Enhanced CO2 adsorption properties with bimetallic ZnCe-MOF prepared using a microchannel reactor

Frontiers of Chemical Science and Engineering ›› 2025, Vol. 19 ›› Issue (2) : 14.

PDF(807 KB)
PDF(807 KB)
Frontiers of Chemical Science and Engineering ›› 2025, Vol. 19 ›› Issue (2) : 14. DOI: 10.1007/s11705-025-2518-5
RESEARCH ARTICLE

作者信息 +

Enhanced CO2 adsorption properties with bimetallic ZnCe-MOF prepared using a microchannel reactor

Author information +
History +

Abstract

The use of metal-organic frameworks (MOFs) as CO2-gas-capture materials has attracted extensive research attention. In this study, two types of MOFs—Zn-MOF and ZnCe-MOF—were synthesized utilizing the microchannel reaction method, with water being employed as the solvent. The specific surface area, pore size, and pore volume of Zn-MOF and ZnCe-MOF were 1566.4 and 15.6 m2·g–1, 0.65 and 7.32 nm, as well as 1.65 and 0.03 cm3·g–1, respectively. Furthermore, Ce doping not only increased the pore size of ZnCe-MOF but also its adsorption energy from −0.19 eV (Zn-MOF) to −0.53 eV (ZnCe-MOF). At 298 K, the adsorption capacities of Zn-MOF and ZnCe-MOF were 0.66 and 0.74 mmol·g–1, respectively. In addition, the CO2 adsorption behaviors of Zn-MOF and ZnCe-MOF were linear and logarithmic, respectively. Theoretical calculations show that the results of adsorption thermodynamic simulations were consistent with the experiments. Thus, the preparation of ZnCe-MOF materials using a microchannel reactor provides a new approach for the continuous preparation of MOFs.

Keywords

Metal-organic framework / microchannel reactor / reaction mechanism / CO2 capture adsorption

引用本文

导出引用
. . Frontiers of Chemical Science and Engineering. 2025, 19(2): 14 https://doi.org/10.1007/s11705-025-2518-5

参考文献

[1]
Oschatz M , Antonietti M . A search for selectivity to enable CO2 capture with porous adsorbents. Energy & Environmental Science, 2018, 11(1): 57–70
CrossRef ADS Google scholar
[2]
Madden D G , Scott H S , Kumar A , Chen K J , Sanii R , Bajpai A , Lusi M , Curtin T , Perry J J , Zaworotko M J . Flue-gas and direct-air capture of CO2 by porous metal-organic materials. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 2017, 375(2084): 20160025
CrossRef ADS Google scholar
[3]
Gao W , Liang S , Wang R , Jiang Q , Zhang Y , Zheng Q , Xie B , Toe C Y , Zhu X , Wang J . . Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 2020, 49(23): 8584–8686
CrossRef ADS Google scholar
[4]
Liu H , Guo P , Regueira T , Wang Z , Du J , Chen G . Irreversible change of the pore structure of ZIF-8 in carbon dioxide capture with water coexistence. Journal of Physical Chemistry C, 2016, 120(24): 13287–13294
CrossRef ADS Google scholar
[5]
Missaoui N , Bouzid M , Chrouda A , Kahri H , Barhoumi H , Pang A L , Ahmadipour M . Interpreting of the carbon dioxide adsorption on high surface area zeolitic imidazolate framework-8 (ZIF-8) nanoparticles using a statistical physics model. Microporous and Mesoporous Materials, 2023, 360: 112711
CrossRef ADS Google scholar
[6]
Roussanaly S , Vitvarova M , Anantharaman R , Berstad D , Hagen B , Jakobsen J , Novotny V , Skaugen G . Techno-economic comparison of three technologies for pre-combustion CO2 capture from a lignite-fired IGCC. Frontiers of Chemical Science and Engineering, 2019, 14(3): 436–452
CrossRef ADS Google scholar
[7]
Butt F S , Lewis A , Rea R , Mazlan N A , Chen T , Radacsi N , Mangano E , Fan X , Yang Y , Yang S . . Highly-controlled soft-templating synthesis of hollow ZIF-8 nanospheres for selective CO2 separation and storage. ACS Applied Materials & Interfaces, 2023, 15(26): 31740–31754
CrossRef ADS Google scholar
[8]
Zhang Z , Zhang J , Dou G , Zeng Q . Synthesis of PI/ZIF-8 aerogel with hierarchical porous structure for enhanced CO2 capture performance. Chemical Physics Letters, 2022, 801: 139703
CrossRef ADS Google scholar
[9]
Yin M , Li Z , Wang L , Tang S . Preparation of hierarchically porous PVP/ZIF-8 in supercritical CO2 by PVP-induced defect-formation method for high-efficiency gas adsorption. Separation and Purification Technology, 2023, 314: 123550
CrossRef ADS Google scholar
[10]
Huang J , Yang D , Hu Z , Zhang H , Zhang Z , Wang F , Xie Y , Liu S , Wang Q , Pittman C U . In situ growth of Zn-based metal-organic frameworks in ultra-high surface area nano-wood aerogel for efficient CO2 capture and separation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2023, 11(31): 16878–16888
CrossRef ADS Google scholar
[11]
Shi Y , Tian G , Ni R , Zhang L , Hu W , Zhao Y . Facile and green lyocell/feather nonwovens with in-situ growth of ZIF-8 as adsorbent for physicochemical CO2 capture. Separation and Purification Technology, 2023, 322: 124356
CrossRef ADS Google scholar
[12]
Mohammadi A , Nakhaei Pour A . Triethylenetetramine-impregnated ZIF-8 nanoparticles for CO2 adsorption. Journal of CO2 Utilization, 2023, 69: 102424
[13]
Zhao X , Ding Y , Ma L , Zhu X , Wang H , Cheng M , Liao Q . An amine-functionalized strategy to enhance the CO2 absorption of type III porous liquids. Energy, 2023, 279: 127975
CrossRef ADS Google scholar
[14]
Wu H , Li Q , Zhang Y , Qiu M , Liao Y , Xu H , Shi L , Yi Q . One-step supramolecular fabrication of ionic liquid/ZIF-8 nanocomposites for low-energy CO2 capture from flue gas and conversion. Fuel, 2022, 322: 124175
CrossRef ADS Google scholar
[15]
Luz I , Soukri M , Lail M . Flying MOFs: polyamine-containing fluidized MOF/SiO2 hybrid materials for CO2 capture from post-combustion flue gas. Chemical Science, 2018, 9(20): 4589–4599
CrossRef ADS Google scholar
[16]
Bien C E , Chen K K , Chien S C , Reiner B R , Lin L C , Wade C R , Ho W S W . Bioinspired metal-organic framework for trace CO2 capture. Journal of the American Chemical Society, 2018, 140(40): 12662–12666
CrossRef ADS Google scholar
[17]
Wang C , Yuan H , Yu F , Zhang J , Li Y , Bao W , Wang Z , Lu K , Yu J , Bai G . . Enhanced oxygen reduction reaction performance of Co@N-C derived from metal-organic frameworks ZIF-67 via a continuous microchannel reactor. Chinese Chemical Letters, 2023, 34(1): 107128
CrossRef ADS Google scholar
[18]
Wang C , Wang Z , Yu J , Lu K , Bao W , Wang G , Peng B , Peng W , Yu F . Facile synthesis behavior and CO2 adsorption capacities of Zn-based metal organic framework prepared via a microchannel reactor. Chemical Engineering Journal, 2023, 454: 140078
CrossRef ADS Google scholar
[19]
Aniruddha R , Shama V M , Sreedhar I , Patel C M . Bimetallic ZIFs based on Ce/Zn and Ce/Co combinations for stable and enhanced carbon capture. Journal of Cleaner Production, 2022, 350: 131478
CrossRef ADS Google scholar
[20]
Torrez-Herrera J J , Korili S A , Gil A . Development of ceramic-MOF filters from aluminum saline slags for capturing CO2. Powder Technology, 2023, 429: 118962
CrossRef ADS Google scholar
[21]
Yang F , Ge T , Zhu X , Wu J , Wang R . Study on CO2 capture in humid flue gas using amine-modified ZIF-8. Separation and Purification Technology, 2022, 287: 120535
CrossRef ADS Google scholar
[22]
Ta D N , Nguyen H K D , Trinh B X , Le Q T N , Ta H N , Nguyen H T . Preparation of nano-ZIF-8 in methanol with high yield. Canadian Journal of Chemical Engineering, 2018, 96(7): 1518–1531
CrossRef ADS Google scholar
[23]
Valencia L , Abdelhamid H N . Nanocellulose leaf-like zeolitic imidazolate framework (ZIF-L) foams for selective capture of carbon dioxide. Carbohydrate Polymers, 2019, 213: 338–345
CrossRef ADS Google scholar
[24]
Fahda M , Ammar M , Saad W , Hmadeh Mand Al-Ghoul M . Taming the transition between ZIF-L-(Zn, Co) and ZIF-(8, 67) using a multi-inlet vortex mixer (MIVM). CrystEngComm, 2023, 25(10): 1519–1528
CrossRef ADS Google scholar
[25]
Kida K , Okita M , Fujita K , Tanaka S , Miyake Y . Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm, 2013, 15(9): 1794–1801
CrossRef ADS Google scholar
[26]
Zhang H , Hwang S , Wang M , Feng Z , Karakalos S , Luo L , Qiao Z , Xie X , Wang C , Su D . . Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. Journal of the American Chemical Society, 2017, 139(40): 14143–14149
CrossRef ADS Google scholar
[27]
Abdelhamid H N . Removal of carbon dioxide using zeolitic imidazolate frameworks: adsorption and conversion via catalysis. Applied Organometallic Chemistry, 2022, 36(8): e6753
CrossRef ADS Google scholar
[28]
Yu C , Kim Y J , Kim J , Eum K . ZIF-L to ZIF-8 transformation: morphology and structure controls. Nanomaterials, 2022, 12(23): 4224
CrossRef ADS Google scholar
[29]
Lee G , Lee M , Jeong Y , Jang E , Baik H , Chul Jung J , Choi J . Chul Jung J, Choi J. Synthetic origin-dependent catalytic activity of metal-organic frameworks: unprecedented demonstration with ZIF-8 s on CO2 cycloaddition reaction. Chemical Engineering Journal, 2022, 435: 134964
CrossRef ADS Google scholar
[30]
Challagulla S , Payra S , Rameshan R , Roy S . Low temperature catalytic reduction of NO over porous Pt/ZIF-8. Journal of Environmental Chemical Engineering, 2020, 8(4): 103815
CrossRef ADS Google scholar
[31]
Yan Y , Wong R J , Ma Z , Donat F , Xi S , Saqline S , Fan Q , Du Y , Borgna A , He Q . . CO2 hydrogenation to methanol on tungsten-doped Cu/CeO2 catalysts. Applied Catalysis B: Environmental, 2022, 306: 121098
CrossRef ADS Google scholar
[32]
Cichowska-Kopczyńska I , Mioduska J , Karczewski J . Double ZIF-L structures with exceptional CO2 capacity. Chemical Engineering Research & Design, 2022, 188: 1077–1082
CrossRef ADS Google scholar
[33]
Troyano J , Carne-Sanchez A , Avci C , Imaz I , Maspoch D . Colloidal metal-organic framework particles: the pioneering case of ZIF-8. Chemical Society Reviews, 2019, 48(23): 5534–5546
CrossRef ADS Google scholar
[34]
Li X , Zhao Z J , Zeng L , Zhao J , Tian H , Chen S , Li K , Sang S , Gong J . On the role of Ce in CO2 adsorption and activation over lanthanum species. Chemical Science, 2018, 9(14): 3426–3437
CrossRef ADS Google scholar
[35]
Amato R D , Donnadio A , Carta M , Sangregorio C , Tiana D , Vivani R , Taddei M , Costantino F . Water-based synthesis and enhanced CO2 capture performance of perfluorinated cerium-based metal-organic frameworks with UiO-66 and MIL-140 topology. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 394–402
CrossRef ADS Google scholar
[36]
Stawowy M , Róziewicz M , Szczepańska E , Silvestre-Albero J , Zawadzki M , Musioł M , Łuzny R , Kaczmarczyk J , Trawczyński J , Łamacz A . The impact of synthesis method on the properties and CO2 sorption capacity of UiO-66(Ce). Catalysts, 2019, 9(4): 309
CrossRef ADS Google scholar
[37]
Graciani J , Mudiyanselage K , Xu F , Baber A E , Evans J , Senanayake S D , Stacchiola D J , Liu P , Hrbek J , Sanz J F . . Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science, 2014, 345(6196): 546–550
CrossRef ADS Google scholar
[38]
Shi J , Cui H , Xu J , Yan N , Zhang C , You S . Synthesis of nitrogen and sulfur co-doped carbons with chemical blowing method for CO2 adsorption. Fuel, 2021, 305: 121505
CrossRef ADS Google scholar
[39]
Jiang M , Cao X , Zhu D , Duan Y , Zhang J . Hierarchically porous N-doped carbon derived from ZIF-8 nanocomposites for electrochemical applications. Electrochimica Acta, 2016, 196: 699–707
CrossRef ADS Google scholar
[40]
Li Z , Werner K , Chen L , Jia A , Qian K , Zhong J Q , You R , Wu L , Zhang L , Pan H . . Interaction of hydrogen with ceria: hydroxylation, reduction, and hydride formation on the surface and in the bulk. Chemistry, 2021, 27(16): 5268–5276
CrossRef ADS Google scholar
[41]
Lykhach Y , Staudt T , Streber R , Lorenz M P A , Bayer A , Steinrück H P , Libuda J . CO2 activation on single crystal based ceria and magnesia/ceria model catalysts. European Physical Journal B, 2010, 75(1): 89–100
CrossRef ADS Google scholar
[42]
Nugent P , Belmabkhout Y , Burd S D , Cairns A J , Luebke R , Forrest K , Pham T , Ma S , Space B , Wojtas L . . Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature, 2013, 495(7439): 80–84
CrossRef ADS Google scholar

Acknowledgements

This work is supported by the Xinjiang Science and Technology Program (Grant No. 2023TSYCCX0118).

Competing interests

The authors declare that they have no competing interests.

版权

2025 Higher Education Press
PDF(807 KB)

458

Accesses

0

Citation

Detail

段落导航
相关文章

/