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Abstract    The spatial  distribution pattern of  long non-coding
RNA (lncRNA) in cell is tightly related to their function. With
the increment of  publicly available subcellular  location data,  a
number of computational methods have been developed for the
recognition  of  the  subcellular  localization  of  lncRNA.  Unfor-
tunately,  these  computational  methods  suffer  from  the  low
discriminative  power  of  redundant  features  or  overfitting  of
oversampling. To address those issues and enhance the predic-
tion  performance,  we  present  a  support  vector  machine-based
approach  by  incorporating  mutual  information  algorithm  and
incremental  feature  selection  strategy.  As  a  result,  the  new
predictor  could  achieve  the  overall  accuracy  of  91.60%.  The
highly  automated  web-tool  is  available  at  lin-group.cn/server/
iLoc-LncRNA(2.0)/website.  It  will  help  to  get  the  knowledge
of lncRNA subcellular localization.
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1    Introduction
In mammalian, most of RNAs transcribed from genomic DNA
sequences  do  not  encode  proteins,  but  participate  in  the
regulation  of  protein  translation  mechanism  as  functional
molecules.  lncRNA  is  a  kind  of  non-coding  RNA  with  a
length of more than 200 nucleotides. Most of its functions are
unknown  or  uncertain.  It  is  worth  noting  that  lncRNA-
regulation  modality  is  dependent  on  their  cellular  localiza-
tion [1]. lncRNA located in the nucleus usually modulates the
RNA  transcription,  and  the  lncRNA  in  the  cytoplasm
participates  in  post-transcriptional  regulation  [2−9].  And  the
localization  of  lncRNA is  also  related  to  some diseases  [10].
Thus,  the knowledge about  the subcellular  region of  lncRNA
will be helpful for the function annotation of lncRNA.

Development  of  RNA  fluorescence  in  situ  hybridization
(RNA FISH) and RNA-sequencing (RNA-seq) for large scale
detection of RNA provides a lot of data for the study of RNA
subcellular  localization  [11−13].  For  the  convenience  of
researchers, three RNA subcellular localization databases have

been  constructed.  RNALocate  [14]  is  the  first  database
designed for RNA subcellular location. The database manually
collects  various  RNA  subcellular  localization  entries  and
experimental  evidence.  At  present,  there  are  2382  lncRNA
subcellular  localization  entries  involving  nine  organisms  in
RNALocate.  By  collecting  RNA-seq  data  from  GENCODE
and  quantitative  analysis,  lncATLAS  [15]  provides  the  ten-
dency of subcellular location of 6768 Homo sapiens lncRNAs
according to the relative concentration index. lncSLdb [16] is
another  platform  for  the  collection  of  lncRNA  subcellular
location.  The  subcellular  localization  of  more  than  11000
lncRNAs  from  human,  mouse  and  fruit  fly  was  manually
curated  from  literatures.  lncSLdb  classifies  lncRNAs  into
three  basic  types:  nucleus,  cytoplasm  or  both  (nucleus/cyto-
plasm)  according  to  fluorescence  in  situ  hybridization  image
or  relative  expression  level  in  different  cell  compartments.
However, the localization annotation of lncRNA is extremely
incomplete,  which  will  prevent  scholars  to  further  study
lncRNA.

The  establishment  of  RNA  subcellular  localization  data-
bases provides a possibility to develop computational methods
for  the  identification  of  lncRNA  subcellular  location.  The
cytoplasmic/nuclear  ratio  based  on  RNA-seq  data  has  been
used to infer the preference location of lncRNA by combining
with machine learning methods. DeepLncRNA [17] used deep
neural  network  [18−22]  to  construct  model  and  achieved  the
accuracy  of  72.4%.  Another  model  [23]  was  built  based  on
random forest [24]. Its recall rates range from 53.8% to 84.1%
in different cell lines. Due to the technique limitations, the two
RNA-Seq-based  works  can  only  infer  the  enrichment  of
lncRNA  in  the  nucleus  or  cytoplasm.  As  far  as  we  know,
lncLocator [25], iLoc-lncRNA [26], Locate-R [27] and lncLoca-
tion  [28]  are  four  only  predictors  for  lncRNA  subcellular
localization  based  on  RNALocate.  lncLocator  is  a  neural
network-based  model  which  could  produce  the  accuracy  of
0.598.  iLoc-lncRNA  is  a  computational  tool  by  combining
optimal  eight-tuple  oligonucleotides  with  support  vector
machine  (SVM)  [29]  to  predict  the  lncRNA  subcellular
location. The overall accuracy reached 86.72%. Locate-R used
n-gapped l-mer composition and l-mer composition features to
build  model.  Its  accuracy  is  90.69%.  lncLocation  integrate
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multi-source features to construct a sequence-based computa-
tional  tool  that  obtain  an  87.78% accuracy.  The good perfor-
mance  of  these  tools  indicates  that  sequence  motifs  are  the
main  driving  force  for  subcellular  localization  of  lncRNA.
However,  we noticed that  there  are  still  room to improve the
prediction performance of lncRNA subcellular localization. In
this  work,  an  optimizing  model  based  on  iLoc-lncRNA  was
developed  (Fig. 1(a)),  which  could  greatly  improve  the
performance  and  efficiency  of  lncRNA  subcellular  location
prediction. 

2    Materials and methods
 

2.1    Benchmark datasets
The new version of iLoc-lncRNA was built based on the same
benchmark  dataset  of  iLoc-lncRNA.  Subcellular  location
information  of  lncRNA  in  mammals  was  retrieved  from
RNALocate  [14].  The  corresponding  nucleotide  sequences
were  download  from  RefSeq  [30].  After  removing  the
redundant  sequences  with  more  than  80% similarity,  655
samples  were  used  to  constructed  the  benchmark  dataset,  in
which 64.12% samples come from Mus musculus, 34.5% from
Homo  sapiens (Fig. 1(b)).  These  lncRNAs  unique  located  in
nucleus,  cytoplasm,  ribosome  and  exosome  with  average
length  of  3462,  2199,  1890  and  1657,  respectively.  The
number  of  samples  and  the  length  distribution  of  each
subcellular location can be seen in Fig. 1(c). 

2.2    Feature encoding

S

A  lot  of  studies  indicated  that k-tuple  (also  called k-mer)
nucleotide  composition[31−36]  performs  well  in  the  descrip-
tion  of  RNA  sequences  in  subcellular  location  prediction
[26,37,38].  In  this  study,  we  adopt  the  eight-tuple
oligonucleotides feature encoding method as in iLoc-lncRNA.
Let the lncRNA sequence  expressed as following:

 

S = R1R2R3R4R5 · · ·RiRi+1 · · ·RL, (1)
Ri i Ri ∈ {A,G,C,T } L

S
where  is the th base and ,  is the length of

.
i

S
The  normalized  frequency  of  the th  eight-tuple  nucleotide

component occurring in  and can be calculated by
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where  means  the  number  of  occurrences  of  the th  eight-
tuple nucleotide component in the lncRNA sequence .

S
48

The primary sequence  can be transferred into  a  vector V
with  elements as following:
 

V = [ f 8−tuple
1 · · · f 8−tuple

i · · · f 8−tuple
4k ]

T
, (3)

where the symbol T means the transposition of a vector. 

2.3    Feature selection
In  previous  version,  4107  optimal  octamers  were  selected  as
the  final  features  for  iLoc-lncRNA  by  using  binomial
distribution  score  with  incremental  feature  selection  strategy
(IFS)  [37,39,40].  First,  all  eight-tuple  oligonucleotides
features  were  sorted  according  to  the  binomial  distribution
score.  The  high  binomial  distribution  score  indicates  the
presence  of  the  octamer  in  a  subcellular  location  is  not
accidental.  Then,  IFS  based  on  the  wrapper  method  was
performed to  determine the optimal  feature  set.  IFS is  a  kind
of sequential search strategies that added features one by one
to feature set from higher to lower ranked score. Owing to its
low time and space complexity,  IFS has  been widely used in
feature selection[26,41−43]. However, it  should be noted that
the  feature  set  selected  by  the  combination  of  binomial
distribution  score  and  IFS  could  have  rich  redundancy.  In
current  work,  minimal-redundancy-maximal-relevance  crite-

 

 
Fig. 1    (a) The workflow diagram of developing the iLoc-lncRNA(2.0); (b) species composition in the benchmark dataset; (c) length distribution
of lncRNA sequences and the number of samples in each subcellular location
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rion  (mRMR)  [44,45]  was  implement  on  the  4107  optimal
octamers to winnow out the redundant features. 

2.3.1    mRMR

x y
y x

x y

mRMR  is  a  mutual-information-based  feature  selection
algorithm.  For  two  random  variables  and ,  their  mutual
information  means  the  information  obtained  about  (or )
after the knowledge about  (or ), which can be calculated as:
 

I(x,y) =
w w

p(x,y)log
p(x,y)

p (x) p (y)
dxdy, (4)

p(·)where  represents probability density.
Om−1 m−1

m

xi c

Suppose  we  already  have  a  feature  set  with 
features,  mRMR  select  the th  feature  by  maximizing
relevance  to  the  target  class  and  minimizing  correlation
between  features  with  incremental  search  methods.  The
relevance to the target class can be accumulated by the mean
value  of  all  mutual  information  values  between  individual
feature  and the class :
 

D =
1
|O|
∑

xi∈O
I (xi;c) . (5)

The  correlation  with  the  existing  features  can  be  accumu-
lated by
 

R =
1

|O|2
∑

xi,x j∈O
I
(
xi; x j
)
. (6)

mFinally,  the th  feature  will  be  selected  according  to  the
following criteria:
 

max ϕ (D,R) ,ϕ =
D
R
. (7)

After  sorted  the  4107  octamers  according  to  their  mRMR
score, IFS was used to perform a search in the space of feature
subsets.  The  optimal  feature  subset  was  determined  by  the
classification performance on a cross-validation 

2.4    Support vector machine (SVM)

C
C

C γ

SVM  is  one  kind  of  non-linear  classification  models  [46],
which were widely applied to the field of bioinformatics [47].
It is effective in cases where number of dimensions is greater
than the number of samples. For linearly inseparable samples,
SVM maps the samples into a high-dimension feature space so
that  different  categories  of  examples  can  be  divided  by  a
maximum-margin  hyperplane.  C-SVC  is  a  classic  SVM
model,  where  represents  the  penalty  coefficient  of  soft
margin SVM. The large value of  implies the small margin,
there  is  a  tendency  to  overfit  the  training  model.  RBF  is  a
typical  kernel  function in the calculation of the inner product
to avoid the explicit  computation in the feature space.  In this
study,  C-support  vector  classification(C-SVC)  with  radial
basis  function  (RBF)  was  performed  by  using  library
LIBSVM  [48].  LIBSVM  provides  a  cross  validation  via
parallel grid search tool for parameter selection. The searching
space of the best penalty coefficient  and width parameter 
of RBF is as following:
  C ∈

[
2−5,215

]
, step = 2,

γ ∈
[
2−15,23

]
, step = 2−1.

(8)
 

2.5    Performance evaluation metrics
OA S n

S p Pre
MCC

Six evaluation metrics: overall accuracy ( ), sensitivity ( )
(also  known  as  recall),  specificity  ( ),  precision  ( ),
Matthew’s  correlation  coefficient  ( )  and  the  area  under
the receiver operating characteristic curve (AUC) were used to
evaluate  the  performance  of  the  model  [21,49−58].  Receiver
operating  characteristic  (ROC)  curve  shows  the  relationship
between  sensitivity  and  specificity.  In  general,  higher  AUC
values indicate better test performance [59−63]. The other five
indexes were formulated as
 

S n =
T P

T P+FN
, (9)

 

S p =
T N

T N +FP
, (10)

 

Pre =
T P

T P+FP
, (11)

 

MCC =
T P×T N −FP×FN

√
(T P+FN) (T P+FP) (T N +FP) (T N +FN)

, (12)
 

OA =
T P+T N

T P+T N +FN +FP
, (13)

T P T N FP FNwhere , ,  and  denote  true  positives,  true
negatives, false positives and false negatives, respectively. 

3    Results
 

3.1    Performance evaluation metrics

C
γ

The evaluation in feature selection was conducted through a 5-
fold  cross-validation  with  LIBSVM.  Firstly,  4107  octamers
composition features were ranked by mRMR score.  By using
the  feature  selection  technique,  each  feature  subset  was  used
to  train  the  model  by  using  LIBSVM.  Finally,  we  obtained
1409  optimal  features  which  could  produce  the  maximum
prediction accuracy of 92.06% with the parameter  of 25 and

 of 2-9 (Fig. 2).  Thus,  a  new version iLoc-lncRNA(2.0) was
constructed  based  on  the  1409  features  with  the  best  penalty
coefficient  of  25 and  width  parameter  of  2-9.  For  comparison
 

 
Fig. 2    Incremental  feature  selection  strategy  accuracy  curve  for  mRMR
feature selection
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with  other  works,  the  evaluation  of  iLoc-lncRNA(2.0)  was
performed  by  using  10-fold  cross-validation.  The  performan-
ces  of  the  iLoc-lncRNA(2.0)  are  shown  in Table 1.  In
addition,  ROC  curves  were  also  plotted  in Fig. 3 to  visually
show the prediction capability of our model.
 

3.2    Comparison with other works

OA
OA S n S p MCC

Compared with the old version, the new prediction tool shows
good performance in both prediction results and running time.
The  of the new version is 91.60% which is 4.88% higher
than that of the old one. The values of , ,  and 
of iLoc-lncRNA(2.0) at four locations are generally better than
those  of  iLoc-lncRNA  (Table 1).  We  compared  the  running

time  of  the  two  versions  on  the  same  sever  with  Intel(R)
Core(TM) i5-4570 CPU and 4 GB of RAM. We found that the
new  predictor  is  three  times  faster  than  the  original  iLoc-
lncRNA.

OA

OA

Recently,  two  predictors,  Locate-R  [27]  and  lncLocation
[28]  have  been  developed  for  predicting  the  subcellular
location  of  lncRNAs.  Locate-R  was  constructed  on  the  same
data  as  iLoc-lncRNA(2.0)  but  performed  synthetic  minority
over-sampling technique (SMOTE) to balance the dataset. The
model was built by locally deep SVM based on 867 k-mer and
n-gapped k-mer features. It obtains the  of 90.69% with the
macro-average AUC of 0.960. It was found that our proposed
model yielded  of 91.60% with the macro-average AUC of
0.968  (Fig. 3),  which  are  superior  to  the  Locate-R.  Besides,
we noticed that the performance of Locate-R in nucleus class
which  is  unprocessed  by  SMOTE  is  extremely  poor.  It
indicates  that  over-sampling  the  minority  may  lead  to  the
overfitting  of  Locate-R.  lncLocation  filtered  k-tuple  features
and  multi-scale  structure  features  by  using  autoencoder  and
recursive  feature  elimination  algorithms.  The  model  obtains
high precision of 95.83%,  100% and 100% but poor recall of
74.19%,  55.56% and  33.33% for  nucleus,  ribosome  and
exosome,  respectively.  Compared  with  lncLocation,  iLoc-
lncRNA(2.0) striking the balance between precision and recall
(Table 1). 

3.3    Feature analysis

CL

Motif analysis and motif distribution analysis were performed
to  mining  the  subcellular  localization  signal  information  of
lncRNA [64,65]. Firstly, all the 1409 octamers that were used
to  construct  iLoc-lncRNA(2.0)  were  assigned  to  four
subcellular  classes  according  to  the  maximum  binomial
distribution  value.  As  a  result,  263,  395,  294  and  457
octamers  were  assigned  to  nucleus,  cytoplasm,  ribosome  and
exosome,  respectively.  Then,  ungapped  motif  discovery  was
performed  on  the  class-specific  octamers  by  using  DREME
[66].  Six  significant  motifs  were  found  in  the  class-specific

   
Table 1    The performance of the SVM-based subcellular location prediction model

Method Feature dimension Subcellular location S n % S p % Pre % MCC AUC OA %

iLoc-lncRNA(2.0) a) 1409

Nucleus 91.03 95.59 86.59 0.852 0.969

91.60
Cytoplasm 94.37 89.96 94.59 0.842 0.969
Ribosome 83.72 99.01 85.71 0.837 0.986
Exosome 66.67 99.36 83.33 0.735 0.949

Locate-R b) 857

Nucleus 66.92 95.15 / 0.66 0.900

90.69
Cytoplasm 84.74 89.1 / 0.725 0.930
Ribosome 100 98.37 / 0.97 1.000
Exosome 100 99.17 / 0.978 1.000

lncLocation /

Nucleus 74.19 / 95.83 / /

87.78
Cytoplasm 100 / 85 / /
Ribosome 55.56 / 100 / /
Exosome 33.33 / 100 / /

iLoc-lncRNA c) 4107

Nucleus 77.56 97.59 / 0.796 /

86.72
Cytoplasm 99.06 67.68 / 0.742 /
Ribosome 46.51 99.83 / 0.652 /
Exosome 16.67 1 / 0.4 /

 

 

 
Fig. 3    ROC  curves  for  the  iLoc-lncRNA(2.0)  for  (a)  nucleus,  (b)
cytosol, (c) ribosome, (d) exosome
 

  
The tools are available at
a) http://lin-group.cn/server/iLoc-LncRNA(2.0)
b) http://locate-r.azurewebsites.net
c) http://lin-group.cn/server/iLoc-LncRNA
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octamers  (E-value  <  0.05).  They  are  [(A/T)C(A/T)]  and
[(A/C)ACCAA]  for  nucleus,  [A(A/C/T)(A/T)]  and
[C(C/T)TA]  for  cytoplasm,  [C(C/G)(C/G)]  for  ribosome  and
[CG(C/G/T)]  for  exosome  (Fig. 4).  In  order  to  observe  the
distribution  pattern  of  subcellular  localization  signals,  class-
specific motifs were mapped to corresponding sequences. The
relative position of features on sequences is present with violin
plot  by  using  R  package “ggplot2” [67]  (Fig. 5).  Motifs
distribution in ribosome and exosome implied that 5’ sequence
is  essential  for  the  subcellular  localization  of  lncRNA.  The
indiscriminate  distribution  pattern  in  nucleus  and  cytoplasm
may cause by their complex subcellular components. 

3.4    Web server
The  new  predictor  iLoc-lncRNA(2.0)  has  been  established
online and can be freely available at lin-group.cn/server/iLoc-
LncRNA(2.0)/website. Once the nucleotide sequence of target
lncRNA  is  submitted  to  the  new  predictor,  users  could
effectively  obtain  its  potential  subcellular  location.  We  also
provided  a  local  tool  for  the  forecast  of  the  big  data.  All  the
data used in this study can be downloaded from the website. 

4    Conclusions
The  comprehensive  analysis  of  the  lncRNA  subcellular
location  prediction  demonstrated  that  information  in  lncRNA
sequence  has  great  influence  on  its  subcellular  localization.
However,  the  performance  of  the  available  tools  for  lncRNA
subcellular location prediction is inadequate due to the feature
redundant  or  severe  overfitting issue.  Hence,  we developed a
new  predictor  named  iLoc-lncRNA(2.0)  on  the  basis  of
mutual  information  algorithm.  The  new  tool  will  powerfully
support  the  study  of  lncRNA  subcellular  localization.  The
feature  analysis  discovered  six  lncRNA  subcellular  locali-
zation  associated  motifs  which  are  mostly  concentrated  in  5 ′
sequence  in  ribosome  and  exosome.  A  publicly  accessible
webserver has been established to provide the potential target
subcellular location of mammalian lncRNA.

In the future, we will still  focus on the lncRNA subcellular
location  prediction  issues.  On  the  one  hand,  we  will  discuss
ways  to  handle  the  imbalance  dataset  and  improve  the
prediction accuracy of  the  minority  class.  On the  other  hand,
though deep learning algorithms such as deep neural network
and locally deep SVM have been applied to the prediction of
lncRNA  subcellular  location,  their  present  performance  are
seen  as  having  chance  for  future  advancement.  More  efforts
will  be  made  to  extract  and  identify  features  and  patterns  in
the data with deep learning algorithms.
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