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Abstract In the past decade, recommender systems have

been widely used to provide users with personalized products

and services. However, most traditional recommender sys-

tems are still facing a challenge in dealing with the huge vol-

ume, complexity, and dynamics of information. To tackle this

challenge, many studies have been conducted to improve rec-

ommender system by integrating deep learning techniques.

As an unsupervised deep learning method, autoencoder has

been widely used for its excellent performance in data di-

mensionality reduction, feature extraction, and data recon-

struction. Meanwhile, recent researches have shown the high

efficiency of autoencoder in information retrieval and rec-

ommendation tasks. Applying autoencoder on recommender

systems would improve the quality of recommendations due

to its better understanding of users’ demands and charac-

teristics of items. This paper reviews the recent researches

on autoencoder-based recommender systems. The differences

between autoencoder-based recommender systems and tradi-

tional recommender systems are presented in this paper. At

last, some potential research directions of autoencoder-based

recommender systems are discussed.

Keywords recommender system, autoencoder, deep learn-

ing, data mining

1 Introduction

The rapid development of Internet services and applications

generates a large amount of information every day. Most
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users are struggling to find information relevant to their inter-

ests while using many applications with the rapid growth of

information. Thus, recommender systems (RSs) become in-

creasingly important to users. RSs provide appropriate items

or services for users from a bunch of possible options [1].

Generally, the generation of recommendation lists requires

user preferences, item features, user-item historical interac-

tions and some additional sources of information about users

or items (e.g., temporal and spatial data) [2]. Additional

sources of information about users or items, also known as

side information, which could be obtained from the users or

items profiles.

Many recommendation models have been proposed during

the last decade. They can be roughly classified into four cate-

gories: content-based models, collaborative filtering models,

knowledge-based models and hybrid-based models. Never-

theless, these models do have their limitations in dealing with

data sparsity and cold start problems. The recommendation

performance drops significantly if the interactions between

users and items are very sparse, which is known as data spar-

sity [3]. The cold start problems occur when RSs are unable

to recommend for the system’s new users and items [4–6]. To

solve these problems, researchers have proposed some new

recommendation models that exploit side information about

users or items [7–12]. However, the improvement of recom-

mended performance is not significant due to the limitations

of these models in capturing users’ preferences and features

of items.

Autoencoder (AE) has become one of the most powerful

approaches to capture main features of data. AE is a kind

of neural network for unsupervised learning tasks, e.g., di-

mension reduction, efficient coding, and generative modeling
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[13]. AE has shown its superiority in learning latent feature

representation in many application domains such as image

recognition [14], computer vision [15] and speech recogni-

tion [16]. Recently, AE has reformed the recommendation ar-

chitectures and brings more opportunities in reinventing user

experiences to satisfy customers. In recent researches, merg-

ing other deep learning methods into the AE-based RSs has

gained significant attention by overcoming the obstacles of

traditional RSs and achieving high recommendation quality.

In AE-based RSs, AE would help the system better under-

stand users and items by learning the non-linear user-item re-

lationship efficiently and encoding complex abstractions into

data representations. Furthermore, AE can ease the impact

of data sparsity by learning useful knowledge from abundant

data sources such as contextual, textual and visual informa-

tion.

The comparison between AE-based RSs and traditional

RSs in four aspects is shown in Table 1. The first column

of the table describes the differences between data sources.

In general, traditional RSs deal with the single data source,

such as rating or textual information. However, AE-based

RSs also handle heterogeneous data sources including rat-

ing, audio, visual and video information [17, 18]. Compared

with traditional RSs, AE-based RSs have better understand-

ing of the users’ demands and features of items, and AE-

based RSs achieve higher recommendation accuracy than tra-

ditional RSs [19,20], shown in the second column of Table 1.

The comparison between AE-based RSs and traditional RSs

about the adaptability in multimedia scenarios and noise han-

dling is given in the third and fourth columns of the table

respectively. AE-based RSs are more adaptable than the tra-

ditional RSs in multimedia scenarios [17, 21]. The capability

of AE-based RSs to deal with noises is better than the tradi-

tional RSs [22, 23].

Table 1 Comparisons of traditional RSs and AE-based RSs

Models Data sources Accuracy

Adaptability

in multimedia

scenarios

Noise

handling

Traditional RS Single Low Bad Bad

AE-based RS Heterogeneous Good High Good

This survey aims to help readers who are interested in AE-

based RSs to quickly understand and step into the field. In

this paper, we conduct a systematic review on AE-based RSs.

Particularly, we propose a classification scheme to classify

current related works and highlight the main prototypes of

AE-based RSs as well as summarize the advantages and dis-

advantages of each. At last, we discuss future research direc-

tions in AE-based RSs. The remaining of this article is or-

ganized as follows. We introduce the preliminary knowledge

and notations of this paper in Section 2. Section 3 presents

our classification framework followed by the reviews of ma-

jor AE-based RSs in each category. Furthermore, we conduct

a qualitative analysis of published works under survey. Future

research directions in AE-based RSs are discussed in Sec-

tion 4. Section 5 draws a conclusion of this paper.

2 Preliminaries and terminologies

Before diving into the details of this survey, we first introduce

the basic terminologies and concepts regarding RSs and AE.

In this section, we first introduce RSs, then give a brief talk

of AE and some of its important variants, as well as some

common notations in this survey.

2.1 Recommender systems

RSs work as an information filter to solve the information

overload problem. The goal of RSs is helping users find items

or services that best match their personal tastes. RSs estimate

users’ preference for unseen items based on their past behav-

iors and preferences [24]. The tasks of RSs are often split

into three main types: ranking prediction, rating prediction,

and classification [2]. Ranking prediction generates a list of

ordered items for users. Rating prediction is designed to fill

the missing entries of the user-item rating matrix. Classifica-

tion task aims to classify the candidate items into the correct

categories for a recommendation. On the other hand, RSs can

also be classified into collaborative filtering based, content-

based, knowledge-based, and hybrid-based RSs [24].

1) Collaborative filtering is one of the most useful rec-

ommendation algorithms [25]. The main idea of col-

laborative filtering based RSs is assuming that similar

users have similar interests [1, 26]. Collaborative filter-

ing based RS recommends an item to a user by learning

from user-item historical interactions, e.g., user’s pre-

vious ratings and browsing history, without considering

information about items [27].

2) Content-based RS is mainly based on side information

of items and users’ preferences, user-item historical in-

teractions are not needed [28]. A content-based method

would recommend items to a user by computing the

items’ similarities based on side information or simi-

larities between users and items [29]. The side informa-

tion, such as text, image, and video, all can be consid-
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ered.

3) Knowledge-based RS generates recommendations

based on user needs and preferences [30, 31]. Both

collaborative filtering based and content-based meth-

ods assume that interests of users are stable and not

changed over time. However, knowledge-based RS rec-

ommends items to a user based on the user’s needs and

more important it also takes probable changes of users’

demands into account.

4) Hybrid-based RS combines two or more recommenda-

tion techniques to achieve a better performance while

reducing defects of single RS. [32]. Hybrid-based RS is

able to address common problems in RSs, such as data

sparsity and cold start problems. There are three main

ways to form a hybrid RS: combine several RSs, com-

bine multiple recommendation algorithms, and com-

bine features from different data sources as input [32].

2.2 Autoencoder and variants

In this subsection, we discuss the concepts of AE and its vari-

ants that are closely related to this survey. First, we introduce

the concept, network structure and mechanism of basic AE.

AE is a kind of unsupervised neural network which ap-

peared in the late 80’s [33, 34]. AE has been considered as

a powerful tool for automatically extracting nonlinear fea-

tures [35]. As illustrated in Fig. 1, a basic AE consists of three

layers: input layer, hidden layer and output layer. The num-

ber of neurons in each layer is n,m, n. The input layer and the

hidden layer construct an encoder. The hidden layer and the

output layer construct a decoder. The encoder encodes the

high-dimensional input data x = {x1, x2, . . . , xn} into a low-

dimensional hidden representation h = {h1, h2, . . . , hm} by a

function f :

h = f (x) = s f (Wx + b), (1)

where s f is an activation function. The encoder is parameter-

ized by a m × n weight matrix W and a bias vector b ∈ Rm.

The decoder in Fig. 1 maps hidden representation h back

to a reconstruction x′ = {x′1, x′2, . . . , x′n} by a function g:

x′ = g(h) = sg(W′h + b′), (2)

where sg represents the decoder’s activation function. The de-

coder’s parameters are comprised of a bias vector b′ ∈ Rn and

a n × m weight matrix W′. The function s f and sg are usu-

ally non-linear activation function, e.g., the hyperbolic tan-

gent function and the sigmoid function [36]. The nonlinear

activation functions help AE learn more useful features than

principal component analysis (PCA) do [37, 38].

Fig. 1 The architecture of basic AE

AE is trained to minimize the reconstruction error between

x and x′. There are two ways of formulating the reconstruc-

tion error: square error and cross-entropy. Their formulas are

shown below:

• Square error:

EAE(x, x′) = ‖x − x′‖2. (3)

• Cross-entropy:

EAE(x, x′) = −
n∑

i=1

(xi log x′i + (1 − xi) log(1 − x′i )). (4)

A regularized term can be added to the calculation of re-

construction error to construct the lose function of AE:

LAE(x, x′) = (
∑

x∈Rn

EAE(x, x′)) + λ · Regularization. (5)

The loss function can be optimized by stochastic gradient de-

scent (SGD) [39] or alternative least squares (ALS) [40].

In recent years, various forms of AE have appeared in deep

learning literature. Meanwhile, many variants of AE are used

in RSs. Now, we briefly introduce four common variants of

AE in RSs: denoising AE, stack denoising AE, marginalized

denoising AE and Variational AE.

1) Denoising AE (DAE) [41]: DAE corrupts the inputs be-

fore mapping them into the hidden representation and

then tries to reconstruct the original input x from its

corrupted version x̃. The aim of DAE is to force the hid-

den layer to acquire more robust features and to prevent

DAE from simply learning the identity function.

2) Stack denoising AE (SDAE) [42–44]: SDAE stacks

several DAEs together to get higher level representa-

tions. The training is conducted greedily, e.g., layer

by layer. Although SDAE has advanced performance,

it still has some drawbacks. The main drawbacks of

SDAE are the high computational cost of training and

lack of scalability to high-dimensional features. These
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drawbacks are caused by SDAE relying upon iterative

and numerical optimization techniques to learn a large

number of model parameters.

3) Marginalized denoising AE (MDAE) [35, 45]: In con-

trast to SDAE, MDAE avoids the high computational

cost by marginalizing stochastic feature corruption.

And, MDAE proposes a closed-form solution for learn-

ing model parameters. MDAE has a fast training speed,

simple implementation and the ability to scale to large

and high-dimensional data. In addition, MDAE can be

stacked to form a deep architecture named marginalized

stacked denoising AE (MSDAE).

4) Variational AE (VAE) [46]: VAE is an unsupervised la-

tent variable model, which is used to learn a deep rep-

resentation from high dimensional data. The basic idea

of VAE is encoding the input x as a probability distri-

bution z rather than a point encoding in conventional

AE. VAE then uses a decoder network to reconstruct

the original input by using samples from z. The en-

coder and decoder of VAE can be multi-player percep-

tron (MLP) [47], convolutional network (CNN) [13,48]

or recurrent neural network (RNN) [48].

Assume there are M users and N items, and R represents

the rating matrix. The vector r(u) = {ru1, ru2, . . . , ruN } denotes

the observed ratings of user u, and r(i) = {r1i, r2i, . . . , rMi} de-

notes the observed ratings of item i. M and N represent the

number of users and items respectively. The rating of item

i given by u is denoted by rui. r̂ui represents the predicted

rating of item i given by user u. U and V denote user la-

tent factor and item latent factor, respectively. W and b rep-

resent the weight matrix and bias term in a neural network

respectively. We summarize the aforementioned notations in

Table 2.

Table 2 Notations and descriptions

Notation Description

R Rating matrix

R̂ Predicted rating matrix

M Number of users

N Number of items

rui Rating of item i given by user u

r̂ui Predicted rating of item i given by user u

r(i) Partial observed vector for item i

r(u) Partial observed vector for user u

U User latent factor

V Item latent factor

W Weight matrices for neural network

b Bias terms for neural network

3 Autoencoder-based recommender systems

To give a better introduction and organization of this article,

we propose a classification scheme to classify AE-based RSs.

The classification scheme is shown in Fig. 2. We classify ex-

isting studies into two main categories: models rely solely on

AE and integration models. Integration models can be further

classified into two subcategories: integrated AE with tradi-

tional RSs and integrated AE with other deep learning tech-

niques.

Fig. 2 The classification framework of AE-based RSs

Researches try to combine AE with traditional recommen-

dation techniques, e.g., matrix factorization (MF) [49], prob-

ability matrix factorization (PMF) [50], factorization ma-

chine (FM) [51] and singular value decomposition (SVD)

[52]. Based on how tightly the two methods are integrated,

these models can be further classified into two types: loosely

coupled models and tightly coupled models. In tightly cou-

pled models, AE and traditional recommendation techniques

mutually influence each other, and both are optimized simul-

taneously. In contrast, in loosely coupled models, AE and tra-

ditional recommendation techniques do not have interaction,

and the two are optimized separately.

Some AE-based RSs try to combine AE with other deep

learning techniques, e.g., CNN, RNN, deep semantic sim-

ilarity model (DSSM) [53] and generative adversarial net-

work (GAN) [54]. Combining AE with different deep learn-

ing techniques would complement each other and construct a

more powerful hybrid model. For instance, integrating RNN

with AE-based RSs help systems learn sequence features and

improve recommendation accuracy.
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Table 3 summarizes the shortlisted publications under

this survey on the basis of the aforementioned classifica-

tion scheme. The corresponding contents of each column in

Table 3 are the articles that belong to this category in our sur-

vey. Then, we elaborate the important research prototypes in

the proposed classification frameworks. We hope to identify

the most significant advancements rather than provide an ex-

haustive list.

Table 3 Classification of shortlisted publications

Integration models

Models rely solely on AE Integrate AE with traditional Rss

Tightly coupled models Loosely coupled models
Integrate AE with other deep learning techniques

[55], [56], [57], [58],

[59], [60], [61], [62],

[63], [64], [65], [66],

[67], [68]

[17], [21], [22], [23],

[69], [70], [71], [72],

[73], [74], [75], [76],

[77]

[19], [20], [36], [78],

[79], [80], [81], [82],

[83], [84]

[18], [85], [86], [87],

[88]

3.1 Models rely solely on AE

Autoencoder-based collaborative filtering (ACF) [55]. ACF

is an user-specific AE-based RS. ACF does not directly take

the original integer rating rui as input data. ACF first converts

the rui into a vector only represented by 0 and 1 and then

takes this vector as input data. For example, when r(ui) in the

range of [1, 5] and r(u1) = 1, input of ACF needs to become

[1, 0, 0, 0, 0]. Figure 3 presents an user-specific ACF, where

integer rating range is [1, 5]. Each row in the left of the figure

represents an item, and each square in the row corresponds

to a rating. The black squares indicate that the user has rated

the item as the corresponding rating. For instance, if the user

gives 1 for the first item, the square corresponding to the 1

in the first row on the left of Fig. 3 is filled with black. Spe-

cific units denoted by ak
j in the output layer represents the

probability that item j will be rated value k. Therefore, the

prediction rating for item j is computed by rq =
∑

k=1 k · ak
j.

ACF uses a two-layer network, called Restricted Boltzmann

Machine (RBM) [89,90], to pretrain model parameters to pre-

vent local optimum. However, there are some problems of

ACF:

Fig. 3 An user-specific ACF [55]. The black squares indicate that the user
has rated the item as the corresponding rating. e.g., the user gives 1 for item
1, 4 for item 2

(1) It fails to handle non-integer ratings.

(2) Stacking several AEs together slightly improves accu-

racy but increases computational overhead.

(3) The decomposition of partially observed vectors in-

creases the sparseness of input data and reduces pre-

diction accuracy.

AutoRec [56]. Unlike ACF, AutoRec directly takes user

rating vectors r(u) or item rating vectors r(i) as input data and

obtains the reconstructed rating at the output layer. There

are two variants of AutoRec depending on two types of in-

puts: item-based AutoRec (I-AutoRec) and user-based Au-

toRec (U-AutoRec). Here, we only introduce I-AutoRec be-

cause I-AutoRec and U-AutoRec have the same structure.

Figure 4 illustrates the structure of I-AutoRec. The input

r(i) = (R1i,R2i,R3i, . . . ,Rmi) in the figure represents the rat-

ings of item i given by users. W and V in the figure denote

the weight matrix of the model. The bias of the model in the

figure is 1. Only the basic AE structure is used in AutoRec.

The objective function of the model is similar to the loss

function of AE and can be optimized by resilient propagation

(RProp) [91] or limited-memory Broyden Fletcher Goldfarb

Shanno (L-BFGS) [92] algorithm. There are some important

things about AutoRec that are worth mentioning:

(1) In AutoRec, RProp gives comparable performance to

L-BFGS and much faster.

(2) I-AutoRec generally performs better than U-AutoRec.

This is because the average number of ratings for each

item is much more than those of each user.

(3) Different combinations of activation functions affect the

performance of AutoRec.

(4) Increasing the number of hidden neurons or the num-

ber of layers would improve the result. It is because
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that expanding the dimensionality of the hidden layer

allows AutoRec to have more capacity to simulate the

input features.

Fig. 4 I-AutoRec model [56]

Collaborative filtering neural network (CFN) [57, 58]. Un-

like AutoRec, CFN is a collaborative filtering approach based

on SDAE. CFN uses SDAE to make the model more ro-

bust [93]. Same as AutoRec, the input of CFN is partial ob-

served ratings. Therefore, when CFN takes r(i) and r(u) as in-

put respectively, there are two variants: I-CFN and U-CFN.

Figure 5 presents the structure of I-CFN. To solve the cold

start problem, as shown in Fig. 5, CFN integrates the side in-

formation, e.g., user profiles and item descriptions, in each

layer. The input of CFN are corrupted ratings, e.g., r̃(i) in

Fig. 5. Thus, the reconstruction of I-CFN becomes:

h({r̃(i), si}) = f (W2 · {g(W1 · {r̃(i), si} + μ), si} + b), (6)

where si is side information, r̃(i) denotes the corrupted of orig-

inal r(i), {r̃(i), si} illustrates the concatenation of r̃(i) and si.

W1, μ and g are the weights matrix, bias vector and activation

function of the encoder in I-CFN respectively. W2, b and f

are the weights matrix, bias vector and activation function of

the decoder in I-CFN respectively. The objective function of

I-CFN is defined as follows:

L = α(
∑

i∈I(O)∩I(Õ)

[h({r̃(i), si}) − r(i)]2)

+β(
∑

i�I(O)∩I(Õ)

[h({r̃(i), si}) − r(i)]2)

+λ · Regularizaion. (7)

In Eq. (7), I(O) and I(Õ) are the indices of observed and

corrupted elements respectively. α and β are two hyper-

parameters which balance the influence of denosing the input

and reconstruction the input. h({r̃(i), si}) is calculated by the

Eq. (6). CFN improves the prediction accuracy, accelerates

the training process and enables the model to be more robust

by combining side information and using SDAE.

Fig. 5 The structure of I-CFN [58]

Collaborative denoising autoencoder (CDAE) [59]. CDAE

is a neural network with one-hidden-layer. Comparing with

previous models, CDAE has the following differences:

(1) The input of CDAE is not user-item ratings, but partial

observed implicit feedback r(u)
pre f . If a user likes a movie,

the corresponding entry value is 1, otherwise 0.

(2) Unlike earlier models that are mainly used for rating

prediction, CDAE is principally used for ranking pre-

diction.

Figure 6 shows a sample structure of CDAE. There are a

total of I + 1 nodes in the input layer. The first I nodes repre-

sent user preferences, and each node of these I nodes corre-

sponds to an item. The weight matrix of the first I is W1. The

last node is a user-specific node denoted by the black node in

Fig. 6, which means different users have different node and

associated weights. Vu in this figure represents the weight ma-

trix of user-specific node. The bias vector of CDAE is added

in the hidden layer of the model, as shown in Fig. 6. The

weight matrix corresponding to the decoder is W2. The cor-

rupted input r̃u
pre f of CDAE is drawn from a conditional Gaus-

sian distribution p(r̃u
pre f |ru

pre f ). The reconstruction of r̃(u)
pre f is

formulated as follows:

h(r̃(u)
pre f ) = f (W2 · g(W1 · r̃(u)

pre f + Vu + b1) + b2), (8)

where Vu ∈ RK is the weight matrix for the user node, and

b1 ∈ RK is the bias vector. b2 is the bias vector. The param-

eters of CDAE are learned by minimizing the average recon-

struction error, as follows:

arg min
W1 ,W2,V,b1,b2

1
M

M∑

u=1

Ep(r̃(u)
pre f |r(u)

pre f )[�(r̃
(u)
pre f , h(r̃(u)

pre f ))]

+λ · Regularizaion. (9)

The loss function �(·) in Eq. (9) can be square loss or logistic

loss. CDAE uses the squared �2 norm rather than Frobenius
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norm to control the model complexity. SDAE applies SGD

to learn model’s parameters and adopts AdaGrad [94] to au-

tomatically adapt the training step size during the learning

procedure. The authors of CDAE proposed a negative sam-

pling technique to extract a small subset from items that user

did not interact with for reducing the time complexity sub-

stantially without degrading the ranking quality.

Fig. 6 The structure of CDAE [59]

Supervised neural recommendation (SNR) [60]. SNR em-

ploys stacked AE (SAE) [44] to extract the features of input

and then reconstructs the input to make the recommendation.

There are some important points about SNR that are worth

noticing:

(1) Most of the AE-based recommendation models are un-

supervised. However, SNR is supervised.

(2) SNR is not only used for rating prediction but also for

classification prediction.

(3) In order to improve the recommendation performance,

the side information of items or users is blended in the

classification frame.

(4) To prevent the learned parameters from being over-

smoothing and excessive dependent on data distribu-

tion, SNR adopts the Huber function [95] instead of the

Frobenius norm to be the regularization term.

SNR has three procedures: features extraction, classifica-

tion and reconstruction as shown in Fig. 7. Input is rating vec-

tor r of items. In Fig. 7, the black nodes denote the effective

rating, the grey nodes in input layer represent the vacant rat-

ing, the grey nodes of the output layer during the reconstruc-

tion are predicted ratings, the grey nodes in the classification

denote the results of classification. In SNR, SAE extracts the

features of items, and then predicts the rating between users

and items by reconstructing the features. The classification

is used to extract the similarities of items to improve feature

extraction. The SNR can be proposed as:

min
W

FR(r,We,Wr, be, br)

+α
∑

FC(r,We,Wc, be, bc)

+
β

2
(H(We) + H(Wr) + H(Wc)), (10)

where α and β are the regularization parameters to adjust the

weight of each part in Eq. (10). we and be indicate the pa-

rameters in feature extraction process. wr and br denote the

parameters in reconstruction process. wc and bc are the pa-

rameters in classification process. FR(·) is the cost function

of the reconstruction process. FC(·) is the cost function of the

classification process. H(·) is the Huber function. SNR is op-

timized by gradient descent.

Fig. 7 The structure of SNR [60]

Trust-aware collaborative denoising autoencoder (TDAE)

[61]. TDAE learns high-order correlations from rating and

trust data through two DAEs for top-N recommendation.

TDAE model is implemented by connecting the learned user

preferences through two DAEs at a weighted layer. The

weighted layer is used to balance the importance of rating

and trust data. The graphical model of TDAE is illustrated in

Fig. 8. The input of TDAE is corrupted by drop-out noise.

As shown in Fig. 8, the input R̃ and T̃ of TDAE are cor-

rupted version of rating and trust data. ZR
u and ZT

u in this fig-

ure represent the latent preferences of user u that learn from

R̃ and T̃ respectively. However, the correlations between rat-

ings and trust data are highly non-linear with different dis-

tribution [96]. It means ZR
u and ZT

u have higher variance. To

merge ZR
u and ZT

u , the authors of TDAE developed a weighted

hidden layer:

Pu = αZR
u + (1 − α)ZT

u , (11)

where Pu denotes the integrated user preference of user u. α

is a hype-parameter to balance the effects of ZR
u and ZT

u . To

make the model more robust, they proposed a robust correla-

tive regularization to build the relationship between the rating

and trust data in TDAE, which is given by:

LC = ‖ZR
u − θ0ZT

u ‖2F + ‖ZT
u − θ1ZR

u ‖2F . (12)
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In this equation, θ0 and θ1 denote the parameters to recon-

struct data from its corresponding layer. TDAE uses SGD to

train the model and sets �2 norm as the regularization term to

constrain the model complexity.

Fig. 8 Graphical model of TDAE [61]

Hybrid collaborative recommendation via semi-

autoencoder (HCRSAE) [62]. In general, AE requires the

dimension of input and output layer to be identical. How-

ever, Zhang et al. proposed semi-Autoencoder that the output

layer shorter than the input layer, as shown in Fig. 9(a),

breaking the limitations of output and input dimensional-

ity [62]. Semi-autoencoder is applied to many areas such as

extracting image features by adding captions or descriptions

of images. It is convenient for semi-Autoencoder to combine

side information in the input layer. HCRSAE is a recom-

mendation model based on semi-Autoencoder. HCRSAE is

usually used for ranking prediction and rating prediction de-

pending on different types of input. Figure 9(b) shows the

HCRSAE model for rating prediction. In Fig. 9(b), the black

nodes in the input layer represent the rating vector, which has

the same dimensions as the output layer. The grey nodes in

the input layer denote the side information vector. To avoid

over-fitting, HCRSAE takes �2 norm as the regularization

term and optimizes the model by SGD algorithm.

Fig. 9 Illustration of: (a) the structure of Semi-Autoencoder [62], where
h < d < s; (b) the structure of HCRSAE for rating prediction [62]

Imputation-boosted denoising autoencoder (IDAE) [63].

IDAE model is designed for the top-N recommendation, con-

sisting of two parts: imputing positive values and learning

with imputed values. First, it infers positive user feedbacks

from missing values using the basic AE to overcome the spar-

sity of positive data. Then, the correlation between items is

learned by using the DAE from imputed values. While the

existing DAE randomly corrupts the input, IDAE takes orig-

inal user values as the input and the imputed values are re-

garded as the corrupted output. This denoising method would

improve the accuracy of the top-N recommendation. Un-

like previous models, IDAE takes cross-entropy to formulate

the reconstruction loss. The authors adopted normalized dis-

counted cumulative gain (NDCG) as the evaluation metric. In

general, NDCG is more effective than other metrics for top-N

recommendation.

Table 4 compares all aforementioned models that rely

solely on AE in several aspects, e.g., recommendation tasks,

input, corrupted input, side information, variants of AE,

evaluation matric and data pretrain, to show the differences

among them. As depicted in Table 4, ACF, AutoRec, CFN,

SNR, and HCRSAE are rating predictions, CDAE, TDAE,

HCRSAE, and IDAE are for ranking prediction, only SNR is

for classification. TDAE adopts rating data and trust data as

input, and other models take rating data as input. ACF, Au-

toRec, and SNR do not corrupt input, other models corrupt

input data. ACF, AutoRec, and CDAE use side information in

the model, and other models are not used. The most used AE

variants in these models in Table 4 are DAE and SAE. The

use of evaluation metrics in Table 4 are as follows: CDAE

and TDAE adopt MAP, IDEA take NDCG as the evaluation

metric, and RMSE for the remaining model. Only ACF and

IDAE pretrain input data.

3.2 Integration models

Integration models can be classified into two subcategories:

integrated AE with traditional RSs and integrated AE with

other deep learning techniques. The motivation of the inte-

gration model is that different techniques complement each

other and achieve a more powerful hybrid model. In this sub-

section, we introduce some important integration models.

3.2.1 Integrated AE with traditional RSs

Some researchers have tried to combine AE with tradi-

tional recommendation techniques to improve recommenda-

tion performance. Based on how tightly the two methods are

integrated, these integration models formed by integrating
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Table 4 Comparisons of recommendation models that rely solely on AE

Models
Recommendation

task
Input

Corrupted

input

Side

information
Variants of AE

Evaluation

metric
Pretrained

ACF [55] Rating prediction r(i) or r(u) No No SAE RMSE Yes

AutoRec [56] Rating prediction r(i) or r(u) No No AE RMSE No

CFN [57, 58] Rating prediction r(i) or r(u) Yes Yes SDAE RMSE No

CDAE [59] Ranking prediction r(u) Yes No DAE MAP No

SNR [60]
Rating prediction

and Classification
r(i) or r(u) No Yes SAE RMSE No

TDAE [61] Ranking prediction r(u) and Trust data Yes Yes DAE MAP No

HCRSAE [62]
Rating prediction or

Ranking prediction
r(i) or r(u) Yes Yes Semi-Autoencoder RMSE No

IDAE [63] Ranking prediction r(u) Yes Yes AE and DAE NDCG Yes

AE with traditional recommendation techniques are further

classified into loosely coupled models and tightly coupled

models. MF is the most widely used traditional recommen-

dation method in integration models. First, we give a brief

introduction of MF. Then, we highlight several important re-

search prototypes of integrating AE with traditional recom-

mendation models within the proposed classification frame-

work.

•Matrix factorization

MF is one of the most widely used methods in traditional

RSs and has shown its advantages in the Netflix contest [97].

MF factorizes a user-item original rating matrix R into two

low-rank matrices U and V . U and V consist of the user and

item latent factor vectors respectively. And then MF utilizes

the factorized matrices Uand V to make further predictions,

such that R ≈ UV [49, 98]. Non-negative matrix factoriza-

tion (NMF) has previously shown to be a useful decompo-

sition for multivariate data and is used in RSs to factorize

the rating matrix into user and item profile [99, 100]. Paterek

proposed an improved method of regularized singular value

decomposition to predict users’ preferences for items [101].

Another classical MF method is probabilistic matrix factor-

ization (PMF) [50]. PMF adopts a probabilistic linear model

with Gaussian observation noise to learn users and items la-

tent feature representations from large and sparse rating data.

Many other MF models have been proposed to enhance the

performance of PMF by designing the Bayesian versions

[102–105]. When side information is available, some MF

models have been developed by incorporating side informa-

tion. Various models show that side information, as a use-

ful information prior, significantly improves recommendation

performance [106–115].

• Tightly coupled models

Deep collaborative filtering (DCF) [22]. DCF is a general

deep architecture for collaborative filtering by integrating

PMF with MSDAE. DCF is a hybrid model that makes use

of both rating matrix and side information and bridges MF

and feature learning together. Figure 10 illustrates the DCF

framework. The inputs of DCF are user-item rating R, user

feature set X and item feature set Y, as shown in Fig. 10.

DCF has two key components:

(1) Factorizing the rating matrix R into user latent features

matrices U and item latent features V through matrix

factorization.

(2) Using MSDAE extracts user contextual features and

item contextual features from X and Y, and then con-

nects the extracted user contextual features and items

contextual features with U and V

DCF decomposes R and learns latent factors from side infor-

mation through the following formulation:

arg min
U,V

l(R,U,V) + β(‖U‖2F + ‖V‖2F )

+γL(X,U) + δL(Y,V), (13)

where β, γ and δ are the trade-off parameters. l(·) is the loss

of collaborative filtering model. L(X,U) and L(Y,V) represent

the loss of connecting user and item contextual features with

latent features respectively.

Fig. 10 Illustration of DCF framework [22]



Guijuan ZHANG et al. A survey of autoencoder-based recommender systems 439

Recommendation with social relationships via deep learn-

ing (RSRDL) [23]. Like DCF, RSRDL is a deep learning ar-

chitecture based on MSDAE and MF. However, there are two

key differences from DCF:

(1) RSRDL takes the user-item matrix X as input. Xi j de-

notes the number of times that user i has interacted with

item j via implicit feedback, e.g., number of views,

clicks, or explicit feedback, e.g., the rating that user i

has given to item j.

(2) RSRDL believes that social relationships have an im-

pact on recommendations. Therefore, a social relation-

ships matrix A is added to the RSRDL. Ai j = 1 de-

notes user i and j are friends and 0 otherwise. RSRDL

uses MSDAE to learn the latent representation of social

relationships. Incorporating social relationships into

RSRDL would reduce the impact of data sparseness and

improve the accuracy of recommendations.

RSRDL is implemented by developing a joint objective func-

tion that enforces the latent representation of social relation-

ships to be as close as possible to user latent factor U factor-

ized from the user-item matrix X. The objective function is

defined as follows:

min
U,V,W

L = ‖X − UVT ‖2F + ‖Ā −WÃ‖2F
+‖AT UUT A −WA‖2F + λ(‖U‖2F + ‖V‖2F ), (14)

where W is the weight matrix in the hidden layer of MSDAE,

Ã represents the corrupted version of A. Ā is the c-times re-

peated version of A. The objective function is optimized by

an alternating optimization algorithm or gradient descent.

Relational stacked denoising autoencoder (RSDAE) [69].

RSDAE adopts SDAE and PMF to improve the tag recom-

mendation performance significantly. The authors of RSDAE

developed a probabilistic SDAE to satisfy the requirement for

relational deep learning. RSDAE can simultaneously learn

the feature representation from the content information and

the relation between items. The relational latent matrix is

drawn from the items’ relation data using a matrix variate

normal distribution [116]. In the middle layer of SDAE, RS-

DAE draws the representation vector of an item from the

product of two Gaussians (PoG) [117]. Meanwhile, RSDAE

can be naturally extended to handle multi-relation data be-

cause of its probabilistic nature. And RSDAE is sufficient to

adapt other deep learning models like RNN as well.

Collaborative deep learning (CDL) [70]. Like RSDAE,

CDL also uses SDAE and PMF to build a hierarchical model.

To seamlessly integrate deep learning and recommendation

models, a general Bayesian deep learning framework was

proposed in [118], consisting of two tightly components:

a perception component (deep neural network) and a task-

specific component. In CDL, the Bayesian SDAE is the per-

ception component and PMF acts as the task-specific compo-

nent. The tight combination enables CDL to seamlessly in-

tegrate deep representation learning for content information

and collaborative filtering for the rating matrix. CDL handles

both the sparse rating matrix and sparse text information, and

learn a more effective latent representation for each item and

each user. Figure 11 shows the graphical model of CDL, XL/2

in this figure represents the middle layer of SDAE. Using the

Bayesian SDAE as a component, the generative process of

CDL is as follows:

1) For each layer l of the SDAE, as depicted in the dashed

rectangle on the left side of Fig. 11:

a) For each column n of the weight matrix Wl, draw

Wl,∗n ∼ N(0, λ−1
W IDl).

b) Draw the bias vector bl ∼ N(0, λ−1
W IDl).

c) For each row i of Xl , draw Xl,i∗ ∼ N(σ(Xl−1,i∗Wl+

bl), λ−1
s IDl).

2) For each item i, as depicted in the rectangle labeled J in

Fig. 11:

a) Draw a clean input Xc,i∗ ∼ N(Xl,i∗, λ−1
n IIl ).

b) Draw a latent item offset vector εi ∼ N(0, λ−1
v ID)

and then set the latent item vector to be: Vi =

εi + XT
L
2 ,i∗

.

3) Draw a latent user vector for each user u, Uu ∼
N(0, λ−1

u ID), as depicted in the rectangle labeled I in

Fig. 11.

4) Draw a rating for each user-item pair (u,i), rui ∼
N(UT

u Vi,C−1
ui ).

Here, Wl and bl are the weight matrix and biases vector

for layer l. Xl represents the l layer of the neural network.

λw, λs, λn, λv, λu are hyper-parameters, and Cui is a confidence

parameter used to measure the observations [119]. The au-

thors exploited an EM-style algorithm to learn the parameters

and developed a sampling-based algorithm to avoid the local

optimum.

Collaborative variational autoencoder (CVAE) [17]. CVAE

is a Bayesian generative model that considering both rating

and content information for a recommendation. Unlike the

previous models, CVAE adopts VAE as the perception com-

ponent and learns deep latent representations and implicit re-

lationships between items and users. CVAE can be easily ex-



440 Front. Comput. Sci., 2020, 14(2): 430–450

tended to other multimedia modalities, e.g., images, video,

and not just text. CVAE model does not corrupt the input but

seeks the probabilistic latent variable model of the content.

CVAE model has an inference network and a generation net-

work, as shown in Fig. 12. In the inference network, CVAE

learns a latent distribution z for content in latent space in-

stead of observation space. In the generation network, CVAE

constructs the input through latent item variables. CVAE is

also applicable to other deep learning models such as CNN,

GAN, and RNN depending on the input data type. RVAE [21]

is an extension of CVAE, but RVAE considers both links and

content information for link prediction with multimedia data.

Fig. 11 On the left is the graphical model of CDL [70]. The part inside the
dashed rectangle represents a 2-layer SDAE

Fig. 12 On the left is the graphical model of CVAE [17]. On the right is the
zoom-in of the inference network and generation network in CVAE

Collaborative deep ranking (CDR) [72]. CDR uses SDAE

to extract deep feature representations from side information

and then integrates them into a pair-wise ranking model to

reduce the negative effects of data sparsity on top-N recom-

mendation tasks. This class of collaborative filtering which

only considers positive samples in a sample set is known as

one-class collaborative filtering (OCCF) [120]. There are two

kinds of existing methods for solving OCCF: point-wise and

pair-wise [121]. The pair-wise methods usually achieve better

performance for ranking recommendation tasks in empirical

studies [59, 72, 122]. Figure 13 shows the graphics model of

CDR. From the figure, we know that CDR and CDL have

the same first two steps. The remaining steps of CDR are as

follows:

3) For each user u, as depicted in the rectangle labeled n

in Fig. 13:

a) Draw a user factor vector Uu ∼ N(0, λ−1
u ID).

b) For each pair-wise preference ( j, k) ∈ Pi, where

Pi = {( j, k) : ri j − rik > 0}, drew the estimator,

δi jk ∼ N(uT
i v j − uT

i vk, c−1
i jk).

Here, δi jk represents the paired relationship between item i

and item j on the user’s preference. c−1
i jk is a confidence pa-

rameter which denotes how much user u prefers item i than

item k. CDR has a same optimization process with CDL. As

a general framework, CDR can incorporate with other deep

learning methods, such as CNN and RNN.

Fig. 13 The graphic model of CDR [72]

Recommendation via dual-autoencoder (ReDa) [73]. ReDa

uses two AEs to learn hidden latent representations for users

and items simultaneously, and minimizes the deviations of

training data by the learned latent representations. The struc-

ture of ReDa is shown in Fig. 14. Two AEs simultaneously

learn user’s latent feature vector ξ1 and item’s latent feature

vector ξ2 from the rating matrix R1 and R2 respectively. Here,

R1 = R and R2 = RT . ReDa only considers explicit feed-

back information between users and items, such as rating ma-

trix and check-in matrix, ignoring the side information about

users or items. When ξ1 and ξ2 are obtained, the rating matrix

R′ is calculated. ReDa hopes to minimize the deviations be-

tween original data R and R′, the objective function of ReDa

is defined as follows:

Fig. 14 The graphic model of ReDa [73] (R is a rating matrix, R1 = R,R2 =

RT )
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L = Lc + α · Lb + β · La + γ · Regularization, (15)

where Lc represents the deviations of training data, La and

Lb are the loss function for learning users latent factors and

items latent factors respectively. α, β and γ are trade-off pa-

rameters. α and β balance the influences of learning latent

factors using AEs. �2 norm is used as the regularization term.

The objective function Eq. (15) is optimized by SGD. Notic-

ing that the rating matrix should be normalized as R = R
rmax

in

ReDa, where rmax is the maximum in R.

Table 5 shows the differences among the aforementioned

tightly coupled models in several aspects, e.g., recommenda-

tion task, input, corrupted input, etc. The R in the table can

be user-item rating matrix, check-in matrix, and tag-item ma-

trix. In Table 5, only DCF and ReDa make the rating predic-

tion as the recommendation task, while other models make

ranking prediction. These models in the table, except that

ReDa take R as input, and other models use R and side in-

formation as input. The most used side information in the

table is content information. The models in Table 5, DCF,

RSRDL, RSDAE and CDL corrupt the input data. RSRDL

is used in a social recommendation, RSDAE is used in tag

recommendation, and CDR is used in link recommendation.

As shown in Table 5, we see that in the tightly coupled mod-

els, the most used AE variants and traditional recommenda-

tion method are SDAE and MF, respectively. The commonly

used evaluation metric of the tightly coupled models in the

table is Recall. In this part, we find that in tightly coupled

models, most AE variants are always used to learn effective

latent factor representation for feeding into traditional recom-

mendation method, and the parameters of AE and traditional

recommendation method are optimized simultaneously. Tra-

ditional recommendation methods and AE mutually influence

each other.

Table 5 Comparisons of tightly coupled models

Models Recommendation task Input
Corrupted

input
Used in specific fields Variants of AE

Traditional

recommendation

model

Evaluation

metric

DCF [22] Rating prediction R, user and item feature set Yes No MDAE,MSDAE PMF RMSE

RSRDL [23] Ranking prediction
R, user preferences data,

social relationship data
Yes Social recommendation MSDAE MF NDCG

RSDAE [69] Ranking prediction
R, content information,

relation data
Yes Tag recommendation SDAE PMF Recall

CDL [70] Ranking prediction R, content information Yes No SDAE PMF Recall

CVAE [17] Ranking prediction R, content information No No VAE MF Recall

RVAE [21] Ranking prediction
R, content information,

relation data
No No VAE MF

Link rank

and AUC

CDR [72] Ranking prediction
R, content information

and links data
No Link recommendation SDAE MF Recall

ReDa [73] Rating prediction R No No AE MF RMSE

• Loosely coupled models

Tag-aware recommender systems based on deep neural net-

works (TARSBDNN) [78]. TARSBDNN adopts sparse AE

[38] to process tag information for tag recommendation

[123]. A tag recommendation allows users to label items

freely using arbitrary words, namely user-defined tags [124].

User-defined tags reflect both users’ preferences and esti-

mates on items. Tag recommender system includes three

parts: users, items and tags, which are usually represented

as a tuple F = (U, I, T, Y). U, I, T are finite sets and denote

users set, items set and tags set respectively. Y represents the

relationships among users, items and tags. If user u has as-

signed tag t to item i, Y = yu,i,t = 1, otherwise Y = yu,i,t = 0.

Y can be decomposed into two 2-dimensional matrices: user-

item matrix and user-tag matrix. To learn more interpretable

features, TARSBDNN adopts sparse coding [125]. To inte-

grate tags and items information, the authors of TARSBDNN

adopted the method proposed in [126]. TARSBDNN predicts

the rating of target user u to item i by:

S u,i =
∑

v∈Nu

simu,v · (ΠUIY)u,i. (16)

Here, Nu is a neighborhood of the target user u. simu,v which

indicates the similarity of user u and v under the same tag.

ΠUI represents the user-item matrix.

Integrated recommendation models with collaborative fil-

tering and deep learning (IRCD) [79, 80]. IRCD is a hybrid

collaborative model based on SADE and timeSVD++ [127].

IRCD uses SDAE to learn item features from online items

to address the cold items problem. IRCD is a time-aware
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model due to timeSVD++ is able to track time-changing be-

haviors in the data and consider the temporal dynamics. The

cold start problems can be classified into two classes: com-

plete cold start (CCS) and incomplete cold start (ICS). Usu-

ally, the ICS problem indicates that the sparsity of item rating

is higher than 85% and less than 100%, whereas the spar-

sity of rating for CCS items is 100% [128]. For solving the

CCS problem and ICS problem, the authors of IRCD pro-

posed two integrated recommendation models called IRCD-

CCS and IRCD-ICS respectively. To predict the ratings for

items, the author of IRCD proposed two methods:

• Top-of-All (ToA): in this way, the rating of item i is

predicted by the top M most similar non-cold start (non-

CS) items which selected from the entire non-CS item

set.

• Top-of-User (ToU): in this way, the rating of item i

given by user u is predicted by the top M most simi-

lar non-CS items which selected from the set of non-CS

items rated by user u. ToU approach is better than ToA

based on experimental results.

ToA and ToU only consider the similar non-CS, ignoring the

other information in the rating matrix. The authors of IRCD

put the ToU method together with timeSVD++ to process the

other information for higher accuracy, as shown in Fig. 15. In

Fig. 15, the left black dash rectangle is the graphical model

of IRCD-CCS, the right black dash rectangle is the graphi-

cal model of IRCD-ICS, the middle part is a traditional MF

model. IRCD uses SDAE to learn the item content feature θi
from the raw item content information C. In IRCD-CCS, the

ToU approach is used to obtain a predicted rating rui based on

the similarity measure of item content feature. For the IRCD-

ICS model the item content feature θi is used to learn item

factor qi.

Fig. 15 The left black dash rectangle is the graphical model of IRCD-CCS;
The right black dash rectangle is the graphical model of IRCD-ICS [79]

AutoSVD++ [36]. AutoSVD++ is a hybrid model by gen-

eralizing contractive AE [129] into a matrix factorization

framework, allowing the model to have good scalability and

computational efficiency. The learned feature representations

from contractive AE are robust towards small disturbances

around the training points. AutoSVD++ also models content

information to achieve efficient and compact representations,

and uses implicit user feedback to provide an accurate rec-

ommendation. The model parameters are learned by SGD.

For reducing the training time, the authors of AutoSVD++

proposed an efficient training algorithm.

In this part, according to the aforementioned several rec-

ommendation models, we find that in the loosely couple rec-

ommendation models, AE is usually used to learn more use-

ful feature representations. In the entire model, AE is an in-

dependent part and has no interaction with the traditional rec-

ommendation methods.

3.2.2 Integrated AE with other deep learning techniques

Collaborative knowledge based embedding (CKE) [18]. CKE

integrates AE with CNN. CKE uses heterogeneous network

embedding and deep learning embedding methods to ex-

tract semantic representations from structural information,

textual information and visual information in the knowl-

edge to improve the quality of RSs. The structural informa-

tion contains the properties of items and the relationships

among items and users. CKE applies a heterogeneous em-

bedding method TransR [130] to find the latent represen-

tation from the structural information. For textual informa-

tion, CKE adopts Bayesian SDAE to obtain latent represen-

tations. Similarly, CKE employs Bayesian stacked convolu-

tional AE (Bayesian SCAE) to extract item entities’ seman-

tic representations from the visual knowledge, e.g., images,

video. Bayesian SCAE uses convolution by replacing the

fully-connected layers of SDAE with convolutional layers,

making CKE more robust and efficient.

Collaborative recurrent autoencoder (CRAE) [85]. CRAE

is a hierarchical Bayesian recommendation model which in-

tegrates RNN with DAE. Most of the aforementioned models

lack robustness and incapable of modeling the sequences of

text information. CRAE has a good ability to deal with this

limitation. CRAE replaces feedforward neural layers with

RNN, which enables CRAE to capture the sequential infor-

mation of item content information [131, 132]. The authors

of CRAE first proposed a robust recurrent network (RRN)

as a type noisy gated RNN. In RRN, the gates and other la-

tent variables are designed to incorporate noise in order to

make the model more robust. The authors of CRAE designed

a wildcard denoising method to avoid overfitting, and also
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proposed a novel beta-pooling approach for pooling variable-

length sequences into fixed-length vectors. With its Bayesian

nature, CRAE can seamlessly incorporate side information

to improve the accuracy of recommendations. In addition,

multiple Bayesian recurrent layers can be stacked together

to strengthen representation.

Variational autoencoders for collaborative filtering (VAE-

CFs). Lee et al. [86] proposed a set of model-based collab-

orative filtering with VAE, which called a set of VAE-CFs

that are varied through the dependency structures in modeling

side information and implicit user feedback. To model differ-

ent types of data, the authors of VAE-CFs proposed two types

of CF models based on VAE: CVAE-CF and JVAE-CF. VAE-

CFs have five different model structures. These five mod-

els reflect the different perspectives of modeling hypotheses

listed in below.

• VAE-CF: only the distribution of users’ responses is

modeled.

• CVAE-CF: a conditional distribution of users’ re-

sponses given side information is modeled.

• JVAE-CF: a joint distribution of users’ responses and

side information is modeled.

• VAE-AR: two independent distributions of users’ re-

sponses and side information are modeled, and then uti-

lize GAN [54] to merge the models.

• CLVAE: a conditional distribution of users’ responses

given side information is modeled by utilizing the lad-

der VAE [133].

The authors of VAE-CFs used negative example sampling for

dealing with implicit feedback in the VAE framework. The

auto-encoding of previous VAE models is combined into a

single latent variable whereas the VAE-CFs have two latent

variables, which lead to a richer representation.

Semantics-aware autoencoders (SEM-AUTO) [87]. SEM-

AUTO uses the semantic information encoded in a

knowledge-based graph (KG) to build connections between

neurons in an AE. The authors used the categorical infor-

mation related to items rated by users to map the AE net-

work topology. The mapping with KG makes the number of

neurons in the hidden layer of SEM-AUTO to be of variable

length, and the number depends on how much categorical in-

formation is available for items rated by a specific user. Notic-

ing that the neural network of SEM-AUTO is not fully con-

nected and does not need bias nodes. The vectors of weights

learned in SEM-AUTO are used to estimate the utility asso-

ciated with items that unrated by the user, thus calculating a

top-N recommendation list.

Fashion coordinates model (FCM) [88]. FCM is a hybrid

fashion coordinates recommendation model that considers

both user behaviors and visual fashion styles, such as the pic-

tures of products. FCM utilizes extended latent factor model

(E-LFM) [88] to deal with user behavioral features, and uses

CNN-based DAE to process visual features. The final recom-

mendation list is obtained by the combination of the recom-

mendation of both E-LFM and CNN-based DAE. Experimen-

tal results show that FCM is more accurate than traditional

methods on multi-items recommendations and is not affected

by the cold start.

Table 6 shows the comparison of five recommendation

models that integrate AE with other deep learning techniques.

Note that, integrating AE with other deep learning for recom-

mendation is still a relatively new direction. From the five rec-

ommendation models in Table 6, we find that integrating AE

with other deep learning methods can handle different types

of input, making the model more robust, and improving the

quality of recommendations.

Table 6 Comparisons of five recommendation models that integrate AE
with other deep learning

Models
Variants

of AE

Combined

techniques
Input

CKE [18] SDAE CNN

R, structural information,

textual information,

visual information

CRAE [85] DAE RNN R, content information

VAE-CFs [86] VAE GAN R, social relation data

SAE-AUTO [87] AE KG R, categorical information

FCM [88] DAE CNN, E-LFM R, visual information

3.3 Qualitative analysis

In this subsection, we conduct basic statistical analysis on ex-

perimental datasets, evaluation metrics and the use of AE and

its variants in AE-based RSs in this survey. Figure 16 shows

the datasets used in the autoencoder-based RSs. As shown in

the figure, MovieLens (see GroupLens), CiteUlike and Net-

flix (see Netflix Prize) are the three most used datasets. Other

datases such as Douban (collected from Douban), Yelp and

Epinions are also frequently adopted.

Figure 17 presents the evaluation metrics used in the re-

view works. Root mean square error (RMSE) and recall are

the most-used evaluation metrics. As for evaluation metrics,

RMSE and mean average error (MAE) are usually used for

rating prediction evaluation, while recall, mean average pre-

cision (MAP) and NDCG give greater credit to correctly rec-
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ommended items in top ranks. Precision and recall are widely

used for classification result evaluation.

Fig. 16 Datasets in use

Fig. 17 Evaluation metrics in use

AE and its variants used in AE-based recommendation

models are shown in Fig. 18. Basic AE, SDAE, and DAE

are the most-used in the reviewed works. Another thing we

would like to mention is that in order to improve and vali-

date the performance of the model, most models often adopt

a variety of datasets, evaluation metrics, and AE variants. As

for recommendation tasks, rating prediction has gained the

most popularity, followed by the ranking prediction, while

few works take classification problems as the recommenda-

tion tasks.

Fig. 18 Variants of AE in use

4 Future research directions

Through the above reviews on existing AE-based RSs, we

find that the application of AE in RSs is still in a preliminary

stage. In this section, we identify several emerging research

directions in this area.

4.1 Auxiliary information

Nowadays, a critical problem in RSs is data sparsity, which

means the user-item choice matrix is parsimoniously filled.

This problem can be solved by exploiting abundant auxiliary

information for regularization. Although existing works have

investigated the efficiency of side information in a recom-

mendation, neither they make full use of these various types

of side information, nor take full advantages of the available

data. Therefore, when facing different recommendation re-

quirements, it is necessary to choose appropriate auxiliary

information to help understand users and items to further im-

prove the accuracy of recommendation. Moreover, there are

few works to investigate the changes in users’ interests or

intentions. The changes in users’ interests can be inferred

from the users’ footprint from social media, e.g., Facebook

or WeChat posts [134] and physical world, e.g., Internet of

things [135]. The capability of AE in processing heteroge-

neous data sources also brings more opportunities in recom-

mending diverse items with unstructured data such as textual,

visual, audio and video features.

4.2 Development of AE

Recently, many effective unsupervised learning techniques

based on AE have emerged. Especially, autoencoder variants

include importance weighted autoencoders [136], ladder vari-

ational autoencoders [133] and discrete variational autoen-

coders [137]. These variants allow AE to have stronger learn-

ing ability and better scalability. Therefore, applying these

newly emerged AE variants to RSs will help improve the rec-

ommended performance.

4.3 Integration model

As we demonstrated in Subsection 3.2, integration models

can model the heterogeneous features of determining fac-

tors, e.g., user, item, and context, in RSs. There are also

many studies that integrate AE with traditional recommen-

dation methods. However, only a few studies have been in-

tegrated AE with other deep learning methods. For example,

AE could be combined with deep semantic similarity mod-
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els to learn semantic representations of items in a common

continuous semantic space and measure the semantic simi-

larities of items. Most models that integrate AE with tradi-

tional recommendation algorithms adopt collaborative filter-

ing methods. There are few models adopt content-based or

knowledge-based methods. Therefore, the integration model

is a promising but largely under-explored area where more

studies are expected.

4.4 Model performance

The performance of a model is an important indicator to

judge the merits of this model. Most models can improve

performance by adopting some methods during their imple-

mentations. The following are some aspects help improve the

performance of AE-based recommendation models.

• Multi-task learning multi-task learning is successful

in many fields, e.g., computer version and natural lan-

guage processing [138,139]. Among the reviewed stud-

ies, the work in [60] applied multi-task learning to an

RS and achieved some improvements over single task

learning. Applying multi-task learning to RSs has the

following advantages: (1) learning several tasks at once

can prevent overfitting by sharing the hidden repre-

sentations; (2) multi-task provides an implicit data en-

hancement to address the sparsity problem; (3) multi-

task learning can be easily deployed for cross-domain

recommendations, each of which generates recommen-

dations for the corresponding specific domain.

• Temporal dynamics user demands are not static and

will change over time. Session-based RS is designed to

capture the dynamic and temporal user demands. More-

over, user and item features can evolve independently or

co-evolve dependently over time [140, 141]. Therefore,

the evolution and co-evolution of items and users are

also important aspects of temporal influence. More in-

tensive studies on temporal dynamics for AE-based RS

will be a promising research direction.

• Interpretability most RSs directly give recommenda-

tions, without giving the reasons or process for the rec-

ommendations. Suitable explanations of recommenda-

tion results can help users accept the recommendation

results [142–144], as well as improve the user experi-

ences in system transparency, credibility, effectiveness

and satisfaction [145, 146]. There already have been a

few studies that adopt topic models [147] or item fea-

tures [148] in traditional RSs to explain recommenda-

tion. However, there is no study on explanations in AE-

based RSs. Therefore, it is a direction for future re-

search work about AE-based RSs.

• Attention mechanism attention mechanism is an intu-

itive but effective technique, which can be applied to

deep neural networks. Attention mechanism provides

a good solution for dealing with long-range dependen-

cies and helps the network to better memorize inputs.

By applying attention mechanism, AE-based RSs can

filter out non-meaningful content and select the most

representative items while providing good interpretabil-

ity [149].

• Quick solution of the recommendation model quick

solution of recommendation models is a hot topic in re-

search. The ever-increasing volume of data in the big

data era is a challenge to the quick solution of the rec-

ommendation model. Taking multimedia data sources

as input or merging side information to models, while

providing strong data support for the RS, also exacer-

bates the complexity of recommendation model. SGD

is widely used in RS due to its low computational com-

plexity and good parallelism. There are a few studies

on parallelized SGD [150, 151]. Parallelized SGD can

speed up the solution of recommendation model.

• Scalability scalability is critical to the actual use of rec-

ommendation models. MF is the most used method in

AE-based RS because of its high scalability. However,

how to develop an AE-based recommendation model

with high scalability and effectively combine more aux-

iliary information will be one of the focuses of future

research works.

4.5 Evaluation metrics

As we indicated in Subsection 3.3, most research works adopt

RESM, Recall or NDCG as evaluation metrics to test the ac-

curacy of a recommendation model. However, being accurate

is far from enough for a high-quality RS in practical, and

can even lead to over-specialization. Apart from accuracy,

other evaluation metrics, such as diversity [66, 74], novelty,

serendipity, coverage, trustworthiness, privacy, interpretabil-

ity, should also be considered in RSs [152–155]. These eval-

uation metrics enable RSs to capture the users’ unclear inter-

ests and be friendlier to users. Therefore, RSs not only per-

form accurate modeling but also offer a comprehensive expe-

rience to users.
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5 Conclusion

In this paper, we provide a systematic survey of the most

novel works to date on AE-based RSs. We propose a classifi-

cation scheme for organizing and clustering existing related

works. We elaborate some important research prototypes of

AE-based RS and summarize their advantages and disadvan-

tages. We also conduct a brief statistical analysis of these

publications to identify the contributions and characteristics

of these studies. In addition, we discuss new trends and future

directions in this research field to share the prospects and ex-

pand the horizons of AE-based RSs. We hope this survey will

be helpful to researchers and educators who are interested in

this area.

Acknowledgements This work was supported by Beijing Advanced Inno-
vation Center for Future Internet Technology (110000546617001).

References

1. Soghra L, Ebrahimpour-komleh H. Improving collaborative recom-

mender systems via emotional features. In: Proceedings of the 10th

IEEE International Conference on Application of Information and

Communication Technologies (AICT). 2016, 1–5

2. Zhang S, Yao L, Sun A, Tay Y. Deep learning based recom-

mender system: a survey and new perspectives. 2017, arXiv preprint

arXiv:1707.07435

3. Cacheda F, Carneiro V, Fernández D, Formoso V. Comparison of

collaborative filtering algorithms: limitations of current techniques

and proposals for scalable, high-performance recommender systems.

ACM Transactions on the Web (TWEB), 2011, 5(1): 1–33

4. Nguyen A T, Denos N, Berrut C. Improving new user recommenda-

tions with rule-based induction on cold user data. In: Proceedings of

the 2007 ACM Conference on Recommender Systems. 2007, 121–

128

5. Rashid A M, Albert I, Cosley D, Lam S K, McNee S W, Konstan J

A, Riedl J. Getting to know you: learning new user preferences in

recommender systems. In: Proceedings of the 7th ACM International

Conference on Intelligent User Interfaces. 2002, 127–134

6. Ebesu T, Fang Y. Neural semantic personalized ranking for item cold-

start recommendation. Information Retrieval Journal, 2017, 20(2):

109–131

7. Chow R, Jin H, Knijnenburg B, Saldamli G. Differential data analysis

for recommender systems. In: Proceedings of the 7th ACM Confer-

ence on Recommender Systems. 2013, 323–326

8. Gomez-Uribe C A, Hunt N. The netflix recommender system: algo-

rithms, business value, and innovation. ACM Transactions on Man-

agement Information Systems (TMIS), 2015, 6(4): 1–19

9. Sottocornola G, Stella F, Zanker M, Canonaco F. Towards a deep

learning model for hybrid recommendation. In: Proceedings of the

International Conference on Web Intelligence. 2017, 1260–1264

10. Yan S, Lin K J, Zheng X, Zhang W, Feng X. An approach for build-

ing efficient and accurate social recommender systems using individ-

ual relationship networks. IEEE Transactions on Knowledge and Data

Engineering, 2017, 29(10): 2086–2099

11. Wu H, Zhang Z, Yue K, Zhang B, Zhu R. Content embedding regu-

larized matrix factorization for recommender systems. In: Proceed-

ings of the 2017 IEEE International Congress on Big Data (BigData

Congress). 2017, 209–215

12. McAuley J, Leskovec J. Hidden factors and hidden topics: under-

standing rating dimensions with review text. In: Proceedings of the

7th ACM Conference on Recommender Systems. 2013, 165–172

13. Goodfellow I, Bengio Y, Courville A. Deep Learning. MA: MIT

Press, 2016

14. Peng X, Li Y, Wei X, Luo J, Marphey Y L. Traffic sign recognition

with transfer learning. In: Proceedings of the 2017 IEEE Symposium

Series on Computational Intelligence (SSCI). 2017, 1–7

15. Dehghan A, Ortiz E G, Villegas R, Shah M. Who do I look like? De-

termining parent-offspring resemblance via gated autoencoders. In:

Proceedings of the 2014 IEEE Conference on Computer Vision and

Pattern Recognition. 2014, 1757–1764

16. Lu X, Yu T, Matsuda S, Hori C. Speech enhancement based on deep

denoising autoencoder. Interspeech, 2013, 436–440

17. Li X, She J. Collaborative variational autoencoder for recommender

systems. In: Proceedings of the 23rd ACM International Conference

on Knowledge Discovery and Data Mining. 2017, 305–314

18. Zhang F, Yuan N J, Lian D, Xie X, Ma W Y. Collaborative knowledge

base embedding for recommender systems. In: Proceedings of the

22nd ACM International Conference on Knowledge Discovery and

Data Mining. 2016, 353–362

19. Unger M. Latent context-aware recommender systems. In: Proceed-

ings of the 9th ACM Conference on Recommender Systems. 2015,

383–386

20. Unger M, Bar A, Shapira B, Rokach L. Towards latent context-

aware recommendation systems. Knowledge-Based Systems, 2016,

104: 165–178

21. Li X, She J. Relational variational autoencoder for link prediction

with multimedia data. In: Proceedings of the Thematic Workshops

of ACM Multimedia. 2017, 93–100

22. Li S, Kawale J, Fu Y. Deep collaborative filtering via marginalized de-

noising auto-encoder. In: Proceedings of the 24th ACM International

Conference on Information and Knowledge Management. 2015, 811–

820

23. Rafailidis D, Crestani F. Recommendation with social relationships

via deep learning. In: Proceedings of the ACM SIGIR International

Conference on Theory of Information Retrieval. 2017, 151–158

24. Adomavicius G, Tuzhilin A. Toward the next generation of recom-

mender systems: a survey of the state-of-the-art and possible exten-

sions. IEEE Transactions on Knowledge and Data Engineering, 2005,

17(6): 734–749

25. Lu J, Guo Y, Mi Z, Yang Y. Trust-enhanced matrix factorization using

pagerank for recommender system. In: Proceedings of the Interna-

tional Conference on Computer, Information and Telecommunication

Systems (CITS). 2017, 123–127

26. Linden G, Smith B, York J. Amazon. com recommendations: item-

to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1):

76–80

27. Resnick P, Varian H R. Recommender systems. Communications of

the ACM, 1997, 40(3): 56–58

28. Mooney R J, Roy L. Content-based book recommending using learn-



Guijuan ZHANG et al. A survey of autoencoder-based recommender systems 447

ing for text categorization. In: Proceedings of the 5th ACM Confer-

ence on Digital Libraries. 2000, 195–204

29. Bhumichitr K, Channarukul S, Saejiem N, Jiamthapthaksin R, Nong-

pong K. Recommender systems for university elective course recom-

mendation. In: Proceedings of the 14th International Joint Conference

on Computer Science and Software Engineering (JCSSE). 2017, 1–5

30. Carrer-Neto W, Hernández-Alcaraz M L, Valencia-García R, Garcìa-

Sánchez F. Social knowledge-based recommender system applica-

tion to the movies domain. Expert Systems with Applications, 2012,

39(12): 10990–11000

31. Tarus J K, Niu Z, Yousif A. A hybrid knowledge-based recommender

system for e-learning based on ontology and sequential pattern min-

ing. Future Generation Computer Systems, 2017, 72: 37–48

32. Burke R. Hybrid recommender systems: survey and experiments.

User Modeling and User-Adapted Interaction, 2002, 12(4): 331–370

33. Rumelhart D E, Hinton G E, Williams R J. Learning representations

by back-propagating errors. Nature, 1986, 323(6088): 533

34. Baldi P, Hornik K. Neural networks and principal component analy-

sis: learning from examples without local minima. Neural Networks,

1989, 2(1): 53–58

35. Chen M, Xu Z, Weinberger K, Sha F. Marginalized denoising autoen-

coders for domain adaptation. In: Proceedings of the 29th Interna-

tional Conference on Machine Learning. 2012, 1627–1634

36. Zhang S, Yao L, Xu X. Autosvd++: an efficient hybrid collaborative

filtering model via contractive auto-encoders. 2017, arXiv preprint

arXiv:1704.00551

37. Japkowicz N, Hanson S J, Gluck M A. Nonlinear autoassociation is

not equivalent to PCA. Neural Computation, 2000, 12(3): 531–545

38. Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data

with neural networks. Science, 2006, 313(5786): 504–507

39. Bertsekas D P, Tsitsiklis J N. Gradient convergence in gradient meth-

ods with errors. Society for Industrial and Applied Mathematics Jour-

nal on Optimization, 1999, 10(3): 627–642

40. Takane Y, Young F W, Leeuw J D. Nonmetric individual differences

multidimensional scaling: an alternating least squares method with

optimal scaling features. Psychometrika, 1977, 42(1): 7–67

41. Vincent P, Larochelle H, Bengio Y, Manzagol P A. Extracting and

composing robust features with denoising autoencoders. In: Proceed-

ings of the 25th International Conference on Machine Learning. 2008,

1096–1103

42. Hinton G E, Osindero S, Teh Y M. A fast learning algorithm for deep

belief nets. Neural Computation, 2014, 18(7): 1527–1554

43. Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise

training of deep networks. In: Proceedings of the International Con-

ference on Neural Information Processing Systems. 2007, 153–160

44. Vincent P, Larochelle H, Lajoie I, Bengio Y. Stacked denoising au-

toencoders: learning useful representations in a deep network with

a local denoising criterion. Journal of Machine Learning Research,

2010, 11(12): 3371–3408

45. Chen M, Weinberger K, Sha F, Bengio Y. Marginalized denoising

auto-encoders for nonlinear representations. In: Proceedings of the

International Conference on Machine Learning. 2014, 1476–1484

46. Kingma D P, Welling M. Auto-encoding variational bayes. In: Pro-

ceedings of the 2nd International Conference on Learning Represen-

tations (ICLR). 2013

47. Gardner M W, Dorling S R. Artificial neural networks (the multilayer

perceptron)–a review of applications in the atmospheric sciences. At-

mospheric Environment, 1998, 32(14-15): 2627–2636

48. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015,

521(7553): 436

49. Yehuda K, Robert B, Chris V. Matrix factorization techniques for rec-

ommender systems. Computer, 2009, 42(8): 30–37

50. Mnih A, Salakhutdinov R R. Probabilistic matrix factorization. In:

Proceedings of the 20th International Conference on Neural Informa-

tion Processing Systems. 2007, 1257–1264

51. Rendle S. Factorization machines. In: Proceedings of the 10th Inter-

national Conference on Data Mining (ICDM). 2010, 995–1000

52. Koren Y. Factorization meets the neighborhood: a multifaceted col-

laborative filtering model. In: Proceedings of the 14th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining.

2008, 426–434

53. Huang P S, He X, Gao J, Deng L, Acero A. Learning deep structured

semantic models for Web search using clickthrough data. In: Pro-

ceedings of the 22nd ACM International Conference on Information

& Knowledge Management. 2013, 2333–2338

54. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D,

Ozair S, Courville A, Bengio Y. Generative adversarial nets. In: Pro-

ceedings of the International Conference on Neural Information Pro-

cessing Systems. 2014, 2672–2680

55. Ouyang Y, Liu W, Rong W, Xiong Z. Autoencoder-based collabora-

tive filtering. In: Processings of the International Conference on Neu-

ral Information. 2014, 284–291

56. Sedhain S, Menon A K, Sanner S, Xie L. Autorec: autoencoders meet

collaborative filtering. In: Proceedings of the 24th International Con-

ference on World Wide Web. 2015, 111–112

57. Strub F, Mary J. Collaborative filtering with stacked denoising au-

toencoders and sparse inputs. In: Proceedings of the NIPS Workshop

on Machine Learning for eCommerce. 2015

58. Strub F, Mary J, Gaudel R. Hybrid collaborative filtering with autoen-

coders. 2016, arXiv preprint arXiv:1603.00806

59. Wu Y, DuBois C, Zheng A X, Ester M. Collaborative denoising auto-

encoders for top-n recommender systems. In: Proceedings of the

9th ACM International Conference on Web Search and Data Mining.

2016, 153–162

60. Yi B, Shen X, Zhang Z, Shu J, Liu H. Expanded autoencoder recom-

mendation framework and its application in movie recommendation.

In: Proceedings of the 10th International Conference on Software,

Knowledge, Information Management & Applications (SKIMA).

2016, 298–303

61. Pan Y, He F, Yu H. Trust-aware collaborative denoising auto-encoder

for top-n recommendation. 2017, arXiv preprint arXiv:1703.01760

62. Zhang S, Yao L, Xu X, Wang S, Zhu L. Hybrid collaborative recom-

mendation via semi-autoencoder. In: Proceedings of the International

Conference on Neural Information. 2017, 185–193

63. Lee J W, Lee J. IDAE: imputation-boosted denoising autoencoder for

collaborative filtering. In: Proceedings of the 2017 ACM Conference

on Information and Knowledge Management (CIKM). 2017, 2143–

2146

64. Zhuang F, Luo D, Yuan N J. Representation learning with pair-wise

constraints for collaborative ranking. In: Proceedings of the 10th

ACM International Conference on Web Search and Data Mining.

2017, 567–575

65. Liang H, Baldwin T. A probabilistic rating auto-encoder for person-

alized recommender systems. In: Proceedings of the 24th ACM In-



448 Front. Comput. Sci., 2020, 14(2): 430–450

ternational Conference on Information and Knowledge Management.

2015, 1863–1866

66. Suzuki Y, Ozaki T. Stacked denoising autoencoder-based deep collab-

orative filtering using the change of similarity. In: Proceedings of the

31st International Conference on Information Networking and Appli-

cations Workshops (WAINA). 2017, 498–502

67. Majumdar A, Jain A. Cold-start, warm-start and everything in be-

tween: an autoencoder based approach to recommendation. In: Pro-

ceedings of International Joint Conference on Neural Networks. 2017,

3656–3663

68. Krstic M, Bjelica M. Personalized program guide based on one-class

classifier. IEEE Transactions on Consumer Electronics. 2016, 62(2):

175–181

69. Wang H, Shi X, Yeung D Y. Relational stacked denoising autoencoder

for tag recommendation. In: Proceedings of AAAI Conference on Ar-

tificial Intelligence. 2015, 3052–3058

70. Wang H, Wang N, Yeung D Y. Collaborative deep learning for recom-

mender systems. In: Proceedings of the 21th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining. 2015,

1235–1244

71. Liang D, Krishnan R G, Hoffman M D, Jebara T. Variational autoen-

coders for collaborative filtering. In: Proceedings of the 2018 Confer-

ence on World Wide Web. 2018, 689–698

72. Ying H, Chen L, Xiong Y, Wu J. Collaborative deep ranking: a hy-

brid pair-wise recommendation algorithm with implicit feedback. In:

Proceedings of the Pacific-Asia Conference on Knowledge Discovery

and Data Mining. 2016, 555–567

73. Zhuang F, Zhang Z, Qian M, Shi C, Xie X, He Q. Representation

learning via dual-autoencoder for recommendation. Neural Networks,

2017, 90: 83–89

74. Bai B, Fan Y, Tan W, Zhang J. DLTSR: a deep learning framework

for recommendation of long-tail Web services. IEEE Transactions on

Services Computing, 2017, 99: 1

75. Dong X, Yu L, Wu Z, Sun Y, Yuan L, Zhang F. A hybrid collabora-

tive filtering model with deep structure for recommender systems. In:

Proceedings of the 31st AAAI Conference on Artificial Intelligence.

2017, 1309–1315

76. Nguyen T T, Lauw H W. Collaborative topic regression with denois-

ing autoencoder for content and community co-representation. In:

Proceedings of the ACM Conference on Information and Knowledge

Management. 2017, 2231–2234

77. Mori K, Ito S, Harada T, Thawonmas R, Kim K. Feature extraction of

gameplays for similarity calculation in gameplay recommendation.

In: Proceedings of the 10th IEEE International Workshop on Compu-

tational Intelligence and Applications. 2017, 171–176

78. Zuo Y, Zeng J, Gong M, Jiao L. Tag-aware recommender systems

based on deep neural networks. Neurocomputing, 2016, 204: 51–60

79. Wei J, He J, Chen K, Zhou Y, Tang Z. Collaborative filtering and

deep learning based hybrid recommendation for cold start problem.

In: Proceedings of the 14th IEEE International Conference on De-

pendable, Autonomic and Secure Computing. 2016, 874–877

80. Wei J, He J, Chen K, Zhou Y, Tang Z. Collaborative filtering and deep

learning based recommendation system for cold start items. Expert

Systems with Applications, 2017, 69: 29–39

81. Cao S, Yang N, Liu Z. Online news recommender based on stacked

auto-encoder. In: Proceedings of the 16th IEEE/ACIS International

Conference on Computer and Information Science (ICIS). 2017, 721–

726

82. Niu B, Zou D, Niu Y. A stacked denoising autoencoders based collab-

orative approach for recommender system. In: Proceedings of the In-

ternational Symposium on Parallel Architecture, Algorithm and Pro-

gramming. 2017, 172–181

83. Deng S, Huang L, Xu G, Wu X, Wu Z. On deep learning for trust-

aware recommendations in social networks. IEEE Transactions on

Neural Networks and Learning Systems, 2017, 28(5): 1164–1177

84. Qian Y, Wai L. Review-aware answer prediction for product-related

questions incorporating aspects. In: Proceedings of the 11th ACM In-

ternational Conference on Web Search and Data Mining. 2018, 691–

699

85. Wang H, Shi X, Yeung D Y. Collaborative recurrent autoencoder: rec-

ommend while learning to fill in the blanks. In: Proceedings of the

30th International Conference on Neural Information Processing Sys-

tems. 2016, 415–423

86. Lee W, Song K, Moon I C. Augmented variational autoencoders for

collaborative filtering with auxiliary information. In: Proceedings of

the ACM Conference on Information and Knowledge Management.

2017, 1139–1148

87. Bellini V, Anelli V W, Noia T D, Sciascio E D. Auto-encoding user

ratings via knowledge graphs in recommendation scenarios. In: Pro-

ceedings of the 2nd Workshop on Deep Learning for Recommender

Systems. 2017, 60–66

88. Gu S, Liu X, Cai L, Shen J. Fashion coordinates recommendation

based on user behavior and visual clothing style. In: Proceedings of

the 3rd International Conference on Communication and Information

Processing. 2017, 185–189

89. Salakhutdinov R, Mnih A, Hinton G. Restricted boltzmann machines

for collaborative filtering. In: Proceedings of the 24th International

Conference on Machine Learning. 2007, 791–798

90. Nair V, Hinton G E. Rectified linear units improve restricted boltz-

mann machines. In: Proceedings of the 27th International Conference

on Machine Learning (ICML-10). 2010, 807–814

91. Riedmiller M, Braun H. A direct adaptive method for faster backprop-

agation learning: the rprop algorithm. In: Proceedings of the IEEE

International Conference on Neural Networks. 1993, 586–591

92. Zhang A, Wei E, Parker B B. Optimal estimation of tidal open bound-

ary conditions using predicted tides and adjoint data assimilation tech-

nique. Continental Shelf Research, 2003, 23(11–13): 1055–1070

93. Kim M, Smaragdis P. Adaptive denoising autoencoders: a fine-tuning

scheme to learn from test mixtures. In: Proceedings of the Interna-

tional Conference on Latent Variable Analysis and Signal Separation.

2015, 100–107

94. Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for on-

line learning and stochastic optimization. Journal of Machine Learn-

ing Research, 2011, 12(7): 2121–2159

95. Huber P J. Robust estimation of a location parameter. The Annals of

Mathematical Statistics, 1964, 35(1): 73–101

96. Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng A Y. Multimodal deep

learning. In: Proceedings of the International Conference on Machine

Learning (ICML). 2011, 689–696

97. Bennett J, Lanning S. The netflix prize. In: Proceedings of KDD Cup

and Workshop. 2007, 35

98. Nathan S, Tommi J. Weighted low-rank approximations. In: Pro-

ceedings of the International Conference on Machine Learning. 2003,

720–727



Guijuan ZHANG et al. A survey of autoencoder-based recommender systems 449

99. Lee D D, Seung H S. Learning the parts of objects by non-negative

matrix factorization. Nature, 1999, 401(6755): 788–791

100. Lee D D, Seung H S. Algorithms for non-negative matrix factoriza-

tion. In: Proceedings of the International Conference on Neural Infor-

mation Processing Systems. 2001, 556–562

101. Arkadiusz P. Improving regularized singular value decomposition for

collaborative filtering. In: Proceedings of KDD Cup and Workshop.

2007, 5–8

102. Salakhutdinov R, Mnih A. Bayesian probabilistic matrix factorization

using markov chain monte carlo. In: Proceedings of the 25th Interna-

tional Conference on Machine Learning. 2008, 880–887

103. Srebro N, Rennie J, Jaakkola T S. Maximum-margin matrix factor-

ization. In: Proceedings of the International Conference on Neural

Information Processing Systems. 2005, 37(2): 1329–1336

104. Xu M, Zhu J, Zhang B. Fast max-margin matrix factorization with

data augmentation. In: Proceedings of the International Conference

on Machine Learning. 2013, 978–986

105. Shi J, Wang N, Xia Y, Yeung D Y, King I, Jia J. SCMF: sparse co-

variance matrix factorization for collaborative filtering. In: Proceed-

ings of the International Conference on Artificial Intelligence. 2013,

2705–2711

106. Ma H, Zhou D, Liu C, Lyu M R, King I. Recommender systems with

social regularization. In: Proceedings of the 4th ACM International

Conference on Web Search and Data Mining. 2011, 287–296

107. Adams R P, Dahl G E, Murray I. Incorporating side information in

probabilistic matrix factorization with gaussian processes. In: Pro-

ceedings of the 26th Conference on Uncertainty in Artificial Intelli-

gence. 2010, 1–9

108. Zhao T, McAuley J, King I. Leveraging social connections to improve

personalized ranking for collaborative filtering. In: Proceedings of the

23rd ACM International Conference on Information and Knowledge

Management. 2014, 261–270

109. Porteous I, Asuncion A U, Welling M. Bayesian matrix factorization

with side information and dirichlet process mixtures. In: Proceedings

of the 24th AAAI Conference on Artificial Intelligence. 2010, 563–

568

110. Kim Y D, Choi S. Scalable variational Bayesian matrix factorization

with side information. In: Proceedings of the 17th International Con-

ference on Artificial Intelligence and Statistics. 2014, 493–502

111. Singh A P, Gordon G J. Relational learning via collective matrix fac-

torization. In: Proceedings of the 14th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. 2008, 650–

658

112. Park S, Kim Y D, Choi S. Hierarchical Bayesian matrix factoriza-

tion with side information. In: Proceedings of the International Joint

Conference on Artifical Intelligence. 2013, 1593–1599

113. Hu L, Cao J, Xu G, Cao L, Gu Z, Zhu C. Personalized recommen-

dation via cross-domain triadic factorization. In: Proceedings of the

22nd International Conference on World Wide Web. 2013, 595–606

114. Menon A K, Chitrapura K P, Garg S, Agarwal D, Kota N. Re-

sponse prediction using collaborative filtering with hierarchies and

side-information. In: Proceedings of the 17th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining. 2011,

141–149

115. Li S, Kawale J, Fu Y. Predicting user behavior in display advertising

via dynamic collective matrix factorization. In: Proceedings of the

38th International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval. 2015, 875–878

116. Gupta A K, Nagar D K. Matrix Variate Distributions. Boca Raton:

CRC Press. 1999

117. Gales M J F, Airey S S. Product of gaussians for speech recognition.

Computer Speech & Language, 2006, 20(1): 22–40

118. Wang H, Yeung D Y. Towards bayesian deep learning: a framework

and some existing methods. IEEE Transactions on Knowledge and

Data Engineering, 2016, 28(12): 3395–3408

119. Hu Y, Koren Y, Volinsky C. Collaborative filtering for implicit feed-

back datasets. In: Proceedings of the 8th IEEE International Confer-

ence on Data Mining. 2008, 263–272

120. Pan R, Zhou Y, Cao B, Liu N N, Lukose R, Scholz M, Yang Q. One-

class collaborative filtering. In: Proceedings of the 8th IEEE Interna-

tional Conference on Data Mining. 2008, 502–511

121. Yao W, He J, Wang H, Zhang Y, Cao J. Collaborative topic ranking:

leveraging item meta-data for sparsityreduction. In: Proceedings of

the AAAI Conference on Artificial Intelligence. 2015, 374–380

122. Rendle S, Freudenthaler C, Gantner Z, Zhang Y, Cao J. BPR:

Bayesian personalized ranking from implicit feedback. In: Proceed-

ings of the 25th Conference on Uncertainty in Artificial Intelligence.

2009, 452–461

123. Chi E H, Mytkowicz T. Understanding navigability of social tagging

systems. In: Proceedings of ACM CHI Conference. 2007

124. Hotho A, Jäschke R, Schmitz C, Stumme G. Information retrieval in

folksonomies: search and ranking. In: Proceedings of the European

Conference on the Semantic Web: Research and Applications. 2006,

411–426

125. Lee H, Battle A, Raina R, Ng A Y. Efficient sparse coding algorithms.

In: Proceedings of the International Conference on Neural Informa-

tion Processing Systems. 2007, 801–808

126. Ricci F, Rokach L, Shapira B. Introduction to Recommender Systems

Handbook. Springer, Boston, MA, 2011, 1–35

127. Koren Y. Collaborative filtering with temporal dynamics. Communi-

cations of the ACM, 2010, 53(4): 89–97

128. Zhang D, Hsu C H, Chen M, Chen Q, Xiong H, Uoret J. Cold-start

recommendation using bi-clustering and fusion for large-scale so-

cial recommender systems. IEEE Transactions on Emerging Topics

in Computing, 2014, 2(2): 239–250

129. Rifai S, Vincent P, Muller X, Glorot X, Bengio Y. Contractive auto-

encoders: explicit invariance during featureextraction. In: Proceed-

ings of the 28th International Conference on Machine Learning. 2011,

833–840

130. Lin Y, Liu Z, Sun M, Liu Y, Zhu X. Learning entity and relation

embeddings for knowledge graph completion. In: Proceedings of the

AAAI Conference on Artificial Intelligence. 2015, 2181–2187

131. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares

F, Schwenk H, Bengio Y. Learning phrase representations using

RNN encoder-decoder for statistical machine translation. 2014, arXiv

preprint arXiv:1406.1078

132. Hochreiter S, Jürgen S. Long short-term memory. Neural Computa-

tion, 1997, 9(8): 1735–1780

133. Sønderby C K, Raiko T, Maaløe L, Sønderby S K, Winter O. Ladder

variational autoencoders. In: Proceedings of the 29th Annual Confer-

ence on Neural Information Processing Systems. 2016, 3738–3746

134. Hsieh C K, Yang L, Wei H, Naaman M, Estrin D. Immersive recom-

mendation: news and event recommendations using personal digital

traces. In: Proceedings of International Conference on World Wide



450 Front. Comput. Sci., 2020, 14(2): 430–450

Web. 2016, 51–62

135. Yao L, Sheng Q Z, Ngu A H H, Li X. Things of interest recommen-

dation by leveraging heterogeneous relations in the internet of things.

Acm Transactions on Internet Technology, 2016, 16(2): 9

136. Burda Y, Grosse R, Salakhutdinov R. Importance weighted autoen-

coders. Computer Science, 2015

137. Rolfe J T. Discrete variational autoencoders. In: Proceedings of Inter-

national Conference on Learning Representations. 2017

138. Collobert R, Weston J. A unified architecture for natural language pro-

cessing: deep neural networks with multitask learning. In: Proceed-

ings of International Conference on Machine Learning. 2008, 160–

167

139. Deng L, Yu D. Deep learning: methods and applications. Foundations

& Trends in Signal Processing, 2014, 7(3): 197–387

140. Dai H, Wang Y, Trivedi R, Song L. Recurrent coevolutionary latent

feature processes for continuous-time recommendation. In: Proceed-

ings of the Workshop on Deep Learning for Recommender Systems.

2016, 29–34

141. Wang Y, Nan D, Trivedi R, Song L. Coevolutionary latent feature pro-

cesses for continuous-time user-item interactions. In: Proceedings of

the 30th International Conference on Neural Information Processing

Systems. 2016, 4554–4562

142. Herlocker J L, Konstan J A, Riedl J. Explaining collaborative filtering

recommendations. In: Proceedings of ACM Conference on Computer

Supported Cooperative Work. 2000, 241–250

143. Gedikli F, Jannach D, Ge M. How should I explain? a comparison of

different explanation types for recommender systems. International

Journal of Human - Computer Studies, 2014, 72(4): 367–382

144. Cramer H, Evers V, Ramlal S, Someren M V, Rutledge L, Stash N,

Aroyo L. The effects of transparency on trust in and acceptance of

a content-based art recommender. User Modeling and User-Adapted

Interaction, 2008, 18(5): 455–496

145. Friedrich G, Zanker M. A taxonomy for generating explanations in

recommender systems. AI Magazine, 2011, 32(3): 90–98

146. Sharma R, Ray S. Explanations in recommender systems: an

overview. International Journal of Business Information Systems,

2016, 23(2): 248

147. Wang C, Blei D M. Collaborative topic modeling for recommending

scientific articles. In: Proceedings of ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. 2011, 448–

456

148. Zhao W X, Wang J, He Y, Wen J R, Chang E Y, Li X. Mining prod-

uct adopter information from online reviews for improving product

recommendation. ACM Transactions on Knowledge Discovery from

Data, 2016, 10(3): 1–23

149. Chen J, Zhang H, He X, Nie L, Liu W, Chua T. Attentive collaborative

filtering: multimedia recommendation with item- and component-

level attention. In: Proceedings of International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval. 2017,

335–344

150. Gemulla R, Nijkamp E, Haas P J, Sismanis Y. Large-scale matrix fac-

torization with distributed stochastic gradient descent. In: Proceed-

ings of the 17th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining. 2011, 69–77

151. Zhao S Y, Li W J. Fast asynchronous parallel stochastic gradient de-

scent: a lock-free approach with convergence guarantee. In: Proceed-

ings of the 30th AAAI Conference on Artificial Intelligence. 2016,

2379–2385

152. Ge M, Delgado-Battenfeld C, Jannach D. Beyond accuracy: evaluat-

ing recommender systems by coverage and serendipity. In: Proceed-

ings of ACM Conference on Recommender Systems. 2010, 257–260

153. Khan M M, Ibrahim R, Ghani I. Cross domain recommender systems:

a systematic literature review. ACM Computing Surveys, 2017, 50(3):

1–34

154. Mobasher B, Burke R, Bhaumik R, Williams C. Toward trustworthy

recommender systems: an analysis of attack models and algorithm

robustness. ACM Transactions on Internet Technology, 2007, 7(4):

23

155. Varges S, Castells P. Rank and relevance in novelty and diversity met-

rics for recommender systems. In: Proceedings of ACM Conference

on Recommender Systems. 2011, 109–116

Guijuan Zhang received the BS degree in

computer science from Zhengzhou Uni-

versity, China in 2014. She is currently

working toward the MS degree in Bei-

jing Advanced Innovation Center for Fu-

ture Internet Technology, Beijing Univer-

sity of Technology, China. Her research

interests include recommender system and

deep learning.

Yang Liu received the BS degree in net-

work engineering from Tianjin University

of Finance and Economics, China in 2016.

He is currently working toward the MS

degree in the Beijing Advanced Innova-

tion Center for Future Internet Technology,

Beijing University of Technology, China.

His research interests include intelligent

recommedation, data mining, and machine learning.

Xiaoning Jin received his BS degree and

the PhD degree in information and sig-

nal processing with the signal detecting

and processing laboratory in the Institute

of Acoustics of the Chinese Academy of

Sciences, China in 2011. Now he is a lec-

turer of Beijing University of Technology,

China. His current research interests in-

clude networking technology, data science, and artificial intelli-

gence.


