
Front. Comput. Sci., 2019, 13(1): 106–126

https://doi.org/10.1007/s11704-017-6222-6

Efficient reinforcement learning in continuous state and action
spaces with Dyna and policy approximation

Shan ZHONG1,2,3,4, Quan LIU 1,4,5, Zongzhang ZHANG1, Qiming FU1,3,4,6

1 School of Computer Science and Technology, Soochow University, Suzhou 215000, China

2 School of Computer Science and Engineering, Changshu Institute of Technology, Changshu 215500, China

3 Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and

Technology, Suzhou 215006, China

4 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University,

Changchun 130012, China

5 Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210000, China

6 College of Electronic & Information Engineering, Suzhou University of Science and Technology, Suzhou 215000, China

c© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract Dyna is an effective reinforcement learning (RL)

approach that combines value function evaluation with model

learning. However, existing works on Dyna mostly dis-

cuss only its efficiency in RL problems with discrete action

spaces. This paper proposes a novel Dyna variant, called

Dyna-LSTD-PA, aiming to handle problems with continu-

ous action spaces. Dyna-LSTD-PA stands for Dyna based on

least-squares temporal difference (LSTD) and policy approx-

imation. Dyna-LSTD-PA consists of two simultaneous, inter-

acting processes. The learning process determines the proba-

bility distribution over action spaces using the Gaussian dis-

tribution; estimates the underlying value function, policy, and

model by linear representation; and updates their parameter

vectors online by LSTD(λ). The planning process updates the

parameter vector of the value function again by using offline

LSTD(λ). Dyna-LSTD-PA also uses the Sherman–Morrison

formula to improve the efficiency of LSTD(λ), and weights

the parameter vector of the value function to bring the two

processes together. Theoretically, the global error bound is

derived by considering approximation, estimation, and model

errors. Experimentally, Dyna-LSTD-PA outperforms two

Received April 13, 2016; accepted January 16, 2017

E-mail: quanliu@suda.edu.cn, sunshine-620@163.com

representative methods in terms of convergence rate, success

rate, and stability performance on four benchmark RL prob-

lems.

Keywords problem solving, control methods, heuristic

search methods, dynamic programming

1 Introduction

The reinforcement learning (RL) framework is a considerable

abstraction of the problem of a goal-directed learning agent

interacting with an uncertain environment [1–3]. At each time

step, the agent learns to select the actions yielding the highest

return by trying them. The effect of taking an action reflects

on not only the immediate reward but also the next state [4].

The agent’s goal is to learn optimal mapping from states to

actions that maximizes the expected return. Dynamic pro-

gramming (DP) [5], heuristic search [6], Monte Carlo (MC)

methods [7, 8], and temporal difference (TD) learning [9, 10]

are important elementary solution methods in RL. DP as a

model-based offline method has successfully handled many

control problems, but its backward implementation in time

makes it still computationally expensive for real-time prob-

lems. Approximate dynamic programming (ADP) solved the



Shan ZHONG et al. Efficient reinforcement learning in continuous state and action spaces with Dyna and policy approximation 107

Hamilton–Jacobi–Bellman (HJB) equation approximately by

combining DP, RL, and function approximation to overcome

the curse of the dimensionality of DP. Werbos [11] introduced

adaptive critic designs (ACDs) to obtain the solution of ADP,

where two neural networks (NNs) are used to approximate

the actor network and the critic network.

The iterative nature of the formulation process for ACD

makes it naturally suitable to be applied to discrete domains

[12–14]. However, when referring to continuous spaces, the

variants of ACD have difficulties in satisfying the require-

ments of stability, convergence, and being online. Murray et

al. [15] described an improved ACD by fusing soft comput-

ing techniques to learn the optimal cost function for a stabi-

lizable continuous nonlinear system. Hanselmann et al. [16]

constructed a continuous-time formulation of an ACD, where

a second-order actor adaption using Newton’s method is es-

tablished to accelerate the convergence of the optimal policy.

Wei et al. [17] introduced a data-driven zero-sum optimal

ACD under the consideration of system disturbance, where

three single-layer neural networks are used to approximate

the performance index function, the optimal policy, and the

disturbance.

All the aforementioned ACD variants use the NN as the

nonlinear function approximator while not learning the model

of the environment dynamics. Linear parameterized approxi-

mators are usually more preferred in RL due to the easy anal-

ysis of theoretical properties [18]. Moreover, the model can

be approximated during learning and then be used further to

accelerate learning. By using model learning, Dyna-Q [19],

as a simple, but well-known Dyna architecture to integrate in-

cremental planning methods with acting and model-learning

was proposed. Prioritized sweeping [20, 21], as an improved

Dyna, focuses on prioritizing the backups according to their

priorities. A Dyna algorithm based on linear function ap-

proximation and prioritized sweeping, called Dyna-LFA-PS,

was put forward in [22] to handle problems with continu-

ous state spaces. Recently, Dyna-2 [23] and Monte Carlo tree

search algorithms [24] achieved great success in the computer

game Go. Dyna-2’s key idea is to use a model-free method

TD(λ) to evaluate the action-value function Q and the tem-

poral action-value function Q̄ in the learning and planning

processes, respectively. Generally speaking, Dyna-2 has bet-

ter convergence performance and generalization ability than

Monte Carlo tree search. Another recent work introduced Dy-

naTSVI [25], applying the value iteration algorithm to the

planning process, to improve Dyna-2’s convergence rate and

accuracy.

In the above works, only Dyna-LFA-PS [22] is able to

deal with the problems with continuous state spaces. How-

ever, when the action space is continuous, more natural in

real-world tasks, these methods are not applied directly. One

feasible way is to discretize the continuous action space (e.g.,

[26–28]), but discretizing the continuous action space is as-

sociated with issues such as (1) how to discretize the action

space reasonably; and (2) how to generalize the learned op-

timal policy to the whole continuous action space effectively.

Another existing approach for continuous action spaces is to

represent the policy via function approximation in the frame-

work of actor-critic, and update the policy according to the

policy gradient (e.g., [29–31]). Nevertheless, in real-time sys-

tems, such an approach cannot avoid the problem of low sam-

ple efficiency.

This paper aims to develop an efficient algorithm for

continuous-action Markov decision processes (MDPs), called

Dyna-LSTD-PA, which stands for Dyna based on least-

squares temporal difference (LSTD) [32] and policy ap-

proximation. In Dyna-LSTD-PA, the value function, policy,

and model are represented by linear function approximators.

Their parameter vectors are learned by LSTD(λ) [33, 34].

Dyna-LSTD-PA combines policy learning with the TD error

of the value function to improve the updating efficiency of

the policy. It also weights the parameter vectors of the value

functions from the learning and planning processes to gen-

erate the ultimate parameter vector. Theoretically, we derive

a global error bound for Dyna-LSTD-PA. We finally tested

Dyna-LSTD-PA on four well-known benchmark problems.

Empirical results show that it outperforms two representative

methods in terms of convergence rate, success rate, and sam-

ple efficiency.

This paper is organized as follows. Section 2 introduces the

notations of the MDP and the value function. Section 3 speci-

fies the related work. Section 4 describes our Dyna-LSTD-PA

algorithm. Section 5 derives the global error bound of our al-

gorithm. Empirical results are analyzed and discussed in Sec-

tion 6. We conclude with a discussion of future topics in Sec-

tion 7.

2 Notation

In RL, the learning task satisfying the Markov property can

be modeled by a MDP. It can be defined as a quadruple

M = 〈X,U, r, f 〉:

• X is a set of system states;

• U is a set of system actions;



108 Front. Comput. Sci., 2019, 13(1): 106–126

• r : X × U × X → R denotes the reward function, where

r = r(x, u, x′) is the reward obtained from the environ-

ment when ending up at state x′ after executing action

u at state x, and R is the real number space;

• f : X ×U × X → [0, 1] defines the state transition func-

tion, where f (x, u, x′) is the probability of ending up at

state x′ after executing action u at state x.

The cumulative reward from k = t + 1 to n is denoted by

Rt =

n∑

k=t+1

rk. (1)

Policy h is a mapping from the state space X to the ac-

tion space U. Under policy h, the state value function is the

expected return starting from state x, and Vh(x) has the form

Vh(x) = Eh{
∞∑

k=0

γkrt+k+1|xt = x}, (2)

where 0 < γ � 1 is a discounted factor.

The action value function Qh(x, u) represents the expected

return by following policy h after executing action u at state

x. That is

Qh(x, u) = Eh{
∞∑

k=0

γkrt+k |xt = x, ut = u}. (3)

The optimal state value function V∗(x) satisfies

V∗(x) = max
h

Vh(x),∀x ∈ X. (4)

The optimal action value function Q∗(x, u) satisfies

Q∗(x, u) = max
h

Qh(x, u),∀x ∈ X,∀u ∈ U. (5)

The optimal policy h∗(x) is the policy that maximizes the

value for every state-action pair, i.e.,

h∗(x) = arg max
u

Q∗(x, u). (6)

A sample is a quadruple (xt, ut, rt+1, xt+1), where xt is the

current state, ut is the action executing at xt, rt+1 is the im-

mediate reward reflected by the environment, and xt+1 is the

next state.

3 Related work

3.1 Dyna structure

Dyna-Q [19] provides an effective way to achieve incremen-

tal planning while maintaining responsiveness. The structure

of Dyna-Q is shown in Fig. 1. Dyna-Q represents the value

function, policy, and model in tabular form, and it consists of

two interacting processes: learning and planning. The learn-

ing process is specified as follows: the agent interacts with

the environment and obtains the observed samples. The ob-

served samples are used to evaluate the value function and

learn the model. However, the planning process is used to

evaluate the value function again by using the learned model.

The value function is updated by the TD method. At each

time step, the policy is updated according to the evaluation

of the current value function. When Dyna-Q converges, the

optimal policy h∗ can be obtained.

Fig. 1 The structure of Dyna-Q

Most of the subsequent extensions of Dyna-Q (e.g., [20,

21, 25, 35]) also use the tabular representation in their ap-

proaches. Thus, they are limited to relative small problems.

Function approximation can be combined with reinforce-

ment learning to cope with most larger problems. The states

or state-action pairs are mapped to feature vectors, which are

then with the learned parameters, mapped to the value and

model estimates. The function approximator can be nonlin-

ear (e.g., [36]) or linear (e.g., [22, 37, 38]). Linear function

approximation has the advantages such as simple represen-

tation and strong convergence guarantee. Thus, we represent

the value function, model, and policy by linear function ap-

proximation. Being able or unable to apply to continuous ac-

tion spaces is the main difference between our work and other



Shan ZHONG et al. Efficient reinforcement learning in continuous state and action spaces with Dyna and policy approximation 109

Dyna variants.

3.2 LSTD(λ)

LSTD(0), which stands for the least-squares temporal differ-

ence learning algorithm, and its recursive version RLSTD(0)

were proposed with convergence guarantees for prediction

problems [32]. From the viewpoint of statistics, LSTD(0)

and RLSTD(0) are more efficient than the conventional lin-

ear TD(λ). Additionally, they eliminate the requirement of

designing the step-size schedule. However, LSTD(0) and RL-

STD(0) just update the value function based on one-step ex-

perience so that the information from historical data is not ex-

tracted sufficiently as LSTD(λ) does. LSTD(λ) [33] extends

the work of [32] by generalizing λ from 0 to any arbitrary

value. Its goal is to estimate the solution of the equation

V = ΠT λV, (7)

where T is the Bellman operator with the form

(TV)(x) = R(x) + γ
∫

y∈X
P(y|x)V(y)dy, (8)

and T λ is a weighted result of the application of the power T i

on T :

∀λ ∈ (0, 1), (T λV)(x) = (1 − λ)
∞∑

i=0

λi(TV)i+1(x). (9)

Let S be the subspace spanned by feature vectors

(φ j) j∈{1,2,...,d}, and Π be the orthogonal projection with the

form

Π = Φ(ΦTDρΦ)−1ΦTDρ, (10)

where Φ is the feature matrix with dimension |X| × d, ρ is

the stationary distribution of the Markov chain, and Dρ is the

diagonal matrix with the value ρ on the diagonal.

Π is nonexpansive with respect to ρ [39], and ΠT λ is con-

tracting; therefore, Eq. (7) has a unique solution [40]. Let

VLS T D(λ) be the solution of LSTD(λ); then there always exists

a θ ∈ Rd so that

VLS T D(λ) = Φθ = ΠT λΦθ. (11)

After applying Eqs. (8) and (9), θ can be estimated by solv-

ing (A − γB)θ = b, where A − γB is represented as

A − γB = ΦTDρ(I − γP)(I − γλP)−1Φ

= Ex−∞∼ρ

⎡⎢⎢⎢⎢⎢⎣
i∑

k=−∞
(γλ)i−kφ(xk)(φ(xi) − γφ(xi+1))T

⎤⎥⎥⎥⎥⎥⎦ , (12)

and b is computed as

b = ΦTDρ(I − γλP)−1r = Ex−∞∼ρ

⎡⎢⎢⎢⎢⎢⎣
i∑

k=−∞
(γλ)i−kφ(xk)r(xi+1)

⎤⎥⎥⎥⎥⎥⎦ ,

(13)

where P is the transition kernel.

If the samples (x0, u0, x1, r1), (x1, u1, x2, r2), . . . ,

(xn−1, un−1, xn, rn) are generated from the Markov chain, the

expected expressions of Â − γB̂ and b̂ can be estimated as

Â − γB̂ =
1

n − 1

n−1∑

i=0

zi(φ(xi) − γφ(xi+1))T, (14)

and

b̂ =
1

n − 1

n−1∑

i=0

zir(xi), (15)

where

zi =

i∑

k=0

(γλ)i−kφ(xk). (16)

If the number of samples is infinite, the asymptotic con-

vergence of LSTD(λ) can be guaranteed [40]. Given a finite

number of samples n and a β-mixing assumption, a high prob-

ability of error bound when λ=0 with a rate O(
1√
n

logk(
1√
n

))

was derived by Lazaric et al. [41]. With the same probability,

Tagorti et al. [34] deduced a global error bound that consists

of approximation error and estimation error, with 0 � λ < 1.

Though LSTD (λ) has an advantage over TD (λ) in sam-

ple efficiency, it requires more computation per time step. In-

spired by reducing the computational cost, Xu et al. [42] put

forward a recursive algorithm by combining LSTD, the eligi-

bility trace, and the recursive inversion formula [43], called

RLSTD (λ). They also proved RLSTD (λ) converges with

probability 1 in the case of ergodic Markov chains. After-

ward, Geramifard et al. [44] focused on developing an in-

cremental least-squares TD learning algorithm, iLSTD(0), to

reduce the computational cost from O(n2) to O(n) at each

time step. Notice that iLSTD(0) can achieve the computa-

tional cost O(n) only if the features are sparse. Other than

RLSTD(λ) [42], iLSTD(0) chooses the Sherman–Morrison

formula as the recursive inversion equation due to its simpler

form. Like LSTD(0) and RLSTD(0), iLSTD(0) also does not

use the eligibility trace to incorporate multiple information of

the experiences.

The above works only take LSTD or its recursive version

to learn the value function, but the convergence of the whole

algorithm will also heavily depend on the learning of other

parts such as the policy and the model. Consequently, we de-

rive a recursive LSTD(λ) algorithm by combining LSTD(λ)



110 Front. Comput. Sci., 2019, 13(1): 106–126

and the Sherman–Morrison formula so that the value func-

tion, the policy, and the model can be learned effectively.

4 Dyna-LSTD-PA: improved Dyna

4.1 Dyna-LSTD-PA

The structure of our new algorithm, Dyna-LSTD-PA, is

shown in Fig. 2. Like Dyna-Q, Dyna-LSTD-PA also contains

two simultaneous, interacting processes. However, the model,

value function, and policy in Dyna-LSTD-PA are represented

by linear approximation. The parameter vector in the approx-

imator is updated by LSTD(λ). The approximate model gen-

erates the simulated samples, which are used to evaluate the

value function.

Fig. 2 The structure of Dyna-LSTD-PA

Dyna-LSTD-PA differs from Dyna-Q and the other vari-

ants of Dyna mainly in the following aspects:

1) It takes the exploration policy according to the Gaussian

distribution. The variance decays gradually to leverage

between exploration and exploitation.

2) It represents the policy by linear approximation, mak-

ing problems with continuous action spaces be solvable.

The value function and the model are also linearly ap-

proximated. The parameter vectors of the value func-

tion, model, and policy are updated by LSTD(λ). The

Sherman–Morrison formula is combined with LSTD(λ)

to improve Dyna-LSTD-PA’s efficiency.

3) It weights the parameter vectors from learning and

planning processes. These weights are changeable over

time, to adaptively adjust the parameter vectors in the

two processes.

4) It derives a global error bound with high probability that

consists of approximation error, estimation error, and

model error.

4.2 Exploration policy

The exploration policy is used to select actions in the interac-

tion with the environment, with the goal of searching the state

space as fully as possible. If the optimal action is represented

by u∗, then at state x, action u is selected according to

h(x, u) =
1√
2πσ

exp{− 1
2σ2

(u − u∗)2}, (17)

where σ is the variance. The variance decays as the algorithm

runs, to explore more in the preceding phase and exploit more

in the latter phase.

4.3 Linear approximation

A function approximator represents a mapping from the pa-

rameter space to the goal function space. We use an approx-

imator F : X → V to represent the value function, where

X is the state space and V is the value function space. Thus,

V̂ is an approximate value function of the parameter vector

θ ∈ Rd :

V̂ = F(θ). (18)

Under policy h, at state x ∈ X, the approximate value func-

tion V̂h(x) is represented as

V̂h(x) = [F(θ)](x). (19)

If we denote the feature vector for every state by

φ1, φ2, . . . , φd : X → R, and the parameter vector by

θ1, θ2, . . . , θd : X → R, then the approximate state value func-

tion is given by

V̂h(x) = φT(x)θ =
d∑

i=1

φi(x)θi, (20)

where φT(x) = [φ1(x), φ2(x), . . . , φd(x)].

To be applied in continuous action space, the policy is ap-

proximated linearly. Let φ = [φ1, φ2, . . . , φd]T be the feature

vector at the state x, and β = [β1, β2, . . . , βd]T be the parame-

ter vector; then the approximate optimal policy ĥ can be rep-

resented as

ĥ = φT(x)β =
d∑

i=1

φi(x)βi. (21)



Shan ZHONG et al. Efficient reinforcement learning in continuous state and action spaces with Dyna and policy approximation 111

The model in reinforcement learning problems refers to

the state transition function and the reward function. How-

ever, it cannot be represented explicitly in continuous state

and action spaces. Thus, we use the feature transition func-

tion F : Φ→ Φ to replace the state transition function, where

Φ denotes the feature space. We use a : Φ→ R to denote the

reward function, where R is the reward space. Let φ = φ(x)

be the feature of the current state x; then the next expected

feature φ′ and the expected reward r can be linearly approxi-

mated by
⎧⎪⎪⎨⎪⎪⎩
φ′ ← Fφ,

r ← φTa.
(22)

4.4 Value function learning

Most works of Dyna use TD to learn the value function. How-

ever, as pointed out by Bradke and Barto in [32], TD is as-

sociated with the following issues: (1) it uses the gradient

descent approach to update the parameter vector; (2) it uses

the sample once and then drops it. The first one might cause

that the settings for the learning rate and the initial value of

the parameter vector have a big effect on the algorithm’s ef-

ficiency. The second one probably results in its poor sam-

ple efficiency. However, LSTD has no requirement of setting

values for the learning rate or parameter vectors. Moreover,

LSTD is sample-efficient since it stores the samples. Thus, we

use LSTD(λ) to learn the value function, policy, and model.

The agent interacts with the environment and receives a

sequence of samples as (x0, u0, x1, r1), (x1, u1, x2, r2), . . . ,

(xn−1, un−1, xn, rn). Assume that the current policy is h. Let

V̂h(x) be the approximate value function, and Vh(x) be the

real value function. Then the approximate error between

V̂h(x) and Vh(x) at state xt, εh(x), can be expressed as

εh(xt) = Vh(xt) − V̂h(xt), (23)

where V̂h(x) = φT(x)θ =
d∑

i=1
φi(x)θi.

To minimize εh(xt), we formulate the goal function J(θ) as

J(θ) =
1

2n

n∑

t=0

[Vh(xt) − φTθ]2, (24)

where J(θ) is the square function of the approximate error.

Since Vh(xt) is unknown, we use the Bellman equation of the

value function to replace it, as below:

Vh(xt) = rt+1 + γV̂
h(xt+1). (25)

From
∂J(θ)
∂θ
= 0, we have

θ = [
1
n

n−1∑

t=0

φ(xt)(φ(xt) − γφ(xt+1))T]−1[
1
n

n−1∑

t=0

rt+1φ(xt)].

(26)

To transfer Eq. (26) to the matrix form, we define Â as
n−1∑
t=0
φ(xt)φT(xt), B̂ as

n−1∑
t=0
φ(xt)φT(xt+1), and b̂ as

n−1∑
t=0

rt+1φ(xt).

Note that both Â and B̂ are d × d matrices and b̂ is a d × 1

vector. Therefore,

θ = (Â − γB̂)−1b̂. (27)

LSTD(λ) is an extension to LSTD obtained by combining

LSTD with the eligibility trace zt, where zt is updated by

zt ← γλzt−1 + φ(xt). (28)

By introducing zt, Ât+1, B̂t+1 and b̂t+1 can be updated as
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ât+1 ← Ât + ztφ
T(xt),

B̂t+1 ← B̂t + ztφ
T(xt+1),

b̂t+1 ← b̂t + ztrt+1.

(29)

After establishing Ân, B̂n and b̂n for n independent trajec-

tories, θλ can be estimated as θλ = (Ân − γB̂n)−1b̂n. The com-

putational cost of (Ân − γB̂n)−1 is O(d3).

The Sherman–Morrison formula can transfer the direct in-

version of matrix to the following incremental computation:

(X + uvT)−1 = X−1 − X−1uvTX−1

1 + vTX−1u
, (30)

where X is a square matrix, and u and v are column vectors

with the same dimension. Eq. (30) holds if satisfying the con-

dition of 1+vTX−1u � 0. It can reduce the computational cost

of (X+uvT)−1 from O(n3) to O(n2), where n is the dimension-

ality of X.

To apply the Sherman–Morrison equation, the inversion of

equation (At+1 − γBt+1) is transferred as

(At+1 − γBt+1)−1 = (At − γBt + zt(φ(xt) − γφ(xt+1))T)−1.

(31)

Let Ct+1 = (At+1 − γBt+1)−1. Then, by Eq. (30), we have

Ct+1 ← Ct − Ctzt(φ(xt) − γφ(xt+1))TCt

1 + (φ(xt) − γφ(xt+1))TCtzt
,

s.t. 1 + (φ(xt) − γφ(xt+1))TCtzt � 0. (32)

Therefore, we have

θλ = Ct+1bt+1. (33)

Thus, by combining the Sherman–Morrison formula with

the LSTD(λ) method, Dyna-LSTD-PA can learn the parame-

ter vectors of the value function, policy, and model.



112 Front. Comput. Sci., 2019, 13(1): 106–126

4.5 Policy learning

At each time step t, the agent selects the action ut at state xt;

after the action ut is executed, the current state xt is trans-

ferred to the next state xt+1, and the agent receives an im-

mediate reward rt+1. The TD error of the value function is

δt = rt+1 + γV̂(xt+1) − V̂(xt).

At state x, assume that two actions u1 and u2 are avail-

able. Let the next state, immediate reward, and TD error after

executing u1 be x′, r′, and δ′, respectively. For u2, the corre-

sponding ones are denoted by x′′, r′′, and δ′′, respectively. If

δ′ > δ′′, we have

r′ + γV̂(x′) − V̂(x) > r′′ + γV̂(x′′) − V̂(x)

⇒ r′ + γV̂(x′) > r′′ + γV̂(x′′). (34)

Equation (34) shows that the action u1 is better than the

action u2 at state x; hence, we adjust the parameter vector to

increase the selection probability of u1. Otherwise, the selec-

tion probability of the action u2 will be increased but not that

of the action u1. Therefore, we use the TD error of the value

function in defining J(β), to improve the updating efficiency

of the policy. The goal function J(β) is defined as

J(β) =
1
2n

n∑

t=0

δt[u − φT(xt)β]2. (35)

Our goal is to minimize J(β). From
∂J(β)
∂β

= 0, we have

β = [
1
n

n∑

t=0

δtφ(xt)φT(xt)]−1[
1
n

n∑

t=0

δtuφ(xt)]. (36)

To transfer Eq. (36) to the matrix form, we build the ex-

pression of the eligibility trace z′t+1 (of dimension d × 1),

Dt+1 =
∑n

t=0 δtφ(xt)φT(xt) (of dimension d × d) and et+1 =
n∑

t=0
δtuφ(xt) (of dimension d × 1) as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z′t ← γλz′t−1 + φ(xt),

Dt+1 ← Dt + δtz′tφT(xt),

et+1 ← et + δtuz′t.
(37)

Thus, we have

βt+1 = D−1
t+1et+1. (38)

Let Et+1 = D−1
t+1. According to Eq. (30), Et+1 can be repre-

sented as

Et+1 = Et − Etδtz′tφT(xt)Et

1 + φT(xt)Etδtz′t
. (39)

Using Et+1, we have

βt+1 = Et+1et+1. (40)

4.6 Model learning

In Dyna-LFA-PS [22], the model is linearly approximated,

and learned by TD. Here, we use the improved LSTD(λ) to

learn the model. Let J(F) be the goal function of the feature

transition function F and J(a) be the goal function of the re-

ward function a; then J(F) and J(a) are expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

J(F) =
1

2n

n∑

t=0

[φ(xt+1) − Fφ(xt)]
2,

J(a) =
1

2n

n∑

t=0

[rt+1 − φT(xt)a]2.

(41)

From
∂J(F)
∂F

= 0 and
∂J(a)
∂a

= 0, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F =
n∑

t=0

(φ(xt+1)φT(xt))(
n∑

t=0

φ(xt)φT(xt))−1,

a = (
n∑

t=0

φ(xt)φT(xt))−1(
n∑

t=0

rt+1φ(xt)).

(42)

To transfer Eq. (42) to the matrix form, let M be
n∑

t=0
φ(xt+1)φT(xt), N be

n∑
t=0
φ(xt)φT(xt), and q be

n∑
t=0

rt+1φ(xt).

By introducing zt (see Eq. (28)), Mt+1 (of dimension d × d),

Nt+1 (of dimension d × d), and qt+1 (of dimension d × 1) can

be represented as
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Mt+1 ← Mt + φ(xt+1)(z′′t)T,

Nt+1 ← Nt + z′′tφT(xt),

qt+1 ← qt + rt+1z′′t.
(43)

Therefore, Ft+1 and at+1 in the matrix form are represented

as ⎧⎪⎪⎨⎪⎪⎩
Ft+1 = Mt+1N−1

t+1,

at+1 = N−1
t+1qt+1.

(44)

Let S t+1 = N−1
t+1; according to Eq. (30), we have

S t+1 ← S t − S tz′′tφT(xt)S t

1 + φT(xt)S tz′′t
. (45)

Therefore, Ft+1 and at+1 can be computed by
⎧⎪⎪⎨⎪⎪⎩

Ft+1 = Mt+1S t+1,

at+1 = S t+1qt+1.
(46)

4.7 Weighting the parameter vectors

The ultimate value θ is computed by weighting θ, θλ, and θ̄.

Let b̄ be the weight for θλ and c̄ be the weight for θ̄. Then θ

can be weighted as

θ← (1 − b̄ − c̄) × θ + b̄ × θλ + c̄ × θ̄, (47)



Shan ZHONG et al. Efficient reinforcement learning in continuous state and action spaces with Dyna and policy approximation 113

where θλ and θ̄ are generated from the learning process and

the planning process, respectively.

At the beginning of the algorithm, the approximate model

is not accurate. Hence, we assign b̄ with a relative large value

to make θλ have a large effect on θ. As the model becomes

increasingly accurate, the solution θ̄ will be assigned with a

larger value to have more effect on θ. Therefore, in Dyna-

LSTD-PA, b̄ decreases and c̄ increases over time.

4.8 Algorithm specification

Dyna-LSTD-PA includes two procedures, namely, learning

and planning, as shown in Algorithms 1 and 2, respectively.

The learning procedure (Algorithm 1) directly interacts with

the environment; that is, in state xt, the agent selects the ac-

tion u according to the Gaussian distribution (see Line 4 in

Algorithm 1), and then executes it, followed by the next state

xt+1 and the immediate reward rt+1 (see line 6 in Algorithm

1). Thus, by using the sample (xt, ut, xt+1, ut+1), the parame-

ter vectors of the value function, the policy, and the model,

that are θλ, βt+1, and Ft+1, at+1, are updated via LSTD(λ) (see

lines 9, 11, 14, and 15 in Algorithm 1, respectively).

Algorithm 1 Dyna-LSTD-PA algorithm

1: Initialize all the matrices ← �I, where � is a small positive number
and I is the identity matrix. γ← 0.9, λ← 0.9, θ← 0, σ̄← 2, t ← 0;

2: repeat for every episode

3: Initialize x ← x0, c̄, b̄, K, σ;

4: Compute current feature φ ← φ(x) and current action u ←
N(φTβ, σ̄);

5: repeat for every time step of episode

6: Execute action u, get next state xt+1 and immediate reward rt+1;

7: Compute next feature φ(xt+1) and next action u′ ←
N(φ(xt+1)Tβ, σ̄);

8: Update Ct+1 by Eq. (32) and b̂t+1 by Eq. (29);

9: Update the value function parameter: θλ ← Ct+1bt+1;

10: Update Et+1 by Eq. (39) and et+1 by Eq. (37);

11: Update the policy parameter: βt+1 ← Et+1et+1;

12: Update Mt+1, qt+1 by Eq. (43) and S t+1 by Eq. (45);

13: Update the model: Ft+1 ← Mt+1S t+1; at+1 ← S t+1qt+1;

14: Planning(K);

15: θ← (1 − b̄ − c̄) × θ + b̄ × θλ + c̄ × θ̄;
16: x ← xt+1, u ← u′, φ ← φ(xt+1), σ̄ ← 0.95σ̄, b̄ ← 0.95b̄, c̄ ←

1.05c̄, t ← t + 1;

17: until x′ is the terminal state

18: until All episodes have been iterated

In the meantime, the planning procedure (Algorithm 2) is

called (see line 16 in Algorithm 1). The learned model is used

to generate the sample like (φt̄, φt̄+1, rt̄+1), which consists of

the current feature φt̄, the next feature (see line 5 in Algorithm

2), and the immediate reward rt̄+1 (see line 7 in Algorithm 2).

The simulated sample is used to estimate the parameter vector

θ̄ of the value function. After the planning procedure is exe-

cuted K times, θ̄ is fed back to the learning procedure. Then,

via weighting θ, θλ, and θ̄, the ultimate parameter vector θ of

the value function is obtained (see line 15 in Algorithm 1).

Algorithm 2 Planning(K) algorithm

1: Initialize z̄0 ← 
0, C̄0 ← 
0, t̄ ← 0;

2: repeat for K times

3: φ0 ← φ(x0), x0 ∼ ρ;
4: repeat for each step of episode

5: Compute the next feature: φt̄+1 ← Fφt̄ ;

6: Update the eligibility trace: z̄t̄+1 ← γλz̄t̄ + φt̄+1;

7: Compute the immediate reward: rt̄+1 ← φTa;

8: C̄t̄+1 ← C̄t̄ − C̄t̄ z̄t̄(φt̄ − γφt̄+1)TC̄t̄

1 + (φt̄ − γφt̄+1)TC̄t̄ z̄t̄
;

9: b̄t̄+1 ← z̄t̄rt̄+1;

10: Update the current feature: φ← φt̄+1;

11: t̄ ← t̄ + 1;

12: until φ is the terminal state feature

13: Update the parameter vector of the value function: θ̄ ← C̄b̄;

14: K ← K − 1;

15: until K = 0

In Algorithms 1 and 2, there are some parameters such as

the discounted factor γ, decaying factor λ, variance σ, plan-

ning times K, and control parameters b̄ and c̄. γ is used to

discount the future rewards, while λ assigns the TD error to

the previous visited states via the eligibility trace. σ exists

in the Gaussian distribution of the policy, to control the ex-

ploring area. K decides how many times the planning proce-

dure will be executed, and a larger K means more use of the

learned model. b̄ and c̄, that satisfy b̄ + c̄ � 1, are used to as-

sign the weights in the computation of the ultimate parameter

vector of the value function. Generally speaking, the learned

model is inaccurate in the former phase of the algorithm, and

is hence assigned with a small value. With the running of the

algorithm, the model becomes increasingly accurate, and c̄

requires to be adjusted to a large value. In these parameters,

some are initialized by experience (e.g., γ and λ), while oth-

ers are set according to the empirical results of specific RL

problems.

5 Theoretical analysis

Dyna-LSTD-PA uses LSTD(λ) to learn the value function,

policy, and model. Under the circumstance of infinite number

of samples, the asymptotic convergence of LSTD(λ) in pol-

icy evaluation was proved by Nedic et al. [40]. Therefore, if

the number of the samples is large enough, the value function



114 Front. Comput. Sci., 2019, 13(1): 106–126

learned by LSTD(λ) will converge. Lazaric et al. [41] derived

a high probability error bound for LSTD(0), on the condi-

tion that the number of samples is finite. Recently, Tagorti et

al. [34] deduced a high probability of the convergence rate

for LSTD(λ), in the general case of λ ∈ (0, 1), with the global

error consisting of approximation error and estimation error.

However, these works do not learn a model and use it to

evaluate the value function, as our work does. In fact, the

model is nearly impossible to be accurate, especially in the

preceding running of the algorithm. Nevertheless, even if the

model is not fully accurate, it can still be very useful in many

cases, by generating additional simulated samples to acceler-

ate the convergence. The reason behind it might be that, in

most cases, the model is able to cover the important area of

the state spaces, even if not in whole.

As a result, other than previous works, we will intro-

duce an additional error caused by the inaccurate model,

and we call this error as model error. In the following

part of this section, we will try to bound the model error

||VLSTD(λ) − V̂LSTD(λ)−M ||ρ, where VLSTD(λ) is the value func-

tion estimated through VLSTD(λ) = Φ(A − γB)−1b, and A, B,

and b are accumulated from infinite number of samples gen-

erated from the interaction with the environment. V̂LSTD(λ)−M

is the value function estimated by using model, and it is de-

fined as V̂LSTD(λ)−M = Φ(Ā − γB̄)−1b̄, where Ā, B̄, and b̄ are

accumulated from the simulated samples.

Assumption 1 Assume the Markov chain M considered

here is ergodic.

In Assumption 1, ergodicity holds if and only if M is ape-

riodic and irreducible, indicating if and only if ∀(x, y) ∈
X2, ∃n0, ∀n � n0, s.t., Pn(x, y) > 0, where P is the transi-

tion kernel. Such an assumption ensures a unique stationary

distribution ρ.

Assumption 2 The feature functions φ1, φ2, . . . , φd are lin-

early independent.

Assumption 2 is used to guarantee that Eq. (12), A− γB, is

invertible, and thus (A − γB)θ = b can be solved (Nedic and

Bertsekas, 2002). Since θ = (A − γB)−1b is obtained, we can

compute VLS T D(λ) = Φ(A − γB)−1b.

Assumption 3 The reward function r and the feature func-

tions φ1, φ2, . . . , φd are bounded.

Let B(X,K) be the set of measurable functions defined

on X and bounded by K. We define the reward function

r ∈ B(X,Rmax) with Rmax ∈ R, and the feature function

φi ∈ B(X, L), where L is the bound for φi. Since the reward

function is bounded, the value function is also a bounded

function V ∈ B(X,Vmax) with Vmax =
Rmax

1 − γ .

Theorem 1 Let Assumptions 1–3 hold and let x0 ∼ ρ.
Let v be the smallest eigenvalue of the Gram matrix G ∈
R

d×d,Gi j =
∫
φi

T(x)φ j(x)ρdx. Let n be the number of the

samples and d be the dimensionality of the feature function

φi. Then, the model error of Dyna-LSTD-PA can be defined

as

||VLSTD(λ) − V̂LSTD(λ)−M||ρ � 4
√

dLVmax + (Rmax + 1)
√

dL√
v(1−γ)(n − 1)(1 − γλ) .

(48)

The proof of Theorem 1 can be found in Appendix A.

As can be noticed in Theorem 1, when the number of sam-

ples, n, goes to infinity, the model error will be 0. Moreover,

we find the relationships between the model error and the pa-

rameters, that are, the model error increases with the range

of the feature function L, the dimensionality of the feature

function d, the bound of the reward function Rmax, and the

bound of the value function Vmax. However, it decreases with

the number of samples n and the smallest eigenvalue of the

Gram matrix v. Therefore, we can assign their values along

the direction of minimizing the model error.

Theorem 2 With probability1 − δ, δ ∈ (0, 1), the global er-

ror between the true value V and the solution V̂LS T D(λ) ob-

tained from Dyna-LSTD-PA satisfies

||V − V̂LS T D(λ) ||ρ �
1 − γλ
1 − γ ||V − ΠV ||ρ + 4

√
dLVmax + (Rmax + 1)

√
dL√

v(1−γ)(n − 1)(1 − γλ) +

4VmaxdL2

√
n − 1(1 − γ)ν

√√√√√√√√√√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

log(n − 1)

log(
1
γλ

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
I(n − 1, δ) + h(n, δ).

(49)

The proof of Theorem 2 can be found in Appendix B.

From Theorem 2, we can see that, like the model error, the

global error also increases when d and Rmax become larger,

and decreases when n becomes larger.

6 Empirical results

This section reports the empirical results on four RL bench-

marks with continuous state and action spaces: the pole-

balancing problem [45], the Dyna maze problem [46], the

inverted pendulum swing-up problem [47], and the cleaning



Shan ZHONG et al. Efficient reinforcement learning in continuous state and action spaces with Dyna and policy approximation 115

robot problem [18]. To reduce possible oscillations, we ex-

ecuted all algorithms in the coming comparisons 20 times,

and used their average values as the final outputs, respec-

tively. We used radial basis functions (RBFs) to construct

the nonlinear features for states and actions, and the parame-

ters of the RBFs such as the center points and the variances

are selected manually. That is to say, given a group of se-

lective values of the parameters, the final determination for

the values of the parameters depend on the comparisons of

the corresponding experimental results. Besides using man-

ual features, the features can be automatically selected [48]

from a set of features by using regularization (L2 regulariza-

tion [49,50] and L1 regularization [51–53]), matching pursuit

(orthogonal pursuit [54] and order recursive matching pur-

suit [55]), random project [56, 57], kernel sparsity [58], etc.

As automatic feature selection is beyond our main concern,

we will not specify them. Dyna-LSTD-PA will be compared

with Dyna-LFA-PS [22] and classic actor-critic learning al-

gorithm (CACLA) ( [30]). Dyna-LSTD-PA is a Dyna variant

for discrete action space, and it approximates the value func-

tion and the model via a linear function approximator. The

parameter vectors of the value function and the model are

learned by TD. CACLA can handle the problems with con-

tinuous state and action spaces. Its policy is linearly approxi-

mated and the parameter vector is learned by TD.

6.1 Pole-balancing problem

The pole-balancing problem (Fig. 3) requires balancing a

pole of unknown length and mass at the upright position by

applying forces to the cart it is attached to. The state consists

of the vertical angle χ and the angular velocity χ̇ of the pole,

denoted as (χ, χ̇). The action, that is the force exerting on

the cart, ranges from –50 N to 50 N. Negative action means

a force to the left, and positive action means a force to the

right. The transition is governed by the nonlinear dynamics

of the system formalized as follows:

χ̈ =
g sin(χ) − ηm̄l(χ̇)2 sin(2χ)

2
− η cos(χ)u

4l
3
− ηm̄l cos2(χ)

, (50)

where g = 9.8m̄/s2 is the gravity constant, m̄ is the mass of

the pole (m̄ = 2.0kg), p is the mass of the cart (p = 8.0kg),

l is the length of the pole (l = 0.5m), and η = 1/(m̄ + p) is

a constant. The time step of system simulation is set to 0.1 s.

If the intersection angle between the pole and the horizontal

line does not exceed ±π/4, the immediate reward will be 1.

Otherwise, a reward of−1 will be given. If the angle is greater

than π/4 or smaller than −π/4, the pole will fall down and the

episode will end.

Fig. 3 Illustration of the pole-balancing problem

The state space is X = {(χ, χ̇)| χ ∈ [−π/4,π/4], χ̇ ∈
[−2, 2]}, and the action space is U = {u|u ∈ [−50, 50]}. For

any state (χ, χ̇), the basis functions are

[e−
‖x−μ1 ‖2

2σ̄2 , e−
‖x−μ2 ‖2

2σ̄2 , · · · , e− ‖x−μ25 ‖2
2σ̄2 ]T, (51)

where μi is the ith center point, and it locates over the grid

points {−π/4,−π/8, 0,π/8,π/4} × {−2,−1, 0, 1, 2}; thus, we

can obtain 25 basis functions. σ̄ is the variance with value 2.

The number of episodes is set to 1000. Each episode ends

when the pole has balanced for 3,000 time steps or the pole

has fallen down. The pole is reset to vertical, that is, the initial

state (0, 0), after each failure.

We now discuss Dyna-LSTD-PA’s results on this problem.

Episodes are launched as many as possible until convergence

is reached. The optimal policy and the value function learned

by Dyna-LSTD-PA are shown in Figs. 4(a) and 4(b). When

the angle approachesπ/4 and the angular velocity approaches

2, the policy takes almost the largest force 48.12 N (see green

five-pointed star in Fig. 4(a)) and the corresponding value is

9.97 (see green five-pointed star in Fig. 4(b)). This implies

that a maximal force will be necessary to make the pole bal-

ance when the pole is in an extreme state (π/4, 2). It is simi-

lar when the pole is in an opposite state (−π/4,−2), in which

case the force to keep balance is −48.189 N (see yellow trian-

gle in Fig. 4(a)) and the value is 9.869 (see yellow triangle in

Fig. 4(b)). When the pole is nearly upright and its angular ve-

locity is much smaller than 2, the policies in these states are

to take a mild force to keep the pole balance, and the values

are evidently large. For example, when the state of the pole is

(−0.03, 0.08), the policy is −0.06 N (see blue square in Fig.

4(a)) and the value is 10.003 (see blue square in Fig. 4(b)).

Therefore, we can get a conclusion: the closer the distance

between the state and the center point (0, 0), the larger the

value. Hence, a smaller force is needed, and the pole is more

likely to reach a balance.

To determine the values of the parameters such as b̄, c̄,

and K, we prepare some settings and then compare the ex-

perimental performance. The experimental results of different



116 Front. Comput. Sci., 2019, 13(1): 106–126

settings of b̄ and c̄ are shown in Fig. 5(a). If b̄=0.5 and c̄=0.3,

Dyna-LSTD-PA has the best convergence performance, and

it converges after 86 episodes. If b̄=0.4 and c̄=0.4, Dyna-

LSTD-PA converges after 119 episodes. If b̄=0.6 and c̄=0.2,

it learns fast in the former phase but converges until the 129th

episode. The worst case is b̄=0.3 and c̄=0.5, where Dyna-

LSTD-PA converges until the 167th episode. Therefore, the

settings b̄ =0.5 and c̄ =0.3 can gain the fast convergence

rate. This result might be caused by the fact that the model

is learned asymptotically. In the preceding phase of the al-

gorithm, the model is not accurate enough and the simulated

samples are not reliable. Thus, c̄ has to be assigned with a

relatively small value, while b̄ is a large value. We also can

notice that the settings of b̄=0.6 and c̄=0.2 are no better than

b̄=0.5 and c̄=0.3. This reveals that c̄ should be assigned with a

small value, but not too small, to realize a better performance

of the algorithm.

Fig. 4 Approximate policy and value function. (a) Approximate policy; (b)
approximate value function

We implement an experiment to make clear the effect of

the planning number K on the convergence efficiency. The

experimental results are shown in Fig. 5(b). There are three

alternative settings of K, namely 20, 50, and 80. K = 80

converges in the 83rd episode, while K = 50 converges until

the 86th episode. When K is set to 20, Dyna-LSTD-PA con-

verges after 126 episodes. The best convergence performance

is obtained when K = 80. K = 80 behaves much better than

K = 20 but only has a slight priority over K = 50. However,

K = 80 means that the planning process has to be performed

80 times at each time step. Thus, it needs much more com-

putational cost than K = 50, with only a small improvement

on the convergence rate. Therefore, we still set K to 50 in our

experiment.

To make the comparisons of Dyna-LSTD-PA with CACLA

and Dyna-LFA-PS in terms of convergence performance,

the three algorithms are implemented and the experimental

Fig. 5 Convergence rate comparisons for different parameter settings and
algorithms. (a) Convergence rate comparisons of different weights; (b) con-
vergence rate comparisons of different planning times; (c) convergence rate
comparisons of different algorithms

results are shown in Fig. 5(c). The decaying factor λ and the

discounted factor γ are set as 0.9 in the three algorithms. In

CACLA and Dyna-LFA-PS, the learning rates are set to 0.8

and the parameter vector is set to 0. Dyna-LFA-PS cannot be

directly applied to the continuous action spaces, and hence its

continuous actions are discretized into –50, 0, and 50. From

Fig. 5(c), we can see that Dyna-LSTD-PA converges after 86

episodes. CACLA converges in the 150th episode, and Dyna-

LFA-PS converges in the 175th episode. Evidently, CACLA

performs better than Dyna-LFA-PS, while Dyna-LSTD-PA



Shan ZHONG et al. Efficient reinforcement learning in continuous state and action spaces with Dyna and policy approximation 117

has the best convergence performance. In CACLA and Dyna-

LFA-PS, TD is used to learn the value function, and the

samples are dropped after they have been used once. There-

fore, if the new coming sample is considerably different from

the former samples, the value function may oscillate. That

is why the performances of CACLA and Dyna-LFA-PS os-

cillate sharply in the former 110 episodes. LSTD(λ) is used

to learn the value function in Dyna-LSTD-PA and the sam-

ples are stored by matrices. Therefore, even if a very different

sample is arrived, the matrices will not be affected consider-

ably. Thus, Dyna-LSTD-PA behaves in a more stable manner

than CACLA and Dyna-LFA-PS. However, like Dyna-LSTD-

PA, Dyna-LFA-PS also uses the learned model to generate

additional samples to update the value function, and it still

fails to converge faster than CACLA. This result might be

caused by the fact that Dyna-LFA-PS plans too much when

the model is inaccurate, resulting in poorer convergence per-

formance.

The different settings of the action-noise range and the

variance σ (see Eq. (17)) may have a significant effect on the

experimental results. Therefore, we prepare the settings for

the action-noise range as [0 N, 0 N], [–15 N, 15 N], and [–30

N, 30 N], and the settings for the variance are as 2, 4, and

6. The maximal episode is set to 1,000. The three algorithms

take the exploration policy based on the Gaussian distribution

here. They are implemented and compared, and their results

are shown in Table 1. The success rate is defined as the ratio

of the average time steps divided by 3,000.

We can see that Dyna-LSTD-PA outperforms the two other

methods in terms of the success rate under different condi-

tions of the action-noise range and variance. Among the three

methods, the best performances are obtained when σ = 2 un-

der the different settings of the action-noise range. The larger

value of variance means the agent has to explore more, and

hence the variance has to be set to a proper value to balance

between exploration and exploitation. The best performance

is achieved when σ = 2. It implies that σ = 2 is better than

σ = 4 and σ = 6 in trading off between exploration and

exploitation. Generally speaking, the larger the range of the

action-noise, the larger is the uncertainty. Thus, action-noise

with a smaller range will result in a higher success rate. How-

ever, it is not always true. For example, when σ = 4, the suc-

cess rate of [–30N,30N] is better than that of [0N,0N]. Similar

circumstances can also be found in CACLA and Dyna-LFA-

PS. Therefore, according to the experimental result, we can-

not find a close relationship between the action-noise range

and the success rate.

6.2 Dyna maze problem

The environment of the Dyna maze problem with discrete

state and action spaces is shown in Fig. 6(a), while the one

with continuous state and action spaces is shown in Fig. 6(b).

The goal of the agent is to move from the start point “Start”

to the goal point “Goal”. The gray grids are obstacles and

the deep gray grids are walls, and the agent cannot land on

them. When the point “Goal” is reached, the agent will re-

ceive an immediate reward of 1. In the other cases, the agent

will receive an immediate reward of –1. The state is the posi-

tion of the agent represented by (x, y). In (x, y), x is the hor-

izontal coordinate, and y is the vertical coordinate. At each

time step, the agent moves a constant distance of 0.2. The

state space is X = {(x, y)|x, y ∈ [0, 8]} and the action space

is U = {u|u ∈ [−π,π]}. Every state corresponds to a feature

vector with the dimension 36, and is shown as

(e−
‖x−μ1 ‖2

2σ̄2 , e−
‖x−μ2 ‖2

2σ̄2 , . . . , e−
‖x−μ36 ‖2

2σ̄2 )T, (52)

where μi = (μix, μiy) is a center point and it locates over the

grid points {0.5, 2, 3.5, 5, 6.5, 8}× {0.5, 2, 3.5, 5, 6.5, 8}, and σ̄

is the variance with the value of 2.

Table 1 Comparisons of success rate

Dyna-LSTD-PA Dyna-LFA-PS CACLA
Action noise Variance

Average step Success rate Average step Success rate Average step Success rate

[0N,0N] 2 2,987 0.996 2,567 0.856 2,678 0.893

[0N,0N] 4 2,874 0.958 2,298 0.766 2,543 0.848

[0N,0N] 6 2,895 0.965 2,434 0.811 2,023 0.674

[–15N,15N] 2 2,945 0.982 2,456 0.819 2,376 0.792

[–15N,15N] 4 2,943 0.981 2,023 0.674 2,237 0.746

[–15N,15N] 6 2,893 0.964 2,045 0.682 1,962 0.654

[–30N,30N] 2 2,937 0.979 2,663 0.888 2,378 0.793

[–30N,30N] 4 2,876 0.959 2,456 0.819 1,763 0.588

[–30N,30N] 6 2,875 0.958 2,145 0.715 2,123 0.708



118 Front. Comput. Sci., 2019, 13(1): 106–126

Fig. 6 Illustration of the Dyna maze problem. (a) Discrete state and action
spaces; (b) continuous state and action spaces

This problem is an episodic task and the maximal episode

is set to 200. An episode ends when the agent has reached

the goal or the time steps have exceeded 10,000. Afterward,

the initial state of the agent is set to (0.5, 0.5). The optimal

policy and the value function learned by Dyna-LSTD-PA are

shown in Figs. 7(a) and 7(b), respectively. The obstacle-areas

or areas far from the goal area, have small values. The goal

state (8, 8) has the largest value 1.127, with its policy being

0.181.

Fig. 7 Optimal value function and policy. (a) Approxiamte policy; (b) ap-
proxiamte value function

The area near the goal state has a relative high value. For

example, most of the values in the area that satisfies 7 � x � 8

and 7 � y � 8 are larger than 0, and the policies are near 0.

This reveals that the agent only has to move a small angle

to reach the goal. For the obstacle areas where 4 � x � 6

and 1 � y � 2, the values are near –10 and the policy is

near –1. This indicates that the agent has to move a large an-

gle to leave the current state. As for the obstacle area where

5 � x � 7 and 4 � y � 5, the values are near –7 and

policies are near 0.7. Unlike the other obstacle areas, they

have a comparatively large value, and the agent only has

to move with a small angle. Dyna-LSTD-PA is compared

with CACLA and Dyna-LFA-PS in terms of convergence rate

and sample efficiency, and the experimental result of conver-

gence rate is shown in Fig. 8(a). The parameter settings for

the three algorithms are the same as the settings in the for-

mer experiment. From Fig. 8(a), we find that Dyna-LSTD-

PA converges after 40 episodes. It outperforms the two other

methods not only in terms of convergence rate, but also in

terms of time steps to the goal. Dyna-LFA-PS discretizes the

continuous actions to 0, 1, 2, and 3, and it converges to 81

time steps in the 75th episode. CACLA converges to 85 time

steps in the 88th episode. Thus, Dyna-LSTD-PA converges

faster than CACLA and Dyna-LFA-PS. More importantly, the

curve of Dyna-LSTD-PA fluctuates less and converges more

smoothly, indicating that it performs in a more stable man-

ner. As in the pole-balancing problem, Dyna-LFA-PS be-

haves slightly poorer than CACLA, and this may be caused

by the unreasonable discretization of the continuous action

space. Dyna-LSTD-PA uses the policy by linear approxima-

tion to avoid unreasonable discretization of continuous action

spaces. Moreover, it uses the model to plan, leading to the

best convergence performance.

Fig. 8 Comparisons of (a) convergence performance and (b) sample effi-
ciency

The experimental results of sample efficiency compar-

isons are shown in Fig. 8(b). We can see that Dyna-LSTD-

PA requires 4,891 samples to converge, while Dyna-LFA-

PS requires 21,582, and CACLA requires 25,984. Thus,

Dyna-LSTD-PA significantly outperforms the other two al-

gorithms. Dyna-LSTD-PA performs best in all iterations of

the episodes. The reason behind it is that Dyna-LSTD-PA

not only uses the model to generate the additional samples

but also uses LSTD(λ) to learn the value function. Before the

23th episode, CACLA performs better than Dyna-LFA-PS in

that the model is not accurate enough. However, with the pro-

cessing of learning, Dyna-LFA-PS can generate more useful



Shan ZHONG et al. Efficient reinforcement learning in continuous state and action spaces with Dyna and policy approximation 119

samples to accelerate the convergence. Thus, Dyna-LFA-PS

requires less samples than CACLA empirically.

Stability plays a particularly significant role in some real-

world applications. To emphasize the stabilities of the algo-

rithms, the results of multiple runs are illustrated in Fig. 9.

The vertical lines show the maximal step differences among

20 runs of every time step, and the line passing through them

indicates the average value of maximal and minimal values.

Therefore, the length of the vertical line shows the stability

of the algorithm, that is, a shorter line means the algorithm is

more stable. The stability performances of Dyna-LSTD-PA,

CACLA, and Dyna-LFA-PS are shown in Fig. 9(a)–9(c).

Fig. 9 Stability comparisons. (a) Maximal step difference among 20 runs
for Dyna-LSTD-PA; (b) maximal step difference among 20 runs for CACLA;
(c) maximal step difference among 20 runs for Dyna-LFA-PS

We have three observations from these figures. (1) Com-

pared with the few sharp oscillations of CACLA in Fig. 9(b)

and Dyna-LFA-PS in Fig. 9(c), the area covered by the lines

of Dyna-LSTD-PA in Fig. 9(a) is narrower and smoother. (2)

Dyna-LFA-PS has the poorest performance of stability in the

former 53 episodes. (3) Dyna-LSTD-PA converges in 39 it-

erations of episodes in all 20 runs, while CACLA and Dyna-

LFA-PS still have some oscillations until the 75th episode and

88th episode respectively. Thus, our results show that com-

pared with the two other methods, Dyna-LSTD-PA is more

stable.

6.3 Inverted pendulum swing-up

The inverted pendulum swing-up problem (shown in Fig. 10)

is a challenging and highly nonlinear control problem com-

monly found in RL literature. We compare our algorithm

with CACLA and Dyna-LFA-PS on this task. The objective

is to learn how to swing up an inverted pendulum from the

pointing-down position to the upright position immediately

and then stabilize it in this position. The formula of motion

of the system is defined as

Jä = Mgl sin(a) − (b +
K2

R
)ȧ +

K
R

u, (53)

where a is the angle between the pendulum and the up-

right direction, J is the pendulum inertia with the value

1.91 · 10−4 kgm2, M is the pendulum mass whose value is

set to 5.50 · 10−2 kg, g is the gravity with the value 9.81

m/s2, l represents the pendulum length and its value is given

as 4.20 ·10−2 m, b denotes the damping with the value 3 ·10−6

Nms, K is the torque constant whose value is assigned with

5.36 · 10−2 Nm/A, and R is the rotor resistance with its value

of 9.50 Ω.

Fig. 10 Inverted pendulum setup

The state xT = [a, ȧ] consists of the angle a and the angular

velocity ȧ of the pendulum with the range of |a| � π rad and

|ȧ| � 8π rad ·s−1. The action u is an actuation signal whose

value satisfies |u| � 3 V.

Applying only the actuation signal without the momentum

cannot push the pendulum to the upright position. The con-

troller has to swing the pendulum back and forth so as to in-

crease the momentum of the pendulum. The quadratic reward

function is defined as

rk(xk−1, uk−1) = −xT
k−1Qxk−1 − Pu2

k−1, (54)

with

Q =

⎡⎢⎢⎢⎢⎢⎣
5 0

0 0.1

⎤⎥⎥⎥⎥⎥⎦ , P = 1.

The state of the pendulum is initialized to the upside-

down position xT
0 = [π, 0] at the start of each episode.

To transform the state to the feature, the center points of

the RBFs for both states and actions need to be initial-

ized. The center points for every state feature locate over

{−3,−2.5,−2.0,−1.5,−1.0,−0.5, 0, 0.5, 1.0, 1.5, 2, 2.5, 3} ×
{−25,−20,−15,−10,−5, 0, 5, 10, 15, 20, 25}, with the vari-

ances σa = 0.24 and σȧ = 2.79. The center points for

each action distribute over {−2.8,−2.1,−1.4,−0.7, 0, 0.7, 1.4,

2.1, 2.8} with its variance σu = 0.33. The algorithm runs for



120 Front. Comput. Sci., 2019, 13(1): 106–126

54 min in the whole simulation. Every time step lasts for

0.005 s. An episode contains 800 time steps so that it will

take 4 s.

We compare our algorithm with CACLA and Dyna-LFA-

PS in terms of cumulative discounted rewards and sample

efficiency. The action space is discretized into –3, 0, and 3

in Dyna-LFA-PS. The planning times are set to 10 for both

Dyna-LFA-PS and Dyna-LSTD-PA. The other parameter set-

tings are the same as in the former experiments. The cumu-

lative discounted rewards for the three algorithms are shown

in Fig. 11(a). Clearly, Dyna-LSTD-PA converges fastest dur-

ing the whole training, with the limit of the cumulative dis-

counted rewards about –320. In the former 11 min, CACLA

converges faster than Dyna-LFA-PS, but Dyna-LFA-PS out-

performs instead from the 11th minute to the 19th minute.

Dyna-LSTD-PA and CACLA converge to the same solution

nearly –320, but Dyna-LSTD-PA converges to the solution

about –2,300 after 34 min pass. The fast learning of Dyna-

LFA-PS may be attributed to its modeling learning and plan-

ning. Dyna-LFA-PS also learns and uses the model so that it

behaves better than CACLA in the initial phase of the train-

ing. As the value function is more and more accurate, the

effect of the model learning and planning will be not so ev-

ident. At this moment, Dyna-LFA-PS does not have an ad-

vantage over CACLA due to its unreasonable discretization

of the action space.

Fig. 11 (a) Cumulative discounted rewards and (b) sample efficiencies of
different algorithms

The comparisons of sample efficiencies for different algo-

rithms are shown in Fig. 11(b). The number of required sam-

ples to converge for Dyna-LSTD-PA, CACLA, and Dyna-

LFA-PS are 76,000, 233,600, and 400,000, respectively. It is

evident that our algorithm requires the fewest samples while

achieving the fastest convergence rate. This may be caused by

the fact that Dyna-LSTD-PA approximates a model and then

uses it for planning to accelerate the learning of the value

function and the policy. However, Dyna-LFA-PS also uses

the model but with a poorer sample efficiency, which may be

resulting from its unreasonable manual discretization. Other

than manual discretization, Dyna-LSTD-PA directly approxi-

mates the policy and adopts LSTD(λ) to learn the value func-

tion, the policy, and the model. As a result, Dyna-LSTD-PA

outperforms Dyna-LFA-PS in terms of sample efficiency.

6.4 Cleaning robot

The cleaning robot problem is depicted in Fig. 12, and is the

extension of the discrete case specified in [18]. A cleaning

robot has to collect used cans and then go to charge its bat-

teries. The state x = (xh, xv) satisfies 0 � xh, xv � 1, where

xh represents the position in the horizontal direction and xv

is the position in the vertical direction. The actions the agent

can take are charging, moving, and collecting. Charging and

collecting are discrete actions. Moving is a continuous action

with the range [−π,π]. The goal of the robot is to collect all

the cans as quickly as possible. The state transition function

is defined as

f (x, u) =

⎧⎪⎪⎨⎪⎪⎩
x + 0.1 cos(u), if u = moving;

x, otherwise.
(55)

Fig. 12 Illustration of the cleaning robot problem

The agent will be fed back with a reward of -1 for the action

moving. When the robot reaches one of the positions with a

can, it collects the can while receiving a reward of 5. The con-

sequence is that the can will disappear after it is collected.

The robot can go to the recharging station to charge. If the

agent is charged for the first time, it will be given a reward

of 1; otherwise, –1. The corresponding reward function is de-

fined as

r(x, u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

5, if x = can and u = collecting;

1, if x = power and u = charging ( f irst time);

−1, otherwise.
(56)



Shan ZHONG et al. Efficient reinforcement learning in continuous state and action spaces with Dyna and policy approximation 121

We will evaluate this experiment in two settings: fixed

case and random case. In the former, the initial posi-

tion of the agent and the cans are fixed, while in the

latter, the positions are randomly distributed. The fixed

case is shown in Fig. 12. There are eight cans and one

recharging station. The center points of the RBFs for

the state locate over {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ×
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, with the variances

σh = 0.05 and σv = 0.05. The center points

of the RBFs for the action moving distribute over

{−3,−2.4,−1.8,−1.2,−0.6, 0, 0.6, 1.2, 1.8, 2.4, 3}, with the

variance σu = 0.31. All the other parameter settings are the

same as those of the Dyna maze. The cumulative discounted

rewards for the fixed case and the random case are shown in

Figs. 13(a) and 13(b), respectively. Evidently, Dyna-LSTD-

PA learns fastest in both cases, and it converges to the solu-

tions 25 and 29 at the 28th episode and the 22nd episode re-

spectively. Dyna-LFA-PS performs slightly better than CA-

CLA in the former 36 episodes for the fixed case. CACLA

converges to –4 at the 136th episode while Dyna-LFA-PS

converges to –23 at the 75th episodes. As for the random

case, Dyna-LSTD-PA, CACLA, and Dyna-LFA-PS converge

to 10, –114, –165 at the 22nd, 59th, and 83rd episodes, re-

spectively. It is clear that CACLA and Dyna-LFA-PS cannot

find a solution as good as that of the fixed case. Compara-

tively, the obtained solution of CACLA seems slightly better

than that of Dyna-LFA-PS in both cases. This phenomenon

further demonstrates that policy approximation can signifi-

cantly improve the quality of the solution.

Fig. 13 Comparisons of cumulative discount rewards for (a) fixed and (b)
random initial position and barriers

The comparisons of the sample efficiencies for the three

algorithms in both cases are also presented in Figs. 14(a)

and 14(b). For the fixed case, Dyna-LSTD-PA requires 6,899

samples to converge, while CACLA and Dyna-LFA-PS re-

quire 41,762 and 28,018 samples to converge. The number

of required samples for the three algorithms in the random

case are 2,809, 14,965, and 94,783, respectively. We find

that Dyna-LSTD-PA has the best sample efficiency due to

its fastest convergence rate; additionally, it has an advan-

tage over the others especially in the random case. Though

CACLA converges faster than Dyna-LFA-PS in the random

case, its sample efficiency is lower in both cases. Since both

CACLA and Dyna-LFA-PS cannot find good solutions, their

sample efficiencies cannot reflect the number of required

samples to converge in reality.

Fig. 14 Comparisons of sample efficiencies for (a) fixed and (b) random
initial position and barriers

7 Conclusion

This paper proposes an improved Dyna algorithm based on

LSTD and policy approximation, named Dyna-LSTD-PA, to

handle RL problems with continuous state and action spaces.

The model, policy, and value function in our method are lin-

early approximated. Their parameter vectors are learned by

an improved LSTD(λ) to improve the sample efficiency to a

large extent. By using the Dyna structure, the value function

is learned in not only the learning process but also the plan-

ning process.

In comparison to Dyna-LFA-PS, Dyna-LSTD-PA repre-

sents the policy by linear approximation to be applied in the

continuous action space. Moreover, Dyna-LSTD-PA does not

have to set the learning rate or the initial value of the pa-

rameter vector. Distinguishing from CACLA, Dyna-LSTD-

PA uses the Dyna structure and learns an approximate model,

which is then used to evaluate the value function. Thus,

Dyna-LSTD-PA appears to be faster than CACLA in the

learning process and has better convergence performance on



122 Front. Comput. Sci., 2019, 13(1): 106–126

our tested RL problems.

The model learned in this study is just a sample-average

model, and hence it is not accurate especially in the initial

iterations of the episodes. Such a model will probably slow

down our algorithm’s convergence rate. In the future, we

would like to explore methods of learning a more accurate

model without adding more computational cost.

Acknowledgements This paper was partially supported by Innovation Cen-
ter of Novel Software Technology and Industrialization, the National Natural
Science Foundation of China (Grant Nos. 61772355, 61702055, 61303108,
61373094, 61472262, 61502323, 61502329), Natural Science Foundation
of Jiangsu (BK2012616), Provincial Natural Science Foundation of Jiangsu
(BK20151260), High School Natural Foundation of Jiangsu (13KJB520020,
16KJD520001), Key Laboratory of Symbolic Computation and Knowledge
Engineering of Ministry of Education, Jilin University (93K172014K04,
93K172017K18), and Suzhou Industrial Application of Basic Research Pro-
gram Part (SYG201422).

Appendixes

Appendix A Proof of Theorem 1

By Assumption 1, (A − γB) is invertible. Then starting from

the definitions of V̂LSTD(λ)−M and VLSTD(λ), we have

V̂LSTD(λ)−M − VLSTD(λ) = Φθ̄ −Φθ
=Φ(A − γB)−1[(A − γB)θ̄ − b].

Since (Ā − γB̄)θ̄ = b̄, (A − γB)θ̄ − b can be derived as

(A − γB)θ̄ − b = (A − γB)θ̄ − b − (Ā − γB̄)θ̄ + b̄

= [A − γB − (Ā − γB̄)]θ̄ − (b − b̄)

= ε1θ̄ − ε2,

where A − γB − (Ā − γB̄) = ε1 and b − b̄ = ε2. Thus,

V̂LSTD(λ)−M − VLSTD(λ) = Φ(A − γB)−1(ε1θ̄ − ε2). (57)

Before bounding V̂LSTD(λ)−M − VLSTD(λ), we need to bound

Φ(A − γB)−1 and ε1θ̄ − ε2, as stated in Lemmas 1 and 2, re-

spectively.

Lemma 1 Let Z = (1−λ)γP(1− λγP)−1 and Zρ = ΦTDρΦ;

then we have

Φ(A − γB)−1 = (I − ΠZ)−1ΦZ−1
ρ .

Proof From the definition of A − γB = ΦTDρ(I −
γP)(I − γλP)−1Φ, we can see that

Φ(A − γB)−1

= Φ[ΦTDρ(I − γP)(I − γλP)−1Φ]−1

= Φ
[
ΦTDρ(I − γλP − (1 − λ)γP)(I − γλP)−1Φ

]−1

= Φ
{(
ΦTDρΦ

)
−

[
ΦTDρ(1 − λ)γP(I − γλP)−1Φ

]}−1

= Φ(Zρ −ΦTDρZΦ)−1.

Since Zρ and A − γB are invertible, I − Zρ−1ΦTDρZΦ is

also invertible. Thus, we have

Φ(A − γB)−1 = Φ(I − Z−1
ρ Φ

TDρZΦ)−1Z−1
ρ .

Let X = Φ and Y = Zρ−1ΦTDρZ. Using X(I − YX)−1 =

(I − XY)−1X, we have

Φ(A − γB)−1 = Φ
(
I −ΦZρ−1ΦTDρZ

)−1
ΦZρ−1

=

(
I − Φ

(
ΦT DρΦ

)−1
ΦTDρZ

)−1
ΦZρ−1.

Since ||ΠM||ρ = (1 − λ)γ
1 − λγ , (I −ΠM) is invertible (Tsitsiklis

and Roy, 1997). Then according to Π = Φ
(
ΦT DρΦ

)−1
ΦTDρ,

we obtain

Φ(A − γB)−1 = (I − ΠZ)−1ΦZρ−1.

Thus, we get the final result. �

Lemma 2 Let ε1 = Ā − γB̄ − (A − γB), where Ā − γB̄ is

obtained from the learned model. Let ε2 = b̄ − b, where b̄ is

obtained from the learned model. Then, we can derive

||ε1θ̄ − ε2||2 � 4
√

dLVmax + (Rmax + 1)
√

dL

(n − 1)(1 − γλ)2
.

Proof We start by

||ε1θ̄ − ε2||2 � ||ε1θ̄||2 + ||ε2||2
� ||ε1||2||θ̄||2 + ||ε2||2. (58)

Then, we compute ||ε1||2, ||θ̄||2, and ||ε2||2 respectively.

1) Compute ||ε1||2.

Recall that

A − γB

=
1

n − 1

n−1∑
i=1

i∑
k=−∞

(γλ)i−kφ(xk)(φ(xi) − γφ(xi+1))T

=
1

n − 1

n−1∑
i=1

(γλ)i
i∑

k=−∞
(γλ)−kφ(xk)(φ(xi) − γφ(xi+1))T.

According to Assumption 3, the range and the dimensionality

of the feature function are bounded by L and d, respectively.

Thus, ||φ(xk)(φ(xi) − γφ(xi+1))||2 � 2dL2, and

||A − γB||2
=

1
(n − 1)(1 − γλ) ||

i∑
k=−∞

(γλ)−kφ(xk)(φ(xi) − γφ(xi+1))T||2

�
2dL2

(n − 1)(1 − γλ)2
,



Shan ZHONG et al. Efficient reinforcement learning in continuous state and action spaces with Dyna and policy approximation 123

where

Ā − γB̄

=
1

n − 1

n−1∑
i=1

i∑
k=1

(γλ)i−kφ(xk)(φ(xi) − γFφ(xi))T

=
1

n − 1

n−1∑
i=1

(γλ)i
i∑

k=1
(γλ)−kφ(xk)(φ(xi) − γFφ(xi))T.

By ||φ(xk)(φ(xi) − γFφ(xi))T||2 � 2dL2, we have

||Ā − γB̄||2
=

1
(n − 1)(1 − γλ) ||

i∑
k=1

(γλ)−kφ(xk)(φ(xi) − γFφ(xi))T||2

�
2dL2

(n − 1)(1 − γλ)2
.

Thus,
||ε1||2 = ||A − γB − (Ā − γB̄)||2

� ||A − γB||2 + ||Ā − γB̄||2
�

4dL2

(n − 1)(1 − γλ)2
.

2) Compute ||θ̄||2.

Since V̂LS T D(λ)−M (x) = φ(x)θ̄ and
√

dL||θ̄||2 �√
φT(x)Zuθ̄ = ||φ(x)θ̄||u = ||V̂LS T D(λ)−M(x)||u � Vmax, we have

||θ̄||2 � Vmax√
dL
.

3) Compute ||ε2||2 .

Recall that

b =
1

n − 1

n−1∑
i=1

i∑
k=1

(γλ)i−kφ(xk)r(xi)

=
1

n − 1

n−1∑
i=1

(γλ)i
i∑

k=1
(γλ)−kφ(xk)r(xi),

and

b̄ =
1

n − 1

n−1∑
i=1

i∑
k=1

(γλ)i−kφ(xi)Tαφ(xk)

=
1

n − 1

n−1∑
i=1

(γλ)i
i∑

k=1
(γλ)−kφ(xi)Tαφ(xk).

Since ||φ(xk)r(xi)||2 �
√

dLRmax and ||φ(xi)Tαφ(xk)||2 �
√

dL,

we can derive

||ε2||2 = ||b − b̄||2
� ||b||2 + ||b̄||2
�

1
n − 1

(
1

1 − γλ )

⎡⎢⎢⎢⎢⎣
Rmax

√
dL

1 − γλ +
√

dL
1 − γλ

⎤⎥⎥⎥⎥⎦

�
(Rmax + 1)

√
dL

(n − 1)(1 − γλ)2
.

By combining 1), 2), and 3), we have

||ε1θ̄ − ε2||2
�

4dL2

(n − 1)(1 − γλ)2
||θ̄||2 + (Rmax + 1)

√
dL

(n − 1)(1 − γλ)2

�
4
√

dLVmax + (Rmax + 1)
√

dL

(n − 1)(1 − γλ)2
.

Thus, Lemma 2 is proved. �

Now, we are ready to prove Theorem 1.

Proof Equation (57) can be further transferred as

VLSTD(λ) − V̂LSTD(λ)−M

= (I − ΠZ)ΦZρ−1[(A − γB)θ̄ − b].

From Assumption 1, the Markov chain has the unique dis-

tribution ρ, and hence we use ρ to bound the error. ||VLS T D(λ)−
V̂LS T D(λ)−M ||ρ can be formulated as

||VLSTD(λ) − V̂LSTD(λ)−M||ρ
= || (I − ΠZ)ΦZρ−1

(
ε1θ̄ − ε2

)
||ρ.

Since ||ΠZ||ρ = (1−λ) γ
1−λγ < 1, we have

||(I − ΠZ)−1||ρ = ||
∞∑

i=0
(ΠZ)i||ρ � 1

1− (1−λ) γ
1−λγ

=
1−λγ
1−γ .

Notice for all x,

||ΦZρ−1x||ρ =
√

xTZρ−1ΦT DρΦZρ−1x

=

√
xTZρ−1x

�
1√
v
||x||2.

By using the above result, we have

|VLSTD(λ) − V̂LSTD(λ)−M||ρ
�

1−λγ
1−γ

1√
v
||
(
ε1θ̄ − ε2

)
||2

�
4
√

dLVmax + (Rmax + 1)
√

dL√
v(1−γ)(n − 1)(1 − γλ) . (59)

Therefore, we get the final result. �

Appendix B Proof of Theorem 2

The proof of Theorem 2 requires two conclusions, which are

shown in Lemma 3 and Lemma 4.

Lemma 3 (Tsitsiklis and Roy, 1997) The approximation

error ||V − VLS T D(λ) ||ρ between the true value function V and

the estimated value function VLS T D(λ) satisfies

||V − VLS T D(λ) ||ρ = 1 − γλ
1 − γ ||V − ΠV ||ρ.



124 Front. Comput. Sci., 2019, 13(1): 106–126

Lemma 4 (Tagorti and Scherrer, 2015) Let n0 be the

smallest number of the sample that satisfies

4dL2

√
n0 − 1(1 − γ)ν

√√√√√√√√√√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

log(n0 − 1)

log(
1
λγ

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
I(n0 − 1, δ)+

2dL2

(1 − γ)ν(n0 − 1)(1 − λγ) +
4dL2

(1 − γ)ν(n0 − 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

log(n0 − 1)

log(
1
λγ

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
< 1,

where I(n, δ) = 32Λ(n, δ) max

{
Λ(n, δ)

b
, 1

} 1
κ

and δ ∈ (0, 1).

Then the estimation error between VLS T D(λ) and V̂LS T D(λ)

satisfies the following inequality with the probability 1-δ:

||VLS T D(λ) − V̂LS T D(λ) ||ρ

�
4VmaxdL2

√
n − 1(1 − γ)ν

√√√√√√√√√√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

log(n − 1)

log(
1
γλ

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
I(n − 1, δ) + h(n, δ),

(60)

where Λ(n, δ) = log

(
8n2

δ

)
+ log(max{4e2, nβ̄}), h(n, δ) =

O(
1√
n

logk(
1√
n

)) and ν is the smallest eigenvalue of the Gram

matrix ΦTDρΦ.

Now, we are ready to prove Theorem 2.

Proof The global error comprises the following three er-

rors:

1) The approximation error ||V − ΠV ||ρ (Lemma 3);

2) The model error ||VLS T D(λ)− V̂LS T D(λ)−M ||ρ (Theorem 1);

3) The estimation error based on finite samples ||VLS T D(λ)−
V̂LS T D(λ) ||ρ (Lemma 4).

Since the global error contains
1 − γλ
1 − γ ||V − ΠV ||ρ,

||VLS T D(λ) − V̂LS T D(λ)−M ||ρ, and ||VLS T D(λ) − V̂LS T D(λ) ||ρ, the

global error ||V − V̂LS T D(λ) ||ρ can be expressed as

||V − V̂LS T D(λ) ||ρ � 1 − γλ
1 − γ ||V − ΠV ||ρ+

+||VLS T D(λ) − V̂LS T D(λ)−M ||ρ + ||VLS T D(λ) − V̂LS T D(λ) ||ρ.
By Theorems 1, 3 and 4, we get the final result. �

References

1. Sutton R S, Barto A G. Reinforcement Learning: An Introduction.

Cambridge, MA: MIT Press, 1998

2. Mnih V, Kavukcuoglu K, Silver D, Rusu A, Veness J, Bellemare M,

Graves A, Riedmiller M, Fidjeland A, Ostrovski G, Petersen S, Beattie

C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S,

Hassabis D. Human level control through deep reinforcement learning.

Nature, 2015, 518(7540): 529–533

3. Littman M L. Reinforcement learning improves behaviour from evalu-

ative feedback. Nature, 2015, 521(7553): 445–451

4. Andersson O, Heintz F, Doherty P. On the undecidability of probabilis-

tic planning and infinite-horizon partially observable. In: Proceedings

of the 29th National Conference on Artificial Intelligence. 2015, 2497–

2503

5. Bellman R E, Dreyfus S E. Applied Dynamic Programming. Princeton,

NJ: Princeton University Press, 2015

6. Barker J K, Korf R E. Limitations of front-to-end bidirectional heuristic

search. In: Proceedings of the 29th National Conference on Artificial

Intelligence. 2015, 1086–1092

7. Robert C P, Casella G. Monte Carlo Statistical Methods. New York:

Springer Science & Business Media, 2013

8. Sutton R, Mahmood A R, Precup D, Hasselt H V. A new Q (λ) with

interim forward view and Monte-Carlo equivalence. In: Proceedings

of International Conference on Machine Learning. 2014, 568–576

9. Seijen H V, Sutton R. True online TD (λ). In: Proceedings of Interna-

tional Conference on Machine Learning. 2014, 692–700

10. Hasselt H V, Mahmood A R, Sutton R S. Off-policy TD (λ) with a

true online equivalence. In: Proceedings of International Conference

on Uncertainty in Artificial Intelligence. 2014, 330–339

11. Werbos P J. Advanced forecasting methods for global crisis warning

and models of intelligence. General Systems, 1977, 22(6): 25–38

12. Al-Tamimi A, Lewis F L, Abu-Khalaf M. Discrete-time nonlinear

HJB solution using approximate dynamic programming: convergence

proof. IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, 2008, 38(4): 943–949

13. Wang F Y, Jin N, Liu D E, Wei Q L. Adaptive dynamic programming

for finite-horizon optimal control of discrete-time nonlinear systems

with ε-error bound. IEEE Transactions on Neural Networks, 2011,

22(1): 24–36

14. Liu D, Wei Q L. Policy iteration adaptive dynamic programming algo-

rithm for discrete-time nonlinear systems. IEEE Transactions on Neu-

ral Networks and Learning Systems, 2014, 25(3): 621–634

15. Murray J J, Cox C J, Lendaris G G, Saeks R. Adaptive dynamic pro-

gramming. IEEE Transactions on Systems, Man, and Cybernetics, Part

C, 2002, 32(2): 140–153

16. Hanselmann T, Noakes L, Zaknich A. Continuous time adaptive critics.

IEEE Transactions on Neural Networks, 2007, 18(3): 631–647

17. Wei Q, Song R, Yan P. Data-driven zero-sum neuro-optimal control

for a class of continuous-time unknown nonlinear systems with distur-

bance using ADP. IEEE Transactions on Neural Networks and Learn-

ing Systems, 2016, 27(2): 444–458

18. Busoniu L, Babuška R, De Schutter B, Ernst D. Reinforcement Learn-

ing and Dynamic Programming Using Function Approximators. Boca

Raton: CRC Press, 2010

19. Sutton R S. Integrated architecture for learning, planning and reacting

based on approximating dynamic programming. In: Proceedings of In-

ternational Conference on Machine Learning. 1990, 216–224



Shan ZHONG et al. Efficient reinforcement learning in continuous state and action spaces with Dyna and policy approximation 125

20. Peng J, Williams R J. Efficient learning and planning within the Dyna

framework. Adaptive Behavior, 1993, 4(1): 437–454

21. Moore A W, Atkeson C G. Prioritized sweeping: Reinforcement learn-

ing with less data and less real time. Machine Learning, 1993, 13(1):

103–130

22. Sutton R S, Szepesvári C, Geramfard A, Bowling M. Dyna-style plan-

ning with linear function approximation and prioritized sweeping. In:

Proceedings of International Conference on Uncertainty in Artificial

Intelligence. 2008, 528–536

23. Silver D, Sutton R S, Müller M. Temporal-difference search in com-

puter Go. Machine Learning, 2012, 87(2): 183–219

24. Coulom R. Efficient selectivity and backup operators in Monte-Carlo

tree search. In: Proceedings of the 5th International Conference on

Computers and Games, 2006, 72–83

25. Zhou Y C, Liu Q, Fu Q M, Zhang Z Z. Trajectory sampling value iter-

ation: Improved Dyna search for MDPs. In: Proceedings of the Inter-

national Conference on Autonomous Agents and Multiagent Systems.

2015, 1685–1686

26. Martin H, De Lope J. Ex< α>: An effective algorithm for continuous

actions reinforcement learning problems. In: Proceedings of the 35th

Annual Conference of IEEE on Industrial Electronics. 2009, 2063–

2068

27. Weinstein A, Littman M L. Bandit-based planning and learning in

continuous-action Markov decision processes. In: Proceedings of In-

ternational Conference on Automated Planning and Scheduling. 2012,

306–314

28. Busoniu L, Daniels A, Munos R, Babuška R. Optimistic planning

for continuous-action deterministic systems. In: Proceedings of IEEE

Symposium on Adaptive Dynamic Programming and Reinforcement

Learning. 2013, 69–76

29. Grondman I, Vaandrager M, Busoniu L, Babuška R, Schuitema E. Ef-

ficient model learning methods for actor-critic control. IEEE Transac-

tions on Systems, Man, and Cybernetics, Part B, 2012, 42(3): 591–602

30. Hasselt H V. Reinforcement learning in continuous state and action

spaces. In: Wiering M, van Otterlo M, eds. Reinforcement Learning.

Berlin: Springer Heidelberg, 2012, 207–251

31. Degris T, Pilarski P M, Sutton R S. Model-free reinforcement learning

with continuous action in practice. In: Proceedings of IEEE American

Control Conference. 2012, 2177–2182

32. Bradtke S J, Barto A G. Linear least-squares algorithms for temporal

difference learning. Machine Learning, 1996, 22(1–3): 33–57

33. Boyan J A. Technical update: least-square temporal difference learn-

ing. Machine learning, 2002, 49(2–3): 233–246

34. Tagorti M, Scherer B. On the rate of the convergence and error bounds

for LSTD(λ). In: Proceedings of International Conference on Machine

Learning. 2015, 528–536

35. Hwang K S, Jiang W C, Chen Y J. Model learning and knowledge

sharing for a multiagent system With Dyna-Q. IEEE Transactions on

Cybernetics, 2015, 45(5): 964–976

36. Faulkner R, Precup D. Dyna planning using a feature based generative

model. In: Proceedings of Advances in Neural Information Processing

Systems. 2010, 1–9

37. Silver D, Sutton R S, Müller M. Reinforcement learning of local shape

in the game of Go. In: Proceedings of International Joint Conference

on Artificial Intelligence. 2007, 1053–1058

38. Yao H, Szepesvári C. Approximate policy iteration with linear action

models. In: Proceedings of the 26th National Conference on Artificial

Intelligence. 2012

39. Tsitsiklis J N, Roy B V. An analysis of temporal-difference learning

with function approximation. IEEE Transactions on Automatic Con-

trol, 1997, 42(5): 674–690

40. Nedic A, Bertsekas D P. Least squares policy evaluation algorithms

with linear function approximation. Theory and Applications, 2002,

13(1–2): 79–110

41. Lazaric A, Ghavamzadeh M, Munos R. Finite-sample analysis of least-

square policy iteration. Journal of Machine Learning Research, 2012,

13(4): 3041–3074

42. Xu X, He H G, Hu D W. Efficient reinforcement learning using recur-

sive least-squares methods. Journal of Artificial Intelligence Research,

2002, 16(1): 259–292

43. Ljung L, Soderstron T. Theory and practice of recursive identification.

Cambridge, MA: MIT Press, 1983

44. Geramifard A, Bowling M, Sutton R S. Incremental least-squares tem-

poral difference learning. In: Proceedings of the National Conference

on Artificial Intelligence. 2006, 356–361

45. Berenji H R, Khedkar P. Learning and tuning fuzzy logic controllers

through reinforcements. IEEE Transactions on Neural Networks, 1992,

3(5): 724–740

46. Sutton R S. Generalization in reinforcement learning: successful exam-

ples using sparse coarse coding. Neural Information Processing Sys-

tems, 1996: 1038–1044

47. Bhatnagar S, Sutton R S, Ghavamzadeh M, Lee M. Natural actor-critic

algorithms. Automatica, 2009, 45(11): 2471–2482

48. Liu D R, Li H L, Wang D. Feature selection and feature learning for

high-dimensional batch reinforcement learning: a survey. International

Journal of Automation and Computing, 2015, 12(3): 229–242

49. Farahmand A M, Ghavamzadeh M, Szepesvári C, Mannor S. Regu-

larized fitted Q-iteration for planning in continuous-space Markovian

decision problems. In: Proceedings of American Control Conference.

2009, 725–730

50. Farahmand A M, Szepesvári C. Model selection in reinforcement

learning. Machine Learning, 2011, 85(3): 299–332

51. Kolter J Z, Ng A Y. Regularization and feature selection in least-

squares temporal difference learning. In: Proceedings of the 26th An-

nual International Conference on Machine Learning. 2009, 521–528

52. Ghavamzadeh M, Lazaric A, Munos R, Hoffman M W. Finite-sample

analysis of LASSO-TD. In: Proceedings of the 28th International Con-

ference on Machine Learning. 2011, 1177–1184

53. Mahadevan S, Liu B. Sparse Q-learning with mirror descent. In: Pro-

ceedings of the 28th Conference on Uncertainty in Artificial Intelli-

gence. 2012, 564–573

54. Painter-Wakefield C, Parr R. Greedy algorithms for sparse reinforce-

ment learning. In: Proceedings of the 29th International Conference on

Machine Learning. 2012, 1391–1398

55. Johns J, Mahadevan S. Sparse approximate policy evaluation us-

ing graph-based basis functions. Technical Report UM-CS-2009-041.

2009

56. Ghavamzadeh M, Lazaric A, Maillard O A, Munos R. LSTD with ran-

dom projections. In: Proceedings of Advances in Neural Information



126 Front. Comput. Sci., 2019, 13(1): 106–126

Processing Systems. 2010, 721–729

57. Liu B, Mahadevan S. Compressive reinforcement learning with oblique

random projections. Technical Report UM-CS-2011-024. 2011

58. Xu X, Hu D W, Lu X C. Kernel-based least squares policy iteration for

reinforcement learning. IEEE Transactionson Neural Networks, 2007,

18(4): 973–992

Shan Zhong is now a PhD candidate in

School of Computer Science and Technol-

ogy at Soochow University, China. She re-

ceived her master degree from Jiangsu Uni-

versity, China. She is also a lecturer in

Changshu Institute of Technology, China.

Her main research interests include ma-

chine learning and deep learning.

Quan Liu is now a professor and PhD su-

pervisor in School of Computer Science

and Technology at Soochow University,

China. He received his PhD degree at Jilin

University, China in 2004. He worked as

a post-doctor at Nanjing University, China

from 2006-2008. He is a senior member of

China Computer Federation. His main re-

search interests include reinforcement learning, intelligence infor-

mation processing, and automated reasoning.

Zongzhang Zhang received his PhD degree

in computer science from University of Sci-

ence and Technology of China, China in

2012. He is currently an associate professor

at Soochow University, China. He worked

as a research fellow at National University

of Singapore, Singapore from 2012 to 2014

and as a visiting scholar at Rutgers Uni-

versity, USA from 2010 to 2011. His research directions include

POMDPs, reinforcement learning, and multi-agent systems.

Qiming Fu received his master’s and PhD

degrees in School of Computer Science and

Technology at Soochow University, China

in 2011 and 2014, respectively. He works as

a lecturer at Suzhou University of Science

and Technology, China. His main research

interests include reinforcement learning,

Bayesian methods, deep learning.


