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Abstract Emerging Internet services and applications at-

tract increasing users to involve in diverse video-related activ-

ities, such as video searching, video downloading, video shar-

ing and so on. As normal operations, they lead to an explo-

sive growth of online video volume, and inevitably give rise

to the massive near-duplicate contents. Near-duplicate video

retrieval (NDVR) has always been a hot topic. The primary

purpose of this paper is to present a comprehensive survey

and an updated review of the advance on large-scale NDVR to

supply guidance for researchers. Specifically, we summarize

and compare the definitions of near-duplicate videos (NDVs)

in the literature, analyze the relationship between NDVR and

its related research topics theoretically, describe its generic

framework in detail, investigate the existing state-of-the-art

NDVR systems. Finally, we present the development trends

and research directions of this topic.

Keywords near-duplicate videos, video retrieval, feature

representation, video signature, indexing, similarity measure-

ment

1 Introduction

In the era of big data, the data growth rate has surpassed

Moore’s Law. The global digitalization process has caused

the information overload problem more serious. Informa-

tion retrieval (IR) is a discipline that focuses on retrieving

relevant information from databases. It concerned with fa-

cilitating users to access large-scale raw information. Orig-

inated from the library literature search, IR has expanded into
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various information processing areas gradually. Traditional

IR research focuses on text objects. With the increasing num-

ber of multimedia documents, the demand for multimedia

retrieval (MMR) has occupied the dominant position. MMR

can be viewed as a comprehensive application of media pro-

cessing and a type of traditional information retrieval tech-

nology. It can be divided into different categories according

to media objects, including image retrieval, video retrieval,

voice retrieval, music retrieval and so on. MMR achieves re-

trieval by extracting semantic information from multimedia

data sources, including directly perceivable media such as au-

dio, image, video, and indirectly perceivable sources such as

text, semantic descriptions.

With the advance on the Internet techniques, video captur-

ing devices, social media platforms and various video-related

services and applications have obtained rapid development.

The increasing online users prefer to participate in video-

related activities anytime and anywhere. It causes a substan-

tial number of videos to be uploaded and shared on the web-

sites every single day. Currently, Khan et al. [1] pointed out

that over 2 billion people worldwide are connected to the In-

ternet and over 5 billion individuals own mobile phones. By

2020, 50 billion devices are expected to be connected to the

Internet. According to statistical data (see Statista), online

video penetration is close to universal, with Saudi Arabia’s

online video usage rate reaching 98 percent as of January

2017. In 2020, the number of digital video viewers in the

United States is projected to surpass 232 million. A third of

users in France and Spain watch online video content daily.

According to the forecast, the number of viewers on the on-

line video platform will amount to 1.86 billion in 2021, up

from 1.47 billion in 2017.
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YouTube reports that more than 400 hours of videos are

uploaded to YouTube every minute in July 2015, up from

300 hours per minute in November 2014. Founded in 2005,

YouTube is arguably the biggest online video platform world-

wide featuring a wide variety of user-generated and corporate

media content that includes music videos, TV clips, as well

as other video clips such as video blogs, short original videos.

Now, YouTube has more than 1 billion users, which is nearly

1/3 of the total number of Internet users. These users watch a

total of 1 billion hours of video per day and billions of times a

day (see YouTube). The most regularly watched categories of

YouTube audiences in the United States are videos uploaded

by the individual or brand.

Considering the huge volume of videos used, the extremely

similar videos concerning the same event or people may be

captured and distributed by different subjects. In general, the

re-edited and repeat uploaded videos contribute to a sub-

stantial portion of NDVs on websites. Wu et al. [2] showed

that based on a sample of 24 popular queries from YouTube,

Google Video and Yahoo! Video, there are on average 27%

duplicates among the search results, and the ratio of NDVs

even reaches a surprising 93% for one of the user queries

searched from the Web.

The existence of such a large-scale NDVs leads to many

critical issues, such as copyright infringement, information

redundancy. For instance, video producers expect to avoid

their copyright protected videos being shared on the Internet

and the vendors expect to accurately recommend videos to

users based on their fancies. On the other hand, the massive

NDVs will also inevitably bring inconvenience to video users.

They often feel frustrated when they have to spend a signifi-

cant amount of time on looking for the desired videos online.

Sometimes, they originally intend to get diverse videos from

search engines, but often end up with lots of NDVs in the top-

ranked results returned. All of these occasions above suggest

the urgent need for an accurate and efficient NDVR system.

As a type of video retrieval (VR), NDVR is a branch of

IR discipline, and it is intrinsically related to IR, MMR, VR

and image retrieval (IMR). The relationship between them is

shown in Fig. 1.

NDVR is also a critical step in many practical applications,

such as video recommendation, copyright protection, video

monitoring, data mining, topic tracking. Here, we briefly list

some application areas where NDVR techniques are needed.

• Video recommendation. video recommendation has

become increasingly prominent with the information

explosion. Users face large-scale data that is needed to

Fig. 1 The relationship between NDVR and its related research fields. As
a type of VR, NDVR owns technical commonality with IMR. Meanwhile, it
also has the unique retrieval methods according to characteristics.

navigate in an efficient and satisfying way. For promot-

ing the sales, the businesses manage to recommend in-

terest contents to users according to their activity on

the websites. This phenomenon is ubiquitous on various

online services, including E-commerce, online news

and social media sites [3, 4]. Hence, the most impor-

tant thing for video websites is to recommend appro-

priate online programs or merchandises to users. Video

recommendation system aims at retrieving users’ pref-

erence based on their past interactions, and recommend

some valuable videos. Therefore, NDVR techniques are

necessary for service subjects to efficiently search out

the videos that users may want to browse in large-scale

data.

• Copyright protection. Wide used digitally formatted au-

dios, videos and printed information in a network en-

vironment have been slowed down by the lack of ad-

equate protection on them. Developers and publishers

hesitate to distribute their sensitive or valuable materi-

als because of the easiness of illicit copying and dis-

semination. Digital media, such as digital videos, audio

and texts, are easy to access. Copyright digital prod-

ucts are exposed to severe risk of being compromised

by unauthorized behaviors, e.g., copying, editing and

redistribution, which usually results in a huge loss to

the owners of digital products. In this case, developers

and publishers may hesitate to distribute their sensitive

or valuable materials [5]. Nowadays, in terms of videos,

an increasing number of unauthorized near-duplicate

or copied videos reproduced from copyrighted videos

are being uploaded on the Internet. Advanced systems

that can eliminate these illegal near-duplicates or copied



Ling SHEN et al. Advance on large scale near-duplicate video retrieval 3

contents to prevent copyright infringement are essen-

tial in nature. The NDVR techniques can exactly meet

this requirement, which can efficiently and effectively

search out the near-duplicate versions of the original

source from massive videos to prevent video infringe-

ment.

• Video monitoring. The video-related behaviors of copy-

ing, editing, and disseminating via different platforms,

make the proliferation of near-duplicate or copied

videos a serious problem. All of these have raised the

demand for online video monitoring. Monitoring near-

duplicates over videos in real time is very important

and it will benefit many applications such as digital

copyright management, commercial detection and news

topic tracking and threading [6]. A scenario instance

could be that a video-sharing website (e.g., YouTube)

can timely discover video infringements by contin-

uously monitoring near-duplicates over the dynamic

video streaming and then inform the video owners. An-

other example is that a cosmetics company (e.g., Es-

tee Lauder) may want to monitor the broadcasting of its

paid commercials by continuously detecting the placed

commercial clip over online TV broadcasts. These ap-

plications are typically time-demanding, in which an ef-

ficient NDVR system is heavily demanded.

• Data mining. Data mining, referred to as knowledge

discovery in databases, is the process of discover-

ing patterns in large databases [7, 8]. These yet-to-be-

discovered patterns may be implicit, previously un-

known and potentially useful. The initial and crucial

processing step is the data preprocessing. The purpose

of data preprocessing is to reduce the impact of the ex-

isting near-duplicate contents on data mining results.

When searching for videos on the Internet, one may

get a list of videos flooded with near-duplicates. These

near-duplicates are assumed to be removed from the list

for better mining. And there exist many NDVR tech-

niques available for duplicate data detection and elimi-

nation.

• Topic tracking. Topic tracking is a fundamental step

for news browsing, topic threading, and summariza-

tion, which focuses on the tracking of a certain con-

tent topic in different distributed sources [9]. Broadcast

video, especially news video, contains a broad range

of real-world events that could be of critical value for

the affected or interested persons. Moreover, as video

sources continue to publish information about the event,

it becomes critical to track the most relevant (near-

duplicate) clips, and organize them in a semantic way.

Among these efforts in topic tracking, NDVR methods

can enhance the detection of relevant video clips in dif-

ferent video sources.

The main contributions of this survey are as follows.

1) The correlated definitions and related applications of

NDVR are presented in a comparative way.

2) The basic framework of NDVR is discussed in a hier-

archical manner. For each component, we analyzed their in-

ternal relevance and reviewed the existing advanced methods

from the aspects of merits and limitations.

3) The evaluation criteria, including the involved datasets

and the performance metric, are summarized.

4) We summarized several representative NDVR methods

emerged recently, and discussed the development trends and

research directions in the future.

2 Definition and background

2.1 Definition

Nowadays, mobile devices play an indispensable role in peo-

ple’s daily life. The majority of users take pleasure in sharing

their multimedia contents on web sites freely, without check-

ing for uniqueness. As a consequence, it is a common phe-

nomenon that various versions of a video exist on the net-

work. Large-scale NDVR research, as a significative disci-

pline, keeps expanding in breadth. The definition of near-

duplicate videos (NDVs) should be considered first. Differ-

ent definitions should adopt different retrieval methods in the

follow-up works. The definite definition is still an open ques-

tion among the multimedia research community [2, 10–14],

but a basic consensus is that two NDVs do not have to be

pixel identical. Currently, existing representative definitions

had been summarized and analyzed by Liu et al. [11]. We

revise and supplement this work, and show it in Table 1.

Amongst the literature, the strictest and the most widely

used definition is proposed by Wu et al. [2]. It clearly de-

fines that the NDVs are essentially the same videos. They

are identical or approximately identical videos close to the

exact duplicate of each other, but different in file formats,

encoding parameters, photometric variations (color, light-

ing changes), editing operations (caption, logo and bor-

der insertion), lengths, and certain modifications (frames

add/remove). Followed closely, Chou et al. [13] and Zhang

et al. [14] are basically consistent with Wu et al. [2], in which,
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Table 1 The representative definitions of NDVs

Wu et al. [2] Identical or approximately identical videos close to the exact duplicate of each other, but different in file formats, encoding parameters,
photometric variations (color, lighting changes), editing operations (caption, logo and border insertion), different lengths, and certain
modifications (frames add/remove).

Chou et al. [13] NDVs are the video copies applied with visual/temporal transformations and/or post-productions, including scaling, cropping, re-
encoding, camcording, border or caption embedding, brightness or contrast adjustment, frame dropping, slow motion, fast forwarding,
etc.

Zhang et al. [14] Near-duplicate is defined to be the duplicate of a video while accounting for the transformations including scaling, compression, crop-
ping, camcording and photometric changes such as changes in gamma or addition of artifacts such as captions or picture-in-picture.

Shen et al. [10] Clips that are similar or nearly duplicate of each other, but appear differently due to various changes introduced during capturing time
(camera view point and setting, lighting condition, background, foreground, etc.), transformations (video format, frame rate, resize,
shift, crop, gamma, contrast, brightness, saturation, blur, age, sharpen, etc.), and editing operations (frame insertion, deletion, swap and
content modification).

Cherubini et al.
[12]

NDVs are approximately identical videos that might differ in encoding parameters, photometric variations (color, lighting changes),
editing operations (captions, or logo insertion), or audio overlays. Identical videos with relevant complementary information in any
of them (changing clip length or scenes) are not considered as NDVs. Two different videos with distinct people, and scenarios were
considered to be NDVs if they shared the same semantics and none of the pairs has additional information.

NDVs are the video copies that contain visual or temporal

transformations and may also include some post-productions.

On this basis, Shen et al. [10] made a relatively looser ex-

pansion. They relaxed the requirements of the capture time,

foreground, background, etc. Cherubini et al. [12] added

more semantic constraints and made user perception involve

in the definition, and NDVs must have the same amount of

information. They emphasized that videos varying in visual

content, by overlaying or inserting additional information,

videos may not be perceived as near-duplicate versions of the

original videos.

Suppose a person riding a bicycle but have some variations

such as different capturing time, sizes, different people, bi-

cycle types or colors, they would be considered as similar

videos due to Shen et al. [10]. If no additional information

here, they are NDVs [12]. Oppositely, they are not NDVs ac-

cording to Wu et al. [2], Chou et al. [13] and Zhang et al. [14],

because of the different visual content in these videos.

Different users might have different reactions to a partic-

ular definition of NDVs. In the progress of the large-scale

NDVR research, CC_WEB_VIDEO dataset [2] is a recog-

nized benchmark, and the definition of Wu et al. [2] is now

generally accepted, which classifies NDVs as follows:

Formatting differences

• Encoding format: flv, wmv, avi, mpg, mp4, ram, . . ..

• Frame rate: 15fps, 25fps, 29.97fps, . . ..

• Bit rate: 529kbps, 819kbps, . . ..

• Frame resolution: 174×144, 320×240, 240×320, . . ..

Content differences

• Photometric variations: color change, lighting change.

• Editing: logo insertion, adding borders around frames,

superposition of overlay text.

• Content modification: adding unrelated frames with

different content at the beginning, end, or in the mid-

dle.

• Versions: same content in different lengths for different

releases.

Figure 2 shows the keyframe sequence of NDVs for the

query “The lion sleeps tonight” with different variations [2].

Fig. 2 Keyframe sequence of NDVs with different variations, in which each
row corresponds to one video. a) The standard version; b) brightness and
resolution change; c) frame rate change; d) adding overlay text, borders and
content modification at the end; e), f) content modification at the beginning
and the end; g) longer version with borders; h) resolution differences

2.2 Related research topics

As a response to massive NDVs, the NDV-related applica-

tions are rapidly emerged, in which, NDVR is a main re-

search direction. It closely related to other research topics.
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We summarize and analyze the relationships between them,

as described below.

2.2.1 NDVR and CBVR

Content-based video retrieval (CBVR) is an important re-

search issue in multimedia processing. As a special problem

of CBVR, NDVR is somewhat different from the conven-

tional CBVR. Specifically, CBVR just consider the seman-

tics similarity between videos as the metric retrieval factor,

but not emphasis on visual coherence much. The representa-

tive definition of CBVs belongs to Basharat et al. [15], which

illustrates that videos containing a person riding a bicycle

will be searched out as similar ones, even there are varia-

tions such as different viewpoints, sizes, appearances, bicy-

cle types, and camera motions. One main reason for this is

the amount of intra-class variation where the same semantic

concept can occur under different illumination, appearance,

and scene settings, just to name a few [16–20]. Correspond-

ingly, NDVR not only consider semantic similarity, but also

satisfy visual consistency in the process of retrieval.

2.2.2 NDVR and NDVD

Near-duplicate video detection (NDVD) also generated a

great deal of interest in the research community [21–24]. The

advanced techniques enable the video owners or managers to

exploit potential search applications, such as search result re-

ranking, tag suggestion and clustering [25].

NDVR and NDVD are two different search tasks in some

aspects. In simple terms, a video database is established in ad-

vance, and a query video is presented by the user in NDVR.

By comparing the distance of the query video and the refer-

ence videos in the database, a set of near-duplicate videos will

return. The representative NDVR applications are a detec-

tion of copyright violation and video recommendation. Op-

positely, in NDVD, the input is a set of videos, and a pair-

wise comparison is carried out to find the most similar videos.

The video set will return after re-ranking or duplicate elimi-

nation [11, 26]. Video re-ranking and video cleaning belong

to the NDVD category. As described above, the purpose of

NDVR and NDVD are different. NDVR uses a query video

to find similar videos in the database, while NDVD filters

similar videos from the input video set.

Besides, they also adopt different strategies according

to distinct purposes and performance requirements. For in-

stance, NDVR applications, e.g., copyright violation protec-

tion, requires an accurate retrieval result rather than speed

to achieve maximum copyright protection, so local visual

feature-based methods are more appropriate for this scenario.

In contrast, for NDVD applications, such as video re-ranking,

it interacts with the users and long response time results in

inferior user experience, so the response time is a more sig-

nificant performance metric than the accuracy, and global

feature-based detection methods are more suitable.

On the other hand, they also share some fundamental tech-

niques essentially. Specifically, they both need to generate

signatures to measure the similarity of videos, and need in-

dex structures to facilitate the search. Therefore, they can in-

corporate into a uniform pipeline task essentially [26]. For

instance, the video re-ranking task usually assumes that a

candidate set of videos is given, and then follows an NDVR

task to retrieve the near-duplicate videos from the reference

dataset [27].

2.2.3 NDVR and TRECVID copy detection

The NDVR problem is related to the well-known TRECVID

copy detection task [28–30]. Here, a copy video is not an

identical or a near-replicated one but rather a transformed

video sequence. It is usually transformed in a variety of ways,

such as addition, deletion, modification camcording. The task

of searching copies is important for many applications, e.g.,

copyright control, business intelligence, advertisement track-

ing, law enforcement investigations [31–35].

Different from video copy, near-duplicate is a more general

concept. It includes more diverse variations, such as captur-

ing time, viewpoint, camera setting, background, foreground.

More editing operations are also included in NDVs, such as

frame insertion, deletion, swap and modification.

The well-known TRECVID copy detection task is a spe-

cific case of NDVR. The main difference between them is that

video copies in TRECVID are artificially generated through

by applying standard transformations to a corpus of videos.

It uses a tool developed by IMEDIA [36], whereas in the

case of NDVR duplicates correspond to actual user-submitted

videos, which reflects the real user behavior on generating

duplicates.

The second difference is the scalability challenge. Specif-

ically, the scalability of TRECVID copy detection is weaker

than NDVR. For example, in TRECVID 2008, the dataset

only consists of 101 videos with a combined length of about

100 hours, which is far inferior to the scalability requirements

of the NDVR on large-scale online videos.

2.3 Discuss on scope

Large-scale NDVR exists in multimedia research field exten-
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sively in a unique way. It is similar to, but also different from

many related research topics above. They share some funda-

mental techniques essentially, such as video representation

technology, video indexing technology and evaluation crite-

ria. Meanwhile, they also own their research characteristics

respectively. For example, due to the different definitions of

video similarity in NDVR and CBVR, they should adopt dif-

ferent similarity evaluation functions to train their models.

And in NDVR and NDVD, the algorithm advantage should

be evaluated from different views. NDVR focuses more on

the accuracy, while NDVD focuses on efficiency.

Researchers advance their research according to the spe-

cific application scenario. There is no clear distinction be-

tween NDVR and it’s related topics in most literature. In this

survey, there is a partial intersection between them, and they

share a part components of the unified framework and some

algorithms.

3 Framework

Most NDVR algorithms segment videos into shots firstly.

Each shot is represented by a sequence of keyframes, which

are extracted by time sampling or shot boundary detection al-

gorithms. These keyframes are represented by different visual

features, such as color histogram, local points. The bags of

the keyframe features are regarded as the signature of videos.

The NDVR systems need to compare the similarity between

the the query video and the dataset videos to achieve retrieval.

Meanwhile, the scalability should also be considered due to

the growing amount of data volume.

Concerning the performance, five important factors can

be identified: (1) Hierarchical structure analysis; (2) Fea-

ture representation; (3) Signature generation; (4) Video in-

dexing; (5) Similarity measurement. We give a more general

overview of the overall process of NDVR framework, which

is outlined in Fig. 3. In the following sections, each compo-

nent will be discussed in detail.

3.1 Hierarchical structure analysis

Video structure analysis is the process of generating differ-

ent segments based on the visual information or the plots

of a video, each segment should be shorter than the origi-

nal video in length [37]. Specifically, the subset of a video

can be frames, shots or scenes. Each of them is extracted for

compact representation and fast browsing of the video con-

tent. Among them, a frame, the smallest video unit, can be

seen as an image, and a video is made up of massive frames.

A shot consists of a series of consecutive frames, which is

captured through a continuous camera recording and is con-

sidered as the fundamental block of a video. Several shots

make up a scene, and a scene is a set of consecutive shots

with the same semantic content. Furthermore, a video usu-

ally consists of one or several scenes [38]. The hierarchical

structure of a video is shown in Fig. 4. In traditional NDVR

research, the first step is to divide a video into a number of

structural elements as described above, and the retrieval task

is achieved based on the element granularity of the similarity

matching.

Fig. 3 A general framework of the large-scale NDVR. Firstly, the same pre-processing is performed on the query video and the database.
Then the computational complexity is reduced by indexing methods. Finally, the sorting retrieval is performed according to the similarity
measurement
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Fig. 4 The hierarchical structure of a video. Each entry in the hierarchy is
composed of one or more entries at a lower level. A frame is the smallest
unit. A shot consists of multiple consecutive frames. Several shots make up
a scene, and a video consists of one or several scenes

Video frames A video is typically regarded as a sequence

of frames. In contrast to an image (frame), a video consists

of the low-level visual contents in each frame as well as the

high-level structured contents across frames. In simple terms,

a video has much richer content than an individual image, due

to it not only contains spatial information in each frame, but

also structural and temporal information on the whole.

A keyframe is a frame that can comprehensively represent

the content of a shot or a scene. In most video-related re-

search fields, extracting a series of representative keyframes

to represent the video is a common operation. In NDVR re-

search, the first frame or the center frame of a shot is rela-

tively reliable for extracting basically similar keyframes from

different near-duplicates [2,39–42], but it will cause informa-

tion loss inevitably, especially when dealing with long shots

containing considerable frames [43, 44].

Video shots A shot consists of a consecutive sequence of

frames, which is captured by a camera action that takes place

between start and stop operations [45]. The interframe rela-

tionship in a shot is usually closely related. Therefore, the

video shot is considered the fundamental unit for organiz-

ing video content. In video related processing, a video is first

partitioned into a set of shots based on editing cuts and transi-

tions between frames, to best reflect the shot content, certain

frames are selected as keyframes to succinctly ground rep-

resent the shot as mentioned above. The extracted keyframes

should contain as much salient content of the shot as possible.

Video scenes In general, a scene is composed of a group of

contiguous shots that are coherent with the same subject or

theme, scenes have a higher level semantics than shots [46].

A scene is a semantic unit and can be viewed as a short video.

Scenes are identified by grouping successive shots with simi-

lar content. The grouping may be based on information from

texts, images, or audio in the video. A web video also uses

a sequence of consecutive frames to describe a meaningful

scene.

Video clips In addition to the three components of a video

as mentioned above, video clips are also widely available in

the network. Video clips are defined as a short presentation in

video format. Unlike traditional long videos such as TV pro-

grams and movies, video clips are mostly less than 10 min-

utes and overwhelmingly supplied by amateurs [10].

3.2 Feature representation

In the field of machine learning, feature extraction and repre-

sentation of objects is the basis for subsequent algorithms. As

a crucial step in NDVR, video feature representation will also

directly affect the final search results. It usually utilizes do-

main knowledge to generate numerical features from the raw

video data in order to make the retrieval algorithms work.

Most of the existing NDVR approaches conduct feature ex-

traction and representation based on the video content.

The video-related processings are mostly extended directly

or indirectly from image processing techniques [43], due to

the minimum unit of a video is equivalent to an image. In

traditional image processing field, it seems to be tens of fea-

ture types available, including color histogram, local features,

edge direction histogram, texture, etc. But in existing NDVR

literature, only some of them are used, mainly because of the

constraints brought by the enormous data involved in online

videos.

With the rapid development of artificial intelligence (AI),

these traditional methods have been proven not to express im-

ages or videos very well, nor to meet the needs of big data

processing. Relatively, deep-learning-based approaches are

more effective as various deep networks have been developed

and applied. We comprehensively consider both types, and

classify them according to their respective characteristics. We

revise this work and show it in Table 2.

3.2.1 Traditional feature

Variety of visual features are extensively employed by video-

related applications [39, 47, 48], which refer to the visual in-

formation and can be further organized properly as the signa-

ture of videos. According to the literature, traditional features

can be classified into four groups, namely, global visual fea-

ture, local visual feature, multi-view feature and spatiotem-

poral feature.
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Table 2 The categories of the feature representation in NDVR

Traditional feature Global visual feature Fast and effective, but limited to the exact duplicate videos. Including Color histogram, Ordinal measure,

etc.

Local visual feature Based on local points, robust to complex editing, photometric and geometric changes. Including SIFT,

SURF, LBP, etc.

Multi-view feature Combine different global and local feature vectors sequentially to represent video content better.

Spatiotemporal feature Model spatial and temporal information of videos directly. Including Trajectory-based approaches, Ordinal

measure, CE-based feature, LBP-based feature, etc.

Deep-learning- CNNs feature High-level feature representations generated by CNNs, automatically describing the content of images,

based feature effective and generally applicable.

Spatiotemporal feature Effectively capture the spatiotemporal properties of videos. Including C3D, RNN (LSTM, GRU), etc.

Global visual feature Along with the dramatic increase

in the number of online videos, real-time retrieval has be-

come a challenging research direction in large-scale NDVR.

Due to [2], an analysis based on a diverse set of popular web

videos show that there are around 20% exact duplicate videos

among the near-duplicate web videos. The exact duplicate

video retrieval is easy to achieve with global features that

are compact and reliable [2, 10] or their extensions such as

color spatiograms [49] and Markov stationary features [50].

The most commonly used low-level global features in NDVR

is color histogram and ordinal measure.

1) Color histogram. Color histogram is a global statistical

representation of the color distribution in an image, e.g., RGB

and HSV histogram [2,10,51,52], which can be extracted by

concatenating the counts of the pixel numbers whose color

value falls into the corresponding range. The original idea of

using histograms for retrieval comes from Swain and Bal-

lard [53], they realized that the power to identify an object

using color is much larger in a gray-valued image. The his-

togram shows obvious robustness to a translation of the object

and rotation about the viewing axis. Swain and Ballard also

argue that color histograms change slowly with a change in

viewpoint, scale and occlusion. However, due to it contains

no geometric, shape, or texture information, it is sensitive to

color changes, and can only be used to retrieve videos that

are almost identical to the query video with minor variations.

2) Ordinal measure. Ordinal measure is based on the tem-

poral shape information and reflects the inherent relative in-

tensity distribution within a single frame. It is naturally robust

to the color degradation effect caused by different encoding

devices or illumination conditions, but it is sensitive to video

length [51, 54].

The global feature representation methods above are fast

and effective, but only limited to the exact duplicate video

processing task. For the research of NDVR with complex

scene changes or illumination transformations, it has great

limitations.

Local visual feature Local points are salient local re-

gions detected over image scales, which locate local regions

and are tolerant of geometric and photometric variations.

Local features extracting is more robust to complex edit-

ing, photometric and geometric changes. They possess more

superior discriminating power to characterize objects with

complex changes and scenes [55]. The commonly used lo-

cal features include scale invariant feature transform (SIFT)

[56–59], SURF [13, 60, 61], and the local binary pattern

(LBP) [52, 62–64], etc.

1) SIFT. Scale invariant feature transform (SIFT) is a type

of feature representations, which is highly distinctive and in-

variant to image rotation, scale, robust across a substantial

range of affine distortion, change in viewpoint, the addition of

noise, and change in illumination, etc. It achieves the distinc-

tiveness through by assembling a high-dimensional vector to

represent gradients within a local region of an image [65]. In

NDVR, the SIFT features are extracted from the keyframes

of the query video and the reference database, which lead to

robust matching due to the high distinction.

2) SURF. Speeded up robust feature (SURF) is also a scale

and rotation invariant interest point descriptor, which is an ef-

ficient feature representation initially used for image process-

ing, such as image matching and searching, mainly because

of the repeatability, distinctiveness, and robustness, it can im-

prove computation and comparison much faster. SURF de-

scribes the spatial distribution of gradient information within

the interest points neighborhood.

3) LBP. Local binary pattern (LBP) is used to describe the

local features of an image, which has the advantages of gray

invariance and rotation invariance, etc. The basic idea of LBP

is that sum up the contrast results between a center pixel and

its adjacent pixels. If the brightness of the central pixel is

greater than that of his adjacent pixels, the pixel is marked

as 1, otherwise, the pixel is marked as 0. It is widely used in

many fields of computer vision because of the simple calcu-

lation and good effect.
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Due to the invariance of scale and affine transformation,

local features can offer good performance, but it is compu-

tationally expensive when matching a large number of local

features for similarity computation. Generally, the number of

keyframes could exceed one hundred for a four-minute mu-

sic video with fast changing scenes, while the number of lo-

cal points could reach hundreds to thousands per keyframe.

So the accurate retrieval certainly will lead to huge time con-

sumption, especially in large-scale Web video corpus. Local

feature-based methods often extract fewer frames to reduce

the number of local features and improve efficiency, but this

heavily breaks the temporal continuity of videos.

Multi-view feature Single-view feature does not adequately

represent video content, and is not sufficiently robust for

NDVR or other multimedia research topics. For example,

color histogram can achieve fast retrieval, but it is sensitive

to changes in scale, contrast, brightness, camera viewpoint,

etc. Oppositely, SIFT, SURF and LBP are invariant to video

scaling, rotation, and transformation, but they are sensitive to

changes in frame rate, video length, and captions [66]. There-

fore, multiple-views feature has been investigated in numer-

ous NDVR. To exploit an effective fusion pattern to form the

multi-view feature is a key point in NDVR.

Concatenating different feature vectors sequentially and

combining multiple features with different weights are the

two basic feature fusion forms. In [52, 62, 64], they employ

a machine learning approach to exploit each single-view fea-

ture and fuse multiple features in a joint framework.

However, the elements of multi-view features usually have

different orders of magnitude. Based on different fundamen-

tal units, they are in different feature spaces. The direct and

weighted fusion manners are too simple for similarity mea-

surement. To address this issue, constructing a unified fea-

ture space is proposed in [67]. It attempted to map multiple

features into a unified space and to construct a fusion feature

where the similarity can be evaluated in the same fundamen-

tal unit.

Applying multiple sophisticated video features can en-

hance the accuracy of retrieval results. However, the more

feature types used, the more time cost will increase, the bal-

ance of effectiveness and efficiency should be comprehen-

sively considered for different retrieval targets.

Spatiotemporal feature The temporal structure of videos

plays an important role in video processing. Some researchers

try to model temporal information by the expensive tracking

techniques. The trajectory-based approaches [68] track key-

points temporally along with the video sequence to form bags

of trajectories summarizing the moving pattern of key-points,

but these methods will increase the complexity inevitably.

Therefore, the named spatiotemporal feature extraction meth-

ods [51, 69, 70] are developed to improve the video retrieval

accuracy and to lower down the computation cost, which con-

tains not only the spatial information of frames but also the

temporal relations among frames.

Ordinal measure is a feature extraction method which

statistical computes the inherent relative intensity distribu-

tion within a single image, thus it is naturally robust to the

color degradation effect caused by different recording de-

vices [54,71]. Inspiring by ordinal measure, Shang et al. [51]

proposed two spatiotemporal features called CE-based spa-

tiotemporal feature and LBP-based spatiotemporal feature re-

spectively. In which, they model the spatial information of

videos by measuring the relative gray-level intensity distribu-

tion within a frame. Specifically, the former uses the condi-

tional entropy to measure the information loss between the

original video and the resulted feature. The latter is moti-

vated by the well-known feature descriptor LBP and devel-

oped based on the ordinal relations for the central region and

another four auxiliary ordinal relations from the marginal re-

gion. Their temporal structure of videos are all modeled by

the w-shingling, which is originally used in text retrieval to

measure document similarity.

3.2.2 Deep-learning-based feature

Traditional methods of feature extraction and representation

can meet the image or video analysis and retrieval require-

ment in the past, but in modern times dominated by big data,

it is unrealistic to rely on manual processing of data. Auto-

matically describing the content of an image or a video is a

fundamental problem in artificial intelligence that connects

multimedia processing and computer vision.

CNNs feature With the advancement of AI technology, one

instinctive idea would be to utilize the approaches of deep

learning. Motivated by the outstanding performance of con-

volutional neural networks (CNNs) over a wide variety of

multimedia problems, such as image classification, retrieval

and object detection. High-level feature representation gener-

ated by CNNs have been proven effective and generally ap-

plicable [72,73], which is achieved by leveraging the massive

parallel processing power of GPUs.

In deep learning, CNNs is a class of deep, feed-forward ar-

tificial neural networks, which is most commonly applied to

analyze visual representation, and has fewer pre-processing

steps than traditional methods. The CNNs feature is gener-

ally extracted by several consecutive convolutional layers,
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pooling layers, and fully connected layers. The current clas-

sic CNNs include LeNet, AlexNet, VGG-Net, GoogLeNet,

ResNet, etc.

Although CNNs feature has been used for multimedia re-

trieval in many literature [74,75], Kordopatis-Zilos et al. [76]

exploit intermediate CNN layers features in NDVR for the

first time. They extract layer-level feature descriptors by ap-

plying max pooling to the activations of each convolutional

layer. Besides, they also proposed two layer-aggregation

techniques. The first one is to concatenate the intermediate

layer vectors into a single vector directly, and the second

one attempts to get features by the manner of computing

layer-specific codebooks and aggregating the resulting bag-

of-words representations. The methods above both obtain a

competitive performance compared to state-of-the-art manu-

ally designed features.

Spatiotemporal feature The CNNs have the strong ability

to express the characteristics of an image very well, but it also

has great limitations in video processing for they just handle

spatial information of each frame. The timing nature has an

irreplaceable role in videos. To aggregate each frame feature

and form a video feature vector will neglect the important

temporal information. Facing the large-scale video datasets,

and inspired by the breakthroughs in the computer vision do-

main of deep learning, many deep networks are designed to

learn spatiotemporal feature for videos.

The more commonly used and representative deep net-

works are deep 3D ConvNet [77] and recurrent neural net-

work (RNN) [78, 79], they have been proven to be able to

capture the spatiotemporal properties of videos effectively,

and have been widely used in video research, including video

retrieval, action recognition, etc.

Recently, deep 3-dimensional convolutional networks

(C3D) made great progress in dealing with various video

analysis tasks. The spatiotemporal signals modelled by 3D

convolution are better than 2D-based CNNs features. It can

be understood as a 3D convolution on three channels and can

model appearance and motion information simultaneously by

applying to multiple video frames. Besides, the C3D feature

with a linear classifier can achieve good performance on dif-

ferent video analysis benchmarks.

A recurrent neural network (RNN) is a class of artificial

neural network that connections between nodes and forms a

direct graph along a sequence. This allows it to exhibit tem-

poral dynamic behavior for a time sequence.

Although RNNs have been widely used in many tasks such

as speech recognition, they still have many difficulties in

learning long-term dependencies due to the vanishing and

exploding gradient problem. Two particular types of recur-

rent neural networks, the long-short term memory (LSTM)

and the stacked gated recurrent units (GRUs) recurrent neu-

ral networks are widely adopted [80, 81]. They have memory

ability and suit for processing sequences with contexts well.

LSTM networks were discovered by Hochreiter and

Schmidhuber in 1997 and set accuracy records in multiple

applications domains. GRUs are the gating mechanism in re-

current neural networks introduced in 2014, which are used

in the full form and several simplified variants. GRUs have

fewer parameters than LSTM, as they lack an output gate. Re-

cently, both are well developed and shown to be efficient to

deal with various sequences encoder-decoder problems, es-

pecially in video processing, such as video retrieval, video

captioning.

3.3 Signature generation

High retrieval accuracy is the principal research priority in

the field of retrieval. Constructing a high-quality video sig-

nature based on feature presentation engineering described

above can improve video retrieval performance.

Generally, different applications should choose their own

specific video signatures for the similarity retrieval scenar-

ios and purposes. Existing works in NDVR can be classified

into two signature categories based on video representation

type, namely, frame-level signature, video-level signature.

Frame-level signature approaches calculate the video simi-

larity frame-by-frame and achieved NDVR by a sequence

alignment manner. Correspondingly, video-level signature

approaches represent the whole video as a single signature.

We summarize the representative video signature methods in

NDVR as follows.

3.3.1 Frame-level signature

Based on the classification of the feature extraction methods,

the frame-level signature can be classified into two classes.

The first one is to generate a compact frame-level global sig-

nature, and the second one is the frame-level local signature

according to local key-point descriptors.

The typical frame-level global signature is the strategy

of combining multiple types of features to improve signa-

ture representation, which is based on the multi-view feature

extraction, and has received growing interest in multimedia

search. Now, various multi-feature fusion methods emerged

in studies [62, 64, 82]. For example, the method that attempts

to generate a frame-level signature by combining the global

HSV features characterizing the global color histogram and
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LBP features characterizing the local texture feature.

Bag-of-visual-words (BoW) is another popular represen-

tation pattern to describe an image or a video [76, 83], in

which, a visual vocabulary is generated through grouping

similar key-points into a large number of clusters and treat-

ing each cluster as a visual word. By mapping the key-points

back into the vocabulary, a histogram of visual words is con-

structed. All the visual words together form a visual vocab-

ulary, and a frame can be represented as a histogram of the

visual words. Nevertheless, this method neglects inter-word

relatedness. To address this problem, Jiang and Ngo [84] ex-

plored a soft-weighting method for video analysis, in which,

soft-weighting is proposed to model different aspects of vi-

sual word linguistics, and visual words are cleverly weighted

such that the linguistic meaning of words are taken into ac-

count.

Motivated by the excellent performance of CNNs on many
machine learning problems, such as image classification, re-
trieval and object detection, Kordopatis-Zilos et al. [76] pro-
posed a method using intermediate convolutional layers to
construct features for large-scale NDVR. Specifically, they
extracted layer-level feature descriptors by applying max
pooling to the activations of each convolutional layer. Then

two layer-aggregation techniques are used to generate the

frame-level signature. The first one managed to concatenate

all of the layer vectors into a single vector, and a bag-of-

visual-words scheme is applied to this vector to generate a

codebook of k visual words. Therefore, a frame is represented

by only a single visual word. The second one named layer

aggregation method, opposite to the first one, it generated L

layer-specific codebooks of K words through applying bag-

of-words on each layer vector. So there are L words instead

of a single one results from the concatenation of the individ-

ual layer-specific histograms.

3.3.2 Video-level signature

In traditional NDVR, almost every work conducted on NDVR

involves various low-level features. The frame or video sig-

natures are generated based on these features. Most feature

extraction methods are derived from the studies of image pro-

cessing and retrieval. But the low-level feature extraction is

normally not considered enough for videos with reasonable

efficiency and effectiveness because of the large number of

frames involved in videos. An accurate video representation,

which is named as the video-level signature, is more com-

pactness and distinctiveness. It offers a more efficient way to

compute similarity over the video level based on the compact

signature generated for each video. Exploiting a video signa-

ture method that can keep intra-class similarity and inter-class

separability is a major research point in NDVR.

A simple video signature generation method is proposed

by Liu et al. [85]. They selected several seed vectors from the

feature space of training data set by using heuristic methods,

re-sampled each video uniformly and calculated the distances

between all the sampled frames and the selected seed vectors.

Based on the distances, the numbers of video frames which

are closest to each selected seed vector are recorded and nor-

malized to generate the signature of the video. In this way,

each video is summarized into a compact fixed-size signa-

ture, whose dimension is the same with the number of seed

vectors.

Real-time video retrieval has become a very attractive re-

search topic. An accurate and fast system that facilitates ef-

fective and efficient online NDVR over continuous video

streams are needed [86, 87]. UQLIPS is a prototype system

for online near-duplicate video clip detection [10], which

explored a compact video-level representation model called

bounded coordinate bystem (BCS). BCS captures the domi-

nating content, content changing trends of each clip and glob-

ally summarizes each video to a single vector. This compact

representation reduces the size of video data dramatically.

The complexity of its similarity measure is only linear in the

dimensionality of feature space.

Failing to capture temporal order inherent in video se-

quences is the defect of the BCS. Shen et al. [10] proposed

a FRAme symbolization (FRAS) signature method to make

up this defect, which maps each clip to a sequence of sym-

bols, takes temporal order and sequence context information

into consideration. Specifically, FRAS first produces a sym-

bol dictionary by performing hierarchical clustering over the

whole frame dataset. Each item in this dictionary is a small

frame cluster whose radius is not greater than ε, which is

a threshold for frame similarity. A cluster C is denoted as

〈c,O, r,N〉, where c is the cluster id, O and r are the cluster

center and radius. N is the number of frames in the cluster.

Given a video clip X = {x1, x2, . . . , xn}, for each frame xi, by

looking up the symbol dictionary and checking the clusters

containing it, the mapping from xi to Ci can be done eas-

ily. The FRAS signature is compact, since it represents each

frame by a cluster id instead of a symbol string, and the whole

video signature can obtained by integrating all the frame rep-

resentations.

Another real-time retrieval system attempted to trans-

form the video from a sequence of high-dimensional frame

features into a one-dimensional distance trajectory (VDT),

which captured the changes of consecutive frames with re-
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spect to a reference point [27]. Besides, an online video

segmentation is performed, and each segment can be repre-

sented by a compact signature called linear smoothing func-

tion (LSF), which is a first-degree linear fitting function with

a guarantee of minimal fitting errors. To compute the simi-

larity scores, LSFs of the incoming video stream are contin-

uously generated and temporally stored in a buffer for com-

parison with query LSFs.

A global feature can enhance speed but sacrifice robust-

ness. Alternatively, systems aim at achieving robustness

by using local features will cost expensive computation in-

evitably. Zhang et al. [14] sought to find a middle ground.

They detected salient local features such as FAST, com-

puted the optical flow of the key-points from two consecutive

frames, and added up the orientations of retained trajectories

with equal weight into b bins and normalize the histogram.

Finally, they aggregated the bins across time to produce the

final video signature, which comprised of b different time se-

ries.

Deep-learning-based feature extraction methods have be-

come a mainstream, due to its unparalleled effectiveness and

efficiency, especially for large-scale datasets. The effective-

ness of CNNs for extracting frame features has been exten-

sively verified in image retrieval, image classification, etc.

Among the existing NDVR methods, most of the strategies

used are firstly to extract frame-level signature through a pre-

trained deep network, such as VGG, AlexNet, and then ob-

tain the video-level signature through by concatenating or

averaging technologies. Kordopatis-Zilos et al. [76] gener-

ated video-level signature through by integrating the bag-of-

words histograms of all key-frames. In [88], they extracted

CNNs features from intermediate convolution layers based

on a well-known scheme called maximum activation of con-

volutions, and then concatenated all layer vectors to a single

descriptor, which is normalized by applying zero-mean and

l2-normalization. In GVoS system [26], following the trained

AlexNet [72] model, it resized each keyframe to 227 × 227

and adopted the output of the fully connected layer as the sig-

nature of each key-frame, and then calculated the signature of

each video by averaging the signatures of all the key-frames.

The length of each deep learning signature is 4096, and the

distance of two signatures, denoted by DeepDis, is measured

by the Euclidean distance.

3.4 Video indexing

Similarity measure is an important aspect of multimedia re-

trieval. In NDVR, the similarity between a query video and

the reference database can be evaluated through calculating

the distances of their video signatures directly, but the high-

dimensional video signatures will bring huge time consump-

tion and computational complexity.

Video indexing is the process of providing a way to access

and navigate contents easily. The selection of indexes derived

from the content of the video can help to organize and repre-

sent the original video stream more conveniently.

It is necessary to store the video signatures in a reasonable

index structure. An efficient video indexing can facilitate fast

search in NDVR. Many indexing methods based on signa-

ture types and distance metrics have been proposed to sup-

port multimedia search, including Tree structure, iDistance,

Inverted files, hashing methods and so on. With the explo-

sive growth of web video volume, due to the advantages in

terms of both storage requirements and computational effi-

ciencies, learning-based hashing has become a widely used

technique in NDVR. It can index high-dimensional data us-

ing short compact binary codes through by linear or nonlin-

ear projections. We focus on the hashing-based indexing ap-

proaches, and summarize these methods used for large-scale

NDVR [89, 90].

3.4.1 Classical methods

Inverted index Inverted index in computer science is an in-

dex data structure storing a mapping from content, such as

words or numbers, to its locations in a database. The purpose

of an inverted index is fast search. It is the most popular data

structure used in retrieval systems. There are two main vari-

ants of inverted indexes. A record-level inverted index con-

tains a list of references to documents for each word, and a

word-level inverted index additionally contains the positions

of each word within a document. The latter form offers more

functionality but needs more processing power and space to

be created.

The inverted file indexing is widely used in multimedia re-

trieval [76]. A typical inverted file is used for bag-of-visual-

words approach, in which, an image is represented as a bag-

of-visual-words. Through by recording the frequency and

emerging position of every word, establishing a structure as-

sociation between the words and images, then an inverted file

can be constructed.

We list some typical inverted file indexing used for NDVR

as followed. Zhao et al. [83] emploied LSH embedding

(LSH-E) to embed the color moments into a long sparse fea-

ture vector. With this sparse vector representation, inverted

file indexing can be emploied to support fast retrieval, the
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similarity between two videos can be evaluated by cosine

distance measure. Besides, they also emploied DoG for key-

point detection and PSIFT for feature description. The de-

tected key-points in a keyframe is quantized and labeled with

key-words. Eventually, each keyframe is represented as a his-

togram of words with a length equivalent to the size of a dic-

tionary. The feature vector is sparse and thus inverted file is

emploied as the index structure to support fast retrieval. Be-

sides, Shang et al. [51] also proposed an efficient indexing

method to speed up video retrieval, which is developed by

incorporating the recently proposed fast intersection kernel

method [91, 92] into the inverted file.

iDistance The ultimate goal of NDVR is to find all the near-

duplicate videos in the database according to a given query

video and sort them by similarity. The iDistance indexing

technology can be introduced to this need. The iDistance is an

indexing and query processing technique for k-nearest neigh-

bor queries on point data in multi-dimensional metric spaces.

It is designed to process kNN queries in high-dimensional

space efficiently. The main steps of the iDistance indexing

method are illustrated as follow. Firstly, the similarity be-

tween data points can be derived from the chosen reference

or representative point. Secondly, data points can be ordered

based on their distances to the reference point. Thirdly, dis-

tance is essentially a single dimensional value. This allows

us to represent high-dimensional data in single dimensional

space, thereby enabling reuse of existing single dimensional

indexes such as the B+-tree [93]. Huang et al. [27] also at-

tempted to transform the video from a sequence of high-

dimensional frame features into a one-dimensional distance

trajectory using iDistance. It captures the changes of consec-

utive frames with respect to a reference point.

Tree structure indexing Tree structure indexing methods

are based on the principle of hierarchical clustering of the

data space [94, 95]. In which, the data vectors are stored in

tree nodes, and the spatially adjacent vectors are likely to re-

side in the same node. However, tree structures are not ef-

ficient enough to handle NDVR problem, mainly due to the

space splitting becomes very ineffective with the dimension-

ality increases.

3.4.2 Hashing method

In large-scale retrieval, the matching speed based on the

learned video signature [11, 96] is another concern point.

Hashing takes an arbitrary-length data vector as the input, and

outputs a fixed-length binary string. It can actually be deemed

to a binary representation learning approach that character-

izes objects with binary codes. In which, the similarity can

be evaluated by the Hamming distance between the two bi-

nary strings. Therefore, only the efficient XOR and bit count

operations are needed for the video retrieval task. The costly

pairwise keyframe comparison can be avoided, and memory

volume can be significantly reduced [52,67,97,98].We intro-

duce some large-scale NDVR methods based on the hashing

indexing to achieve fast retrieval recently.

Song et al. [52] proposed a multiple feature hashing

method, which preserves the local structural information of

each individual feature and also globally considers the local

structures for all the features to learn a series of binary codes

for video representation.

Hao et al. [62] proposed a hashing scheme called stochas-

tic multi-view hashing (SMVH), which first computed the

pairwise similarity of video frames, then learned binary hash

codes by minimizing the difference of the probability dis-

tribution between the original and embedded binary space

with the composite KL divergence. To improve robustness of

large-scale NDVR, Hao et al. [64] also proposed a novel un-

supervised hashing algorithm named t-USMVH, which com-

bines multiple types of feature representations and effectively

fuses them by examining a continuous relevance score based

on a Gaussian estimation over pairwise distances. Mean-

while, to reduce sensitivity to scale changes for mapping ob-

jects that are far apart from each other, student t-distribution

is used to estimate the similarity between the relaxed hash

code vectors for keyframes. At last, the learned binary hash

codes can be obtained by minimizing the difference of the

probability distribution between the original and embedded

binary space with the composite KL divergence.

The two learning-based hashing methods above are veri-

fied effectively for scalable large-scale NDVR, but they do

not effectively consider the neighborhood structure of all

samples in the same dimension. To address this issue, Nie

et al. [67] used NBC to learn hashing function. NBC divides

each dimension of all samples into different regions and en-

codes the indices of regions to get hash values. Given the

quantization performed on the same dimension of all training

samples, NBC fully considers the neighborhood structure in

each dimension among all the samples.

Similarly, the methods in [52] and [62] are only consid-

ered local relations among multiple features when learning

hash functions. To address this issue, Jing et al. [66] proposed

a novel supervised hashing method called global-view hash-

ing (GVH), which globally utilizes the relations among mul-

tiple views of all videos to improve the retrieval performance.

In which, each feature of a video is taken as an object, and



14 Front. Comput. Sci., 2020, 14(5): 145702

objects under multiple video features are jointly considered

by maximizing the between-label variations and minimizing

the within-label variations. In these variations, the fully dis-

criminant information from all objects is well preserved. This

globally ensures the diversity of information in multiple fea-

tures. In addition, in contrast to state-of-the-art methods that

learn multiple hash functions for single hash bit, GVH only

needs to learn M hash functions for all features in one iter-

ation and with a non-pairwise strategy, each with multi-bit

hash codes.

So far, we have investigated the indexing methods com-

monly used in large-scale NDVR recently. Among them,

hashing indexing is the most widely used, mainly because it

detects NDVs through simple XOR operations in Hamming

space. Meanwhile, learning-based hashing methods can not

only solve the accuracy problems but also deal with the scal-

ability problem effectively.

3.5 Similarity measurement

In statistics and related fields, a similarity measure or similar-

ity function is a real-valued function that quantifies the sim-

ilarity between two objects. Retrieving the most similar ob-

jects to a query element from a potentially large database and

ranking them is the ultimate goal in retrieval research, where

performance is mainly defined by the provided pairwise mea-

sures. In NDVR, once video signature or indexing are ob-

tained, the retrieval and ranking results can be reached by the

similarity measure methods. They compute the distance be-

tween the query video and the database videos through by

the indexing or the signatures directly [99,100]. The standard

distances that are widely used can be Manhattan distance, Eu-

clidian distance, Cosine distance, etc.

Based on the signature granularity of the matching be-

tween NDVs, existing NDVR methods are classified into

frame-level matching, video-level matching, and hybrid-level

matching. They use those different matching methods to cal-

culate video similarity according to the distance measure-

ment.

Frame-level matching NDVs are determined by compar-

ing individual frame or frame sequences between the query

video and the candidate videos [101]. A simple definition of

video similarity can be sorted by calculating the proportion

of similar frames in videos, as shown in Eq. (1).

Given two video sequences P and Q, the similarity is de-

fined as:

sim(P,Q) =
|P ∩ Q|
|P ∪ Q| . (1)

The similarity computation between P and Q lies in finding

the proportion of similarity cells.

Similarity measurement is done with distance computa-

tion between the consecutive frames, such as the frame-level

signature BoW. Existing approaches with BoW mostly eval-

uate the visual similarity by direct bin-to-bin comparison

of visual word histograms. But the bin-to-bin comparison

method can not capture the inter-word relationship. Jiang and

Ngo [84] explored a constraint-based earth mover’s distance

(CEMD) match approach to address this problem. In which,

a cross-bin matching algorithm is formulated such that the

ground distance measure considers the linguistic similarity

of words. CEMD shows excellent performance compared to

cosine similarity in near-duplicate retrieval.

Video-level matching These approaches aim at solving

the large-scale retrieval problem quickly. A video is usually

represented by a global signature such as an aggregate fea-

ture vector or an indexing pattern. Video matching can be

computed by pairwise similarity measure between the corre-

sponding video representations or indexing [51, 100].

In [10], the video similarity is estimated by the similar-

ity between their BCSs. Followed the operations of transla-

tion, rotation and scaling, the distance of two BCSs can be

calculated by the length of their subtraction. Compared with

the quadratic time complexity of existing methods, the time

complexity of BCS similarity measure is linear. In contrast,

the temporal order of video signature FRAS, the similarity

between videos can be measured by probability-based edit

distance (PED), which extends string edit distance, and the

time complexity of computing PED is quadratic.

Besides, Kordopatis-Zilos et al. [88] defined that the sim-

ilarity between two arbitrary videos q and p is computed

by their squared Euclidean distance in the video embedding

space. An embedding function fθ(·) maps a video to a point

in a Euclidean space through deep metric learning manner. θ

is the system parameter, and D(·, ·) is the squared Euclidean

distance in this space. It assigns smaller distances to NDV

pairs compared to non-NDV ones, as shown in Eq. (2).

D( fθ(q), fθ(p)) = ‖ fθ(q), fθ(p) ‖22. (2)

And the similarity between two videos can be derived from

the distance of their representations. For a given query q and a

set of M candidate videos {pi}Mi=1 ∈ P, the similarity between

each candidate pair is determined by Eq. (3).

S (q, p) = 1 − D( fθ(q), fθ(p))
max
pi∈P

(D( fθ(q), fθ(pi)))
, (3)

where S (·, ·) is the similarity between two videos and max(·)
is the maximum function.
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Indexing structure are used to efficiently evaluate the simi-

larity between videos, in which, inverted file and hashing are

two most used index structure. Kordopatis-Zilos et al. [76]

used tf-idf weighting to calculate the similarity between two

video histograms. In simple terms, followed ft-idf representa-

tions [65], an inverted file is used for indexing, and all videos

are ranked in descending order according to their cosine sim-

ilarity with the query video based on indexing structure. For

hashing indexing structure, the similarity of two objects is

evaluated by the Hamming distance between the two binary

strings, in which, only the efficient XOR and bit count oper-

ations are needed. It can improve the retrieval speed greatly

[52, 62, 64, 82].

Hybrid-level matching Calculating similarities through

frame-to-frame matching is very time-consuming and im-

practical in a large-scale video database. In order to improve

the retrieval speed and lower down the computational com-

plexity, various video-level-based matching algorithms have

been widely used above. But the efficiency is still far from

web-scale applications even if the indexing methods are used.

Hence, to achieve NDVR with high precision and low com-

putation cost, some hybrid-level matching approaches are

developed to combine the advantages of video-level match-

ing and frame-level matching methods. The typical idea is

to adopt a filter-and-refine scheme, which cluster and filter

out non-near-duplicate videos through video-level matching,

and then use frame-to-frame similarity measurement on the

reduced set of videos to obtain NDVs.

Wu et al. [2] introduced a hierarchical approach for NDVR.

Firstly, global signatures derived from color histograms are

used to filter the very similar videos. The global signatures

are basically the global statistics or summaries of low-level

color features in videos. The similarity of videos is measured

by the distance between signatures. Then a more expensive

local feature which provides very accurate duplicate analy-

sis through more costly computation is used to retrieval the

videos that cannot be clearly classified. However, this hier-

archical method is infeasible for real-time large-scale near-

duplicate detection, since it still involves a large number of

comparisons among keyframes [102].

Chou et al. [13] also proposed a hierarchical filter-and-

refine framework for efficient NDVR and localization. The

low-level features of keyframes are symbolized and col-

lected to form index patterns (I-pattern). In the filter stage,

a spatiotemporal indexing structure utilizing index patterns,

termed pattern-based index tree (PI-tree), is proposed to fast

filter out non-near-duplicate videos and substantially reduce

the search space. In the refining stage, m-pattern-based dy-

namic programming (mPDP) is utilized to localize near-

duplicate segments and to re-rank the results of the filter

stage.

3.6 Discuss on scope

We select some representative algorithms for illustrating each
component of the framework. In fact, they are interconnected
as a whole and each of them is indivisible. For example, simi-
larity measurement is associated with each previous part. Dif-
ferent signatures or indexing methods will result in different
matching algorithms. Researchers should choose the appro-
priate methods according to the specific situation.

The deep-learning-based spatiotemporal features, such as
C3D, RNN, as the effective sequence data features, have been
widely used in the fields of NLP and Multimedia. In NDVR,
there is no relevant literature currently, mainly due to the
similarity of NDVs is high, good performance can be ob-

tained by using existing traditional features or CNNs-based

features. The details can refer to Chapters 2.1 and 2.2. Super-

vised learning based on those deep spatiotemporal networks,

for the massive network parameters, time-consuming train-

ing, maybe they are not the best choices for NDVR, but it is

worth a try.

Hashing indexing is currently the mainstream method for

NDVR. It can achieve video similarity metrics and sorting

only by simple XOR operations. However, this indexing tech-

nology also exists problems that have not been solved per-

fectly yet. For example, in the binary representation learning

process, the existing literature mostly adopt the relax hash

manner, which will lead to severe information loss and affect

the retrieval results. As a critical issue in NDVR, even in the

field of information retrieval, it deserves more attention.

For capturing the underlying manifold structure, many

works interest in exploiting context similarities between all

elements of the database to improve retrieval scores, where

they aim at capturing the geometry of the underlying man-

ifold [103, 104]. And some works focus on post-processing

such as re-ranking to promote the performance. They re-

ranked the sorted results based on some additional informa-

tion, such as text, visual [105, 106]. The works above have

obtained great achievements. It is also a direction in the fu-

ture for NDVR research.

4 Evaluation criteria

The experimental measurement is an important and indis-

pensable part for validating the effect of a method. Re-

searchers experimented on the public datasets to illustrate the
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superiority of their algorithms. As the unified criterion, eval-

uation criteria are used for judging the merits of experimental

results, and they give people a comparative reference. We will

summarize the public datasets commonly used in NDVR field

and list several evaluation criteria.

4.1 Dataset

There are many popular benchmark datasets used for NDVR

and other video processings, such as TRECVID [28–30,

107], MUSCLE-VCD-2007 [108], CC_WEB_VIDEO [2],

UQ_VIDEO [62, 82]. We compare their video sources, vol-

ume and near-duplicate videos generation modes in Table 3.

In addition, there are also some infrequently used datasets

that are listed at the end of this section.

TRECVID It is a dataset of U.S. government-supported

project for the copy detection task. They publish a new

dataset on an annual basis. Each contains thousands of videos

and includes hundreds of hours of videos. TRECVid provides

a large-scale test collection of videos, and dozens of partic-

ipants apply their video retrieval algorithms to the collec-

tion. The duplicate datasets are produced artificially by us-

ing a tool developed by IMEDIA, and the ground truth of the

near-duplicate relationship is also given. It is widely used in

NDVR tasks [14].

MUSCLE-VCD-2007 It is a dataset for video copy detec-

tion. It consists of 100 hours of videos, including Web video

clips, TV archives, and movies with different bitrates, dif-

ferent resolutions, and different video format. A set of orig-

inal videos and their corresponding transformed videos are

given for the evaluation of copy detection algorithms. Chou

et al. [13], Ren et al. [109] and Zhang et al. [14] conduct their

experiments on this benchmark dataset.

CC_WEB_VIDEO It is the most popular dataset in NDVR,

and is constructed by Wu et al. [2]. The dataset consists of

12,790 videos collecting from the video search results of

Google, YouTube and Yahoo!. Different from the datasets

mentioned earlier that are all simulated based on pre-defined

transformations, these real video copies are directly ob-

tained from the Internet. It is widely used in NDVR recently

[13, 26, 62, 82, 88].

UQ_VIDEO It is a dataset [62, 64, 82] that expands the

CC_WEB_VIDEO dataset with YouTube videos downloaded

by searching against 400 most popular queries selected from

the Google Zeitgeist Archives from 2004 to 2009. This results

in a total of 169, 952 videos, for which 2, 570, 554 keyframes

are extracted.

Other datasets Many authors collect their datasets from

video websites to verify their methods better. Karpenko and

Aarabi [110] proposed the Tiny videos dataset of 52, 159

videos collected from YouTube and compressed to a tiny size,

which can be used to classify a wide range of categories using

very simple nearest neighbor techniques. Shen et al. [10] used

the collection of more than 11, 000 TV commercials with av-

erage length of about 60 seconds. Shang et al. in [51] con-

structed a larger web video dataset by adding videos crawled

from Bing Videos to CC_WEB_VIDEO. There are 49, 603

video clips in total, which is the largest published Web video

dataset. The labeling results of CC_WEB_VIDEO is used

as the ground truth of the new dataset. Keyframes were

uniformly extracted per second, and there are 11, 270, 825

keyframes in total, which is about 4.28 times of that used

in the first experiment.

Besides, GVoS system [26] chose a larger video dataset

called ActivityNet, which is originally used for benchmark-

ing video classification. ActivityNet contains 27, 801 videos

of 648 hours that belong to 203 classes. This dataset is not

created for NDVR. Therefore, it does not provide the ground

truth of duplicate videos. To address this issue, the author

judged two videos as near-duplicate if they belong to the

same class, and the gap of their durations is beyond 20 sec-

onds.

4.2 Performance metric

Performance metric measures the performance of an algo-

Table 3 Statistical comparison of benchmark datasets used in NDVR

Dataset Video source Video volume NDVs generation mode

TRECVID The TREC conference sponsored by the
NIST and supported by U.S. government.

It contains thousands of videos and in-
cludes hundreds of hours of videos.

Produced artificially by using a tool de-
veloped by IMEDIA.

MUSCLE_VCD_2007 Include Web video clips, TV archives, and
movies.

It consists of 100 hours of videos, with
different bitrates, different resolutions,
and different video format.

The transformed videos corresponding
to original videos.

CC_WEB_VIDEO Collected from the video search results of
Google, YouTube and Yahoo!

It consists of 12, 790 videos. Directly obtained from Internet.

UQ_VIDEO Searching against 400 most popular queries
selected from the Google Zeitgeist Archives
from 2004 to 2009.

In total of 169, 952 videos, 2, 570, 554
keyframes.

Directly obtained from Internet.
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rithm. It assesses how well systems are doing their respec-

tive tasks. It provides hard data and gives off outcomes that

appraise clearly defined quantities within a range that facil-

itates improvement and upgrading. In multimedia retrieval,

all similar elements in the dataset need to be found based on

the correlation with the query target. In NDVR, the retrieval

results are evaluated from three aspects to judge the perfor-

mance, namely, effectiveness, efficiency and scalability.

The metrics of precision, recall and mean average preci-

sion (mAP) are three straightforward ways to assess effec-

tiveness [2, 52, 62]. Precision measures the accuracy of the

retrieval. Recall measures how good you find all the posi-

tives. And mAP is computed by averaging the AP across all

given query videos.

Denote R as the number of ground truth relevant videos

in the database, S as the number of videos retrieved, and T

as the correct number of videos retrieved. The mathematical

definitions are as follows:

Precision =
T
S
, (4)

Recall =
T
R
. (5)

For each class label, we consider each testing video that be-

longs to the label as a query and the rest of the testing data as

the database. Then, the mean precision of the queries (mAP)

is used as the performance metric for the label.

In addition, AP@K is also used for retrieval performance

evaluation. It means Average Precision at top K retrieved

videos. At any ranked position j(1 � j � K), let Rj be the

number of relevant videos in the top j results and let I j = 1

if the jth video is relevant and 0 otherwise. Then AP@K is

defined as
1

min(R,K)

K∑

j=1

Rj

j
× I j. (6)

For each class label, the mean of AP@K of the queries

(mAP@K) can also be used as the performance metric for

the label.

Besides, the precision-recall curve is also commonly used

to provide a more thorough view of the retrieval effectiveness

performance, which can be generated by plotting the curve of

precision versus recall.

In general, accuracy comes at the cost of time complex-

ity. Some works focus on retrieval precision but ignore the

efficiency factor of their approaches. Efficiency is measured

by the total response time. It means the elapsed time from

the time when the query is issued to the time when the re-

sults are returned [111]. Especially in real-time large-scale

web video retrieval, efficiency is the main criterion consid-

ered [4, 26, 27, 112].

Facing the intractable large-scale volume of videos, the

scalability of a search technique has become a fundamental

problem. Many works not only focus on improving retrieval

accuracy but also on enhancing scalability to keep up with

the ever-growing size of video volume [43, 52, 62].

4.3 Discuss on scope

According to research focuses and goals, researchers adopt

diverse datasets as their benchmark. A clean dataset with

large-scale web videos can provide a good data source for

building a system with good generalization capabilities.

Some researchers provide their own datasets to verify the

validity of their algorithms, but it may not be widely used

by the public because of the weak generalization ability.

Among the public datasets in NDVR, CC_WEB_VIDEO and

UQ_VIDEO are the two mainstream datasets, due to the net-

work data sources, diverse data types, absolute data volume

advantages, strong generalization capabilities, etc.

5 Advanced methods

We extend our survey scope to cover a few modern advanced

methods for specific settings and goals, including multiple

feature hashing (MFH) [52], which exploits the local struc-

ture of each individual feature and fuses multiple features in

a joint framework. Stochastic multi-view hashing (SMVH)

[62], which efficiently takes advantage of the structure in-

formation of data points and attempts to solve the scalabil-

ity problem. Deep metric learning (DML) [88], which uses

deep networks to explore video-level representation better,

and also introduces deep metric learning to NDVR for the

first time.

We summarize the commonly used notations in Table 4,

and list the mAP results on CC_WEB_VIDEO and

UQ_VIDEO respectively, as shown in Table 5.

5.1 State-of-the-art methods

MFH Song et al. [52] synthesized the advantages of multiple

features and merged them into the hashing algorithm through

a machine learning pattern. Specifically, MFH preserves the

local structural information of each selected feature and glob-

ally considers the local structures for all the features to learn a

group of hash functions, which is more stable to characterize

the video content and can also accelerate the query speed.

MFH define υ affinity matrices Ag
1 ∈ Rn×n(1 � g � υ) to
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exploit the individual structural information of each single-

view feature:

(Ag
1)pq =

⎧⎪⎪⎨⎪⎪⎩
1, if (xg)p ∈ Nk((xg)q) or (xg)q ∈ Nk((xg)p),

0, else,
(7)

whereNk(·) is the k-nearest-neighbor set and 1 � (p, q) � n.

Table 4 Notations of the advanced NDVs methods

υ The number of feature types

g The gth feature

n Training keyframes in total

i The ith training data

dg The dimensionality of the gth feature

d The total dimensionality of all the feature types

xg
i The gth feature of ith training data

xi The vector representation of the ith training

keyframe using all of the features

Xg The feature matrix corresponding to the gth

feature of all the training data

X The feature matrix of all the training data

h The learned hash functions

yg The learned hash codes from gth feature

Yg The hash codes of the training keyframes

derived from the gth feature

Y The hash codes of the training keyframes

corresponding to all features

Table 5 The mAP results on CC_WEB_VIDEO and UQ_VIDEO

mAP
Methods Feature

CC_WEB_VIDEO UQ_VIDEO

MFH [52] HSV, LBP 0.958 0.883

SMVH [62] HSV, LBP 0.971 0.889

DML [88] GoogleNet 0.981 -

And the υ affinity matrices Ag
2 ∈ Rn×n(1 � g � υ) are

exploited to represent the group information of keyframes

within the same video for each single-view feature.

(Ag
2)pq =

⎧⎪⎪⎨⎪⎪⎩
1, if (xg)p and (xg)q are in the same video,

0, else.
(8)

The objective function of getting the hash codes on each

single-view feature can be further formulated as the follow-

ing minimization problem:

min
Yg

n∑

p,q=1

(
(Ag

1)pq + λ(A
g
2)pq

)
‖(yg)p − (yg)q‖2, (9)

where λ is a parameter to balance the matrix Ag
1 and Ag

2.

By minimizing the empirical error of the hash functions

w.r.t. the learned hash codes Y, MFH achieved to learn the

hash codes of training keyframes and a series of hash func-

tions {h1(·), . . . , hs(·)} in a joint pattern. The final objective

function of MFH is given by:

min
Y,Yg,W,b

υ∑

g=1

n∑

p,q=1

μg(Ag)pq‖(yg)p − (yg)q‖2

+ γ
υ∑

g=1

n∑

i=1

μg ‖yi − (yg)i‖2

+ α

s∑

l=1

( n∑

i=1

‖hl(xi) − yil‖2 + βΩ(hl)
)
,

s.t.

⎧⎪⎪⎨⎪⎪⎩
yi ∈ {−1, 1}s, (yg)i ∈ {−1, 1}s,
YT Y = I,

(10)

where Ω(hl) is a regularization function over hl. γ, α and β

are the parameters, and yil is lth bit hash code for xi.

The transformation matrix wl ∈ R	×s and bias term bl ∈ R
can be obtained through iterative training. For the large-scale

dataset, the hash codes can be calculated by a linear transfor-

mation hash function defined as follow:

hl(xi) = wT
l xi + bl. (11)

Finally, the similarity between the query video and the ref-

erence videos can be fast and efficiently calculated in the

Hamming space by simple XOR operations.

SMVH Hao et al. [62] proposed a stochastic multi-view

hashing method to facilitate the building of a large-scale

NDVR system. SMVH explores a group of reliable hashing

mapping functions, which convert multiple types of keyframe

features, enhanced by auxiliary information, to a series of

binary hash codes. A composite Kullback-Leibler (KL) di-

vergence measure is used to approximate the retrieval scores

by aligning the neighborhood structures between the original

feature space and the relaxed hash code space.

The notations refer to Table 4. For each object, it constructs

s hash functions {hl}sl=1 to build a reliable connection between

its features {xg
i }υg=1 and the s binary hash code string, which

are formulated as:

z̃il =

υ∑

g=1

dg∑

j=1

xg
i jw

g
l j + bl,

zil = sigmoid(z̃il),

hil = T (zil),

(12)

where wg
l j ∈ R are the combination coefficients and bl ∈ R is

a bias parameter. The threshold function, given as T (x) = 1,

if x > 0.5, and T (x) = 0, otherwise, is applied to convert the

value to a binary number.

SMVH uses a composite KL divergence measure to pre-

serve the similarity structure between original space and the

embedding space, just as the following:
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To construct an accurate structure relationship in original

space, the probabilistic relevance model for information re-

trieval [113] is used.

pg
j|i =

exp
(
− ‖x

g
i −xg

j ‖22
2σ2

ig

)

∑
l�i exp

(
− ‖x

g
i −xg

l ‖22
2σ2

ig

) , (13)

where ‖ · ‖2 denotes the l2-norm, and the Gaussian parameter

σig > 0 controls the speed of the probability pg
j|i vanishes over

the Euclidean distance between two keyframes. The value of

pg
j|i reflects the similarity information between the ith and jth

keyframes under the gth view.

The auxiliary information such as video keyframe relation-

ship and ground truth relevance can be used to control the

neighbor structure between the keyframes.

pW
i j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if the keyframes xi and x j(i � j) are

extracted from the same video,

0, otherwise.

(14)

pS
i j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if the keyframes xi and x j(i � j) are

extracted from near-duplicated videos,

0, otherwise.

(15)

A soft voting scheme be implemented to represent the rel-

evance scores offered by different views.

P = N
( υ∑

g=1

αgP
g + αυ+1P

W + αυ+2P
S
)
, (16)

where the summation weights {α}υ+2g=1 are all positive and sat-

isfy
∑υ+2

g=1 αg = 1.

Similarly, SMVH also uses a probability formulation to re-

flect the structure relationship between keyframes in the em-

bedding space:

pg
j|i =

exp
(
− ‖ zi − z j ‖22

)

∑
l�i exp

(
− ‖ zi − zl ‖22

) , (17)

Following the structure matching scores as used in [114,

115], the difference between the two conditional probability

matrices of P and Q is assessed through a composite KL di-

vergence score:

S KL = λ

n∑

i=1

KL(p·|i‖q·|i) + (1 − λ)
n∑

i=1

KL(q·|i‖p·|i). (18)

Incorporating a regularization term, SMVH constructs the

following optimization problem:

min
wg

l j,bl

O = S KL(w
g
l j, bl) +

μ

2

υ∑

g=1

s∑

l=1

dg∑

j=1

(wg
l j)

2, (19)

where μ > 0 is the regularization parameter. At last, a reliable

hashing mapping function obtained by Eq. (12) is learned

to convert video to a unique hash code signature so that the

similarity measure between the query video and the retrieval

video dataset is evaluated by the fast XOR operations.

DML DML [88] proposes a more effective and discrimina-

tive video-level representation, it introduces the deep metric

learning to NDVR for the first time, which is used to train

an embedding function for accurate distance calculation be-

tween two near-duplicate videos.

DML uses deep networks to extract the keyframe fea-

tures first, such as AlexNet [72] and GoogleNet [116]. All

layer vectors are concatenated to form a single keyframe de-

scriptor, which is called maximum activation of convolutions

(MAC) [76, 117, 118]. Finally, the keyframe descriptors are

normalized by applying zero-mean and l2-normalization, and

the global video signature is derived by averaging and nor-

malizing these keyframe descriptors above.

In metric learning process, a hinge loss function is used to

distinguish the different properties among videos:

Lθ(vi, v+i , v
−
i ) =

max{0,D( fθ(vi), fθ(v+i )) − D( fθ(vi), fθ(v−i )) + γ}, (20)

where vi, v+i , v
−
i are the feature vectors of the anchor video,

positive (NDV), and negative (dissimilar) videos to meet vi is

more similar to v+i in contrast to v−i . γ is a margin parameter

ensuring a sufficient large difference between the positive-

anchor and the negative-anchor distances.

To this end, the objective function should be optimized by

batch gradient descent as follow:

min
θ

m∑

i=1

Lθ(vi, v
+
i , v
−
i ) + λ ‖θ‖22, (21)

where λ is a regularization parameter to prevent overfitting

of the model, and m is the triplet size in a mini-batch. Mini-

mizing this loss will perfectly separate the NDVs and non-

NDVs, through by narrowing the anchor-positive distance

while widening the anchor-negative distance. In the end, the

learned embedding function fθ(·) is used for computing sim-

ilarities between the query video and the target video corpus.

5.2 Discuss on scope

These methods above all achieve excellent results in terms

of effectiveness and efficiency, and the scalability issue

has also been well solved. Based on the strict definition

[2, 52], near-duplicate videos are closest to ground truth
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in CC_WEB_VIDEO and UQ_VIDEO datasets, which also

provides favorable search condition.

As a crucial step in NDVR, hashing indexing has always

been a hot topic. In which, feature representation and data

structure similarity retention are the two focus points. DML

introduces the most effective deep-learning-based feature ex-

traction method, and adopts the deep metric learning frame-

work, which is most popular in current retrieval research. The

advantages of the algorithm are obvious, as shown in Table 5.

But it is not an end-to-end framework. A data-driven end-to-

end framework can enhance model robustness and improve

effectiveness further.

6 Trends and future directions

Despite the tremendous progress in developing large-scale

NDVR techniques, several major issues remain open to take

into account.

1) Most NDVR techniques are designed based on tradi-

tional feature representations. Although they attempt to inte-

grate multiple complementary features together and explore

the temporal nature to represent a video, the errors caused by

the manual operation is inevitable. Recently, deep learning

has been applied in various research. Using the deep network

to mine spatial-temporal properties of the videos directly has

been widely used in the multimedia field, such as content-

based video retrieval. Bring deep learning into the large-scale

NDVR is a future direction worthy of sustained attention and

research.

2) Since video signature generation is a key step in video

processing, which determines the performance of the retrieval

directly. In view of the strong data representation learning

ability of generative adversarial networks (GANs), and con-

sidering the auxiliary information followed by online videos,

such as text, audio, we can try to utilize GANs to perform

cross-modal common representation learning to achieve bet-

ter retrieval [119, 120].

3) As an indexing structure in large-scale retrieval, hash-

ing occupies an irreplaceable position in NDVR. Hashing is

designed to speed up retrieval, but it tends to suffer from in-

formation loss inevitably. Exploring an end-to-end retrieval

framework to integrates representation learning with binary

code learning using advanced learning schemes should be

considered.

4) Followed the dramatically growing number of online

videos, NDVR plays a crucial role in video-related appli-

cations, such as video recommendation, video monitor. In

which, the types of near-duplicate videos are richer and

more varied, and the complexity is much higher than ex-

isting datasets. Therefore, it is urgent to collect a new dataset

to meet the online near-duplicate video retrieval demand.
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