor performance with Ru-based catalysts. Chemical Engineering Journal, 2011, 167(2–3): 616–621

5
Bajusz J G, Kwik D J, Goodwin J G Jr. Methanation on K+-modified Pt/SiO2: The impact of reaction conditions on the effective role of the promoter. Catalysis Letters, 1997, 48(3–4): 151–157

6
Liu B, Ji S F. Comparative study of fluidized-bed and fixed-bed reactor for syngas methanation over Ni-W/TiO2-SiO2 catalyst. Journal of Energy Chemistry, 2013, 22(5): 740–746

7
Gulková D, Kaluěa L, Vít Z, Zdražil M. Preparation of MoO3/MgO catalysts with eggshell and uniform Mo distribution by methanol assisted spreading: Effect of MoO3 dispersion on rate of spreading. Catalysis Communications, 2006, 7(5): 276–280

8
Vít Z, Gulkově D, Kaluěa L, Zdražil M. Synergetic effects of Pt and Ru added to Mo/Al2O3 sulfide catalyst in simultaneous hydrodesulfurization of thiophene and hydrogenation of cyclohexene. Journal of Catalysis, 2005, 232(2): 447–455

9
Happel J, Yoshikiyo M, Yin F, Otarod M, Cheh H Y, Hnatow M A, Bajars L, Meyer H S. Isotopic assessment of methanation over molybdenum sulfide catalysts, industry engineering chemistry. Product Research and Development, 1986, 25(2): 214–219

10
Koizumi N, Bian G Z, Murai K, Ozaki T, Yamada M. In situ DRIFT studies of sulfided K-Mo/γ-Al2O3 catalysts. Journal of Molecular Catalysis A Chemical, 2004, 207(2): 173–182

11
Raybaud P, Hafner J, Kresse G, Kasztelan S, Toulhoat H. Structure, energetics, and electronic properties of the surface of a promoted MoS2 catalyst: An ab initio local density functional study. Journal of Catalysis, 2000, 189(1): 129–146

12
Meyer H S, Hill V L, Flowers A, Happel J, Hnatow M A. Direct methanation—A new method of converting synthesis gas to substitute natural gas. Preprint Papers-American Chemical Society. Division of Fuel Chemistry, 1982, 27(1): 109–115

13
Korányi T I, Manninger I, Paál Z, Marks O, Günter T R. Activation of unsupported Co-Mo catalysts in thiophene hydrodesulfurization. Journal of Catalysis, 1989, 116(2): 422–439

14
Nogueiraa A, Znaiguiaa R, Uziob D, Afanasieva P, Berhaulta G. Curved nanostructures of unsupported and Al2O3-supported MoS2 catalysts: Synthesis and HDS catalytic properties. Applied Catalysis A, General, 2012, 429–430: 92–105

15
Du K, Fu W Y, Wei R H, Yang H B, Liu S K, Yu S D, Zhou G T. Synthesis of inorganic fullerene-like MoS2 nanoparticles by a facile method. Materials Letters, 2007, 61(27): 4887–4889

16
Peng Y Y, Meng Z Y, Zhong C, Lu J, Yu W C, Yang Z P, Qian Y T. Hydrothermal synthesis of MoS2 and its pressure-related crystallization. Journal of Solid State Chemistry, 2011, 159(1): 170–173

17
Devers E, Afanasiev P, Jouguet B, Vrinat M. Hydrothermal syntheses and catalytic properties of dispersed molybdenum sulfides. Catalysis Letters, 2002, 82(1–2): 13–17

18
Yu D B, Feng Y, Zhu Y F, Zhang X B, Liu H Q. Template synthesis and characterization of molybdenum disulfide nanotubes. Materials Research Bulletin, 2011, 46(9): 1504–1509

19
Koh J H, Cho A, Lee S, Moon S H. Properties of unsupported MoS2 species produced in the preparation of MoS2/Al2O3 using a sonochemical method. Korean Journal of Chemical Engineering, 2009, 26(4): 999–1003

20
Fuentes S, Diaz G, Pedraza F, Rojas H, Rosas N. The influence of a new preparation method on the catalytic properties of CoMo and NiMo sulfides. Journal of Catalysis, 1988, 113(2): 535–539

21
Inamura K, Prins R. The role of Co in unsupported Co-Mo sulfides in the hydrodesulfurization of thiophene. Journal of Catalysis, 1994, 147(2): 515–524

22
Bezverkhyy I, Afanasiev P, Geantet C, Lacroix M. Highly active (Co)MoS2/Al2O3 hydrodesulfurization catalysts prepared in aqueous solution. Journal of Catalysis, 2001, 204(2): 495–497

23
Berhault G, Mehta A, Pavel A C, Yang J Z, Rendon L, Yácaman M J, Araiza L C, Moller A D, Chianelli R R. The role of structural carbon in transition metal sulfides hydrotreating catalysts. Journal of Catalysis, 2001, 198(1): 9–19

24
Tran M N, Pramana P D, Lee S S. In situ photo-assisted deposition of MoS2 electro-catalyst onto zinc cadmium sulphide nanoparticle surfaces to construct an efficient photocatalyst for hydrogen generation. Nanoscale, 2013, 5(4): 1479–1482

25
Altavilla C, Sarno M, Ciambelli P, Senatore A, Petrone V. New ‘chimie douce’ approach to the synthesis of hybrid nanosheets of MoS2 on CNT and their anti-friction and anti-wear properties. Nanotechnology, 2013, 24(12): 125601–125612

26
Muller A, Diemann E, Branding A, Baumann F W, Breysse M, Vrinat M. New method for the preparation of hydrodesulphurization catalysts: Use of the molybdenum sulphur cluster compound (NH4)2Mo3S(S2)6. Applied Catalysis, 1990, 62(1): 13–17

27
Liu J, Wang E D, Lv J, Li Z H, Wang B W, Ma X B, Qin S D, Sun Q. Investigation of sulfur-resistant, highly active unsupported MoS2 catalysts for synthetic natural gas production from CO methanation. Fuel Processing Technology, 2013, 110: 249–257

28
Calais C, Matsubayashi N, Geantet C, Yoshimura Y, Shimada H, Nishijima A, Lacroix M, Breysse M. Crystallite size determination of highly dispersed unsupported MoS2 catalysts. Journal of Catalysis, 1998, 174(2): 130–141

Outlines

/