RESEARCH ARTICLE

The influence of manufacturing parameters and adding support layer on the properties of Zirfon® separators

  • Li XU , 1,2 ,
  • Yue YU 1,2 ,
  • Wei LI 1,2 ,
  • Yan YOU 1,2 ,
  • Wei XU 3 ,
  • Shaoxing ZHANG 3
Expand
  • 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • 2. Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China
  • 3. Research and Development Department, Tianjin Mainland Hydrogen Equipment Co., Ltd., Tianjin 301609, China

Received date: 19 Sep 2013

Accepted date: 02 Jan 2014

Published date: 11 Oct 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The composite separator comprising of polysulfone and zirconia was prepared by phase inversion precipitation technique. The influence of manufacturing parameters on its properties was investigated, and the results show that the manufacturing parameters affect the ionic resistance and maximum pore size significantly. A modified composite separator with a support layer was prepared to enhance the tensile strength of separator. By adding support layer, the tensile strength of the separator increases from 1.85 MPa to 13.66 MPa. In order to evaluate the practical applicability of the composite separator, a small-scale industrial electrolytic experiment was conducted to investigate the changes of cell voltage, gas purity and separator stability. The results show that the modified composite separator has a smaller cell voltage and a higher H2 purity than the asbestos separator, and are promising material for industrial hydrogen production.

Cite this article

Li XU , Yue YU , Wei LI , Yan YOU , Wei XU , Shaoxing ZHANG . The influence of manufacturing parameters and adding support layer on the properties of Zirfon® separators[J]. Frontiers of Chemical Science and Engineering, 2014 , 8(3) : 295 -305 . DOI: 10.1007/s11705-014-1433-y

Acknowledgments

Our research was supported by the National Natural Science Foundation of China (Grant No. 21276177) and Natural Science Foundation of Tianjin (Grants No. 10JCYBJC04900).
1
Albertini L B, Angelo A C D, Gonzalez E R. A nickel molybdenite cathode for the hydrogen evolution reaction in alkaline media. Journal of Applied Electrochemistry, 1992, 22(9): 888-892

2
Rosa V M, Santos M B F, Silva E P. New materials for water electrolysis diaphragms. International Journal of Hydrogen Energy, 1995, 20(9): 697-700

3
Kerres J, Eigenberger G, Reichle S, Schramm V, Hetzel K, Schnurnberger W, Seybold I. Advanced alkaline electrolysis with porous polymeric diaphragms. Desalination, 1996, 104(1-2): 47-57

4
Wendt H, Hofmann H. Cermet diaphragms and integrated electrode-diaphragm units for advanced alkaline water electrolysis. International Journal of Hydrogen Energy, 1985, 10(6): 375-381

5
Divisek J, Mergel J. Improvement of water electrolysis in alkaline media at intermediate temperatures. In: Proceeding of the 3rd world Hydrogen Energy Conference ., Oxford and New York: Pergamon Press, 1981, 209-219

6
Takashi O, Kenjiro T, Katsuyuki T, Katsuhiro A. Nickel oxide water electrolysis diaphragm fabricated by a novel method. International Journal of Hydrogen Energy, 2007, 32(18): 5094-5097

7
Irving L R. Diaphragm for electrolytic and electrochemical cells. US Patent, 4707228, 1986-10-17

8
Lu S F, Zhuang L, Lu J T. Homogeneous blend membrane made of poly(ether sulphone) and poly(vinylpyrrolidone) and its application to water electrolysis. Journal of Membrane Science, 2007, 300(1-2): 205-210

9
Vermeiren P H, Adriansens W, Leysen R. Zirfon®: A new separator for Ni-H2 batteries and alkaline fuel cells. International Journal of Hydrogen Energy, 1996, 21(8): 679-684

10
Vermeiren P H, Adriansens W, Moreels J P, Leysen R. Evaluation of the Zirfon® separator for use in alkaline water electrolysis and Ni-H2 batteries. International Journal of Hydrogen Energy, 1998, 23(5): 321-324

11
Vermeiren P H, Leysen R, Beckers H, Moreels J P, Claes A. beckers H, Moreels JP, Claes A. The influence of manufacturing parameters on the properties of macroporous Zirfon® separators. Journal of Porous Materials, 2008, 15(3): 259-264

12
Wienk I M, Boom R M, Beerlage M A M, Bulte A M W, Smolders C A, Strathmann H. Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. Journal of Membrane Science, 1996, 113(2): 361-371

13
Aleix C, Tania G, Palet C. Membrane thickness and preparation temperature as key parameters for controlling the macrovoid structure of chiral activated membranes (CAM). Journal of Membrane Science, 2007, 287(1): 29-40

14
Paulsen F G, Shojaie S S, Krantz W B. Effect of evaporation step on macrovoid formation in wet-cast polymeric membranes. Journal of Membrane Science, 1994, 91(5): 265-282

15
Stropnik C, Kaiser V, Musil V, Brumen M. Wet-phase-separation membranes from the polysulfone/N,N-dimethylacetamide/water ternary system: The formation and elements of their structureandproperties. Journal of Applied Polymer Science, 2005, 96(5): 1667-1674

16
Sakai T, Takenaka H, Wakabayashi N, Kawami Y, Torikai E. Gas permeation properties of solid polymer electrolyte (SPE) membranes. Journal of the Electrochemical Society, 1985, 132(6): 1328-1332

17
Wang D L, Teo W K, Li K. Preparation and characterization of high-flux polysulfone hollow fibre gas separation membranes. Journal of Membrane Science, 2002, 204(2): 247-256

18
Smolders C A, Reuvers A J, Boom I M, Wienk I M. Microstructures in phase-inversion membranes. Journal of Membrane Science, 1992, 73(2-3): 259-275

19
Vermeiren P H, Moreels J P, Leysen R. Porosity in composite Zirfon® membranes. Journal of Porous Materials, 1996, 3(1): 33-40

20
Xu L, Li W, You Y, Zhang S, Zhao Y. Polysulfone and zirconia composite separators for alkaline water electrolysis. Frontiers of Chemical Science and Engineering, 2013, 7(2): 154-161

Outlines

/