Cryo-copolymerization preparation of dextran-hyaluronate based supermacroporous cryogel scaffolds for tissue engineering applications

Frontiers of Chemical Science and Engineering ›› 2012, Vol. 6 ›› Issue (3) : 339-347.

PDF(416 KB)
PDF(416 KB)
Frontiers of Chemical Science and Engineering ›› 2012, Vol. 6 ›› Issue (3) : 339-347. DOI: 10.1007/s11705-012-1209-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Cryo-copolymerization preparation of dextran-hyaluronate based supermacroporous cryogel scaffolds for tissue engineering applications

作者信息 +

Cryo-copolymerization preparation of dextran-hyaluronate based supermacroporous cryogel scaffolds for tissue engineering applications

Author information +
History +

Abstract

Dextran-hyaluronate (Dex-HA) based supermacroporous cryogel scaffolds for soft tissue engineering were prepared by free radical cryo-copolymerization of aqueous solutions containing the dextran methacrylate (Dex-MA) and hyaluronate methacrylate (HA-MA) at various macromonomer concentrations under the freezing condition. It was observed that the suitable total concentration of macromonomers for the preparation of Dex-HA cryogel scaffold with satisfied properties was 5% (w/w) at the HA-MA concentration of 1% (w/v), which was then used to produce the test scaffold. The obtained cryogel scaffold with 5% (w/w) macromonomer solution had high water permeability (5.1 × 10-12 m2) and high porosity (92.4%). The pore diameter examined by scanning electron microscopy (SEM) was in a broad range of 50–135 µm with the mean pore diameter of 91 µm. Furthermore, the cryogel scaffold also had good elastic nature with the elastic modulus of 17.47±1.44 kPa. The culture of 3T3-L1 preadipocyte within the scaffold was investigated and observed by SEM. Cells clustered on the pore walls and grew inside the scaffold indicating the Dex-HA cryogel scaffold could be a promising porous biomaterial for applications in tissue engineering.

Keywords

cryogel scaffold / tissue engineering / dextran / hyaluronate / 3T3-L1 preadipocyte

引用本文

导出引用
. . Frontiers of Chemical Science and Engineering. 2012, 6(3): 339-347 https://doi.org/10.1007/s11705-012-1209-1

参考文献

[1]
Malafaya P B, Silva G A, Reis R L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews, 2007, 59(4-5): 207–233
CrossRef ADS Google scholar
[2]
Liu C, Xia Z, Czernuszka J. Design and development of three-dimensional scaffolds for tissue engineering. Chemical Engineering Research & Design, 2007, 85(7): 1051–1064
CrossRef ADS Google scholar
[3]
van Vlierberghe S, Cnudde V, Dubruel P, Masschaele B, Cosijns A, De Paepe I, Jacobs P J S, van Hoorebeke L, Remon J P, Schacht E. Porous gelatin hydrogels: cryogenic formation and structure analysis. Biomacromolecules, 2007, 8(2): 331–337
CrossRef ADS Google scholar
[4]
Kathuria N, Tripathi A, Kar K, Kumar A. Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering. Acta Biomaterialia, 2009, 5(1): 406–418
CrossRef ADS Google scholar
[5]
Lévesque S G, Lim R M, Shoichet M S. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials, 2005, 26(35): 7436–7446
CrossRef ADS Google scholar
[6]
Möller S, Weisser J, Bischoff S, Schnabelrauch M. Dextran and hyaluronan methacrylate based hydrogels as matrices for soft tissue reconstruction. Biomolecular Engineering, 2007, 24(5): 496–504
CrossRef ADS Google scholar
[7]
Autissier A, Visage C L, Pouzet C, Chaubet F, Letourneur D. Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomaterialia, 2010, 6(9): 3640–3648
CrossRef ADS Google scholar
[8]
Davidenko N, Campbell J J, Thian E S, Watson C J, Cameron R E. Collagen-hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomaterialia, 2010, 6(10): 3957–3968
CrossRef ADS Google scholar
[9]
Ibrahim S, Kothapalli C R, Kang Q K, Ramamurthi A. Characterization of glycidyl ethacrylate-crosslinked hyaluronan hydrogel scaffolds incorporating elastogenic hyaluronan oligomers. Acta Biomaterialia, 2010, 7(3): 653–665
[10]
Bloch K, Lozinsky V I, Galaev I Y, Yavriyanz K, Vorobeychik M, Azarov D, Damshkaln L G, Mattiasson B, Vardi P. Functional activity of insulinoma cells (INS-1E) and pancreatic islets cultured in agarose cryogel sponges. Journal of Biomedical Materials Research, 2005, 75(4): 802–809
[11]
Plieva F M, Oknianska A, Degerman E, Galaev I Y, Mattiasson B. Novel supermacroporous dextran gels. Journal of Biomaterials Science. Polymer Edition, 2006, 17(10): 1075–1092
CrossRef ADS Google scholar
[12]
Plieva F M, Xiao H T, Galaev I Y, Bergenståhl B, Mattiasson B. Macroporous elastic polyacrylamide gels prepared at subzero temperatures: control of porous structure. Journal of Materials Chemistry, 2006, 16(41): 4065–4073
CrossRef ADS Google scholar
[13]
Plieva F M, Galaev I Y, Mattiasson B. Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate-containing fluids and cell culture applications. Journal of Separation Science, 2007, 30(11): 1657–1671
CrossRef ADS Google scholar
[14]
Dainiak M B, Allan I U, Savina I N, Cornelio L, James E S, James S L, Mikhalovsky S V, Jungvid H, Galaev I Y. Gelatin-fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study. Biomaterials, 2010, 31(1): 67–76
CrossRef ADS Google scholar
[15]
Lozinsky V I. Cryogels on the basis of natural and synthetic polymers: preparation, properties and applications. Russian Chemical Reviews, 2002, 71(6): 489–511
CrossRef ADS Google scholar
[16]
Lozinsky V I. Polymeric cryogels as a new family of macroporous and supermacroporous materials for biotechnological purposes. Russian Chemical Bulletin, 2008, 57(5): 1015–1032
CrossRef ADS Google scholar
[17]
Yao K J, Yun J X, Shen S C, Wang L H, He X J, Yu X M. Characterization of a novel continuous supermacroporous monolithic cryogel embedded with nanoparticles for protein chromatography. Journal of Chromatography. A, 2006, 1109(1): 103–110
CrossRef ADS Google scholar
[18]
Yun J X, Shen S C, Chen F, Yao K J. One-step isolation of adenosine triphosphate from crude fermentation broth of Saccharomyces cerevisiae by anion-exchange chromatography using supermacroporous cryogel. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 2007, 860(1): 57–62
CrossRef ADS Google scholar
[19]
Plieva F M, Galaev I, Noppe W, Mattiasson B. Cryogel applications in microbiology. Trends in Microbiology, 2008, 16(11): 543–551
CrossRef ADS Google scholar
[20]
Nilsang S, Nehru V, Plieva F M, Nandakumar K S, Rakshit S K, Holmdahl R, Mattiasson B, Kuma A. Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles. Biotechnology Progress, 2008, 24(5): 1122–1131
CrossRef ADS Google scholar
[21]
Kirsebom H, Aguilar M R, Roman J S, Fernandez M, Prieto M A, Bondar B. Macroporous scaffolds based on chitosan and bioactive molecules. Journal of Bioactive and Compatible Polymers, 2007, 22(6): 621–636
CrossRef ADS Google scholar
[22]
Cadéel J A, van Luyn M J A, Brouwer L A, Plantinga J A, van Wachem P B, de Groot C J, den Otter W, Hennink W E. In vivo biocompatibility of dextran-based hydrogels. Journal of Biomedical Materials Research, 2000, 50(3): 397–404
CrossRef ADS Google scholar
[23]
de Groot C J, van Luyn M J A, van Dijk-Wolthuis W N E, Cadéel J A, Plantinga J A, den Otter W, Hennink W E. In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts. Biomaterials, 2001, 22(11): 1197–1203
CrossRef ADS Google scholar
[24]
Liu Y X, Chan-Park M B. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials, 2009, 30(2): 196–207
CrossRef ADS Google scholar
[25]
van Dijk-Wolthuis W N E, Franssen O, Talsma H, van Steenbergen M J, Kettenes-van den Bosch J J, Hennink W E. Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran. Macromolecules, 1995, 28(18): 6317–6322
CrossRef ADS Google scholar
[26]
van Dijk-Wolthuis W N E, Kettenes-van den Bosch J J, van der Kerk-van Hoof A, Hennink W E. Reaction of dextran with glycidyl methacrylate: an unexpected transesterification. Macromolecules, 1997, 30(11): 3411–3413
CrossRef ADS Google scholar
[27]
Yao K J, Shen S C, Yun J X, Wang L H, He X J, Yu X M. Preparation of polyacrylamide-based supermacroporous monolithic cryogel beds under freezing-temperature variation conditions. Chemical Engineering Science, 2006, 61(20): 6701–6708
CrossRef ADS Google scholar
[28]
Weng L H, Gouldstone A, Wu Y H, Chen W. Mechanically strong double network photo cross linked hydrogels from N,N-dimethylacrylamide and glycidyl methacrylated hyaluronan. Biomaterials, 2008, 29(14): 2153–2163
CrossRef ADS Google scholar
[29]
Harley B A, Leung J H, Silva E C C M, Gibson L J. Mechanical characterization of collagen-glycosaminoglycan scaffolds. Acta Biomaterialia, 2007, 3(4): 463–474
CrossRef ADS Google scholar

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 20876145, 21036005), the Science and Technology Cooperation Project between China-Europe Country’s Governments from the Ministry of Science and Technology of China (No. 1017) and the Zhejiang Provincial Natural Science Foundation of China (No. Y4080326).

版权

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(416 KB)

Accesses

Citation

Detail

段落导航
相关文章

/