On social computing research collaboration patterns: a social network perspective

Tao WANG, Qingpeng ZHANG, Zhong LIU, Wenli LIU, Ding WEN

Front. Comput. Sci. ›› 0

PDF(724 KB)
PDF(724 KB)
Front. Comput. Sci. ›› DOI: 10.1007/s11704-011-1173-9
REVIEW ARTICLE

On social computing research collaboration patterns: a social network perspective

Author information +
History +

Abstract

The field of social computing emerged more than ten years ago. During the last decade, researchers from a variety of disciplines have been closely collaborating to boost the growth of social computing research. This paper aims at identifying key researchers and institutions, and examining the collaboration patterns in the field. We employ co-authorship network analysis at different levels to study the bibliographic information of 6 543 publications in social computing from 1998 to 2011. This paper gives a snapshot of the current research in social computing and can provide an initial guidance to new researchers in social computing.

Keywords

social computing / bibliographic analysis / computational social science / social network analysis

Cite this article

Download citation ▾
Tao WANG, Qingpeng ZHANG, Zhong LIU, Wenli LIU, Ding WEN. On social computing research collaboration patterns: a social network perspective. Front Comput Sci, https://doi.org/10.1007/s11704-011-1173-9

References

[1]
Schuler D. Social computing. Communications of the ACM, 1994, 37(1): 28- 29
CrossRef Google scholar
[2]
Wikiapedia. Social computing. http://en.wikipedia.org/wiki/Social_computing
[3]
Wang B, Hou B, Yao Y, Yan L. Human flesh search model incorporating network expansion and gossip with feedback. In: Proceedings of 13th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications. 2009, 82- 88
CrossRef Google scholar
[4]
Wang F Y, Zeng D, Hendler J A, Zhang Q, Feng Z, Gao Y, Wang H, Lai G. A study of the human flesh search engine: crowd-powered expansion of online knowledge. Computer, 2010, 43(8): 45-53
CrossRef Google scholar
[5]
Sun H, De Florio V, Gui N, Blondia C. Towards building virtual community for ambient assisted living. In: Proceedings of 16th Euromicro Conference on Parallel, Distributed and Network-Based Processing. 2007, 556-561
[6]
Liu Z, Yang D S, Zhang W M, Zhu C, Huang J C. Modeling information grid as human organization. In: Proceedings of IEEE International Conference on Machine Learning and Cybernetics. 2006, 4544-4550
CrossRef Google scholar
[7]
Liu Z, Yang D, Wen D, Zhang W, Mao W. Cyber-physical-social systems for command and control. IEEE Intelligent Systems, 2011, 26(4): 92-96
CrossRef Google scholar
[8]
Easley D, Kleinberg J. Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge: Cambridge University Press, 2010
[9]
Garfield E. Historiographic mapping of knowledge domains literature. Journal of Information Science, 2004, 30(2): 119-145
CrossRef Google scholar
[10]
Small H. Co-citation in the scientific literature: a new measure of the relationship between two documents. Journal of the American Society for Information, 1973, 24(4): 265-269
CrossRef Google scholar
[11]
Callon M, Courtial J P, Turner W A, Bauin S. From translations to problematic networks: an introduction to co-word analysis. Social Sciences Information, 1983, 22(2): 191-235
CrossRef Google scholar
[12]
White H D, McCain K W. Visualizing a discipline: an author cocitation analysis of information science, 1972 - 1995. Journal of the American Society for Information Science, 1998, 49(4): 327-355
CrossRef Google scholar
[13]
Leskovec J, Huttenlocher D, Kleinberg J. Predicting positive and negative links in online social networks. In: Proceedings of 19th International Conference on World Wide Web. 2010, 641 -650
CrossRef Google scholar
[14]
Lichtenwalter R N, Lussier J T, Chawla N V. New perspectives and methods in link prediction. In: Proceedings of 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2010, 243-252
CrossRef Google scholar
[15]
King I, Li J, Chan K T. A brief survey of computational approaches in social computing. In: Proceedings of 2009 International Joint Conference on Neural Networks. 2009, 1625-1632
CrossRef Google scholar
[16]
Zhang Q, Feng Z, Li X, Zheng X, Zhong L. 25 Years of Collaborations in IEEE Intelligent Systems. IEEE Intelligent Systems, 2010, 25(6): 67-75
CrossRef Google scholar
[17]
Newman M E J. Clustering and preferential attachment in growing networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2001, 64(2): 025102
CrossRef Google scholar
[18]
Tijssen R J W, Van Leeuwen T N. On generalising scientometric journal mapping beyond ISI’s journal and citation databases. Scientomet rics, 1955, 33(1): 93-116
CrossRef Google scholar
[19]
Tang J, Sun J, Wang C, Yang Z. Social influence analysis in large-scale networks. In: Proceedings of 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2009, 807-816
CrossRef Google scholar
[20]
Freeman L C. A set of measures of centrality based on betweenness. Sociometry, 1977, 40(1): 35-41
CrossRef Google scholar
[21]
Wasserman S, Faust K. Social Network Analysis: Methods and Applications. Cambridge: Cambridge University Press, 1994
[22]
Chen C. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377
CrossRef Google scholar
[23]
Borgatti S P, Everett M G, Freeman L C. Ucinet for Windows: Software for Social Network Analysis. Harvard: Analytic Technologies, 2002.
[24]
Zeng D, Wang F Y, Carley K M. Guest editors’ introduction: social computing. IEEE Intelligent Systems, 2007, 22(5): 20-22
CrossRef Google scholar
[25]
Cho J, Tomkins A. Guest editors’ introduction: social media and search. IEEE Internet Computing, 2007, 11(6): 13-15
CrossRef Google scholar
[26]
Liu H, Yu P S, Agarwal N, Suel T. Guest editors’ introduction: social computing in the blogosphere. IEEE Internet Computing, 2010, 14(2): 12-14
CrossRef Google scholar
[27]
Goolsby R, Curtis C. Social computing and cultural modeling. IEEE Intelligent Systems, 2011, 26(4): 29-31
CrossRef Google scholar
[28]
Loreto V, Steels L. Social dynamics: emergence of language. Nature Physics, 2007, 3: 758-760
CrossRef Google scholar
[29]
Loreto V, Baronchelli A, Mukherjee A, Puglisi A, Tria F. Statistical physics of language dynamics. Journal of Statistical Mechanics: Theory and Experiment, 2011
[30]
Wang F Y, Carley K M, Zeng D, Mao W. Social computing: from social informatics to social intelligence. IEEE Intelligent Systems, 2007, 22(2): 79-83
CrossRef Google scholar
[31]
Hotho A, Jäschke R, Schmitz C, Stumme C. Information retrieval in folksonomies: search and ranking. Semantic Web: Research and Applications. 2006, 411-426
[32]
Zeng D, Li H Q. How useful are tags? — an empirical analysis of collaborative tagging for web page recommendation. In: Proceedings of IEEE ISI 2008 PAISI, PACCF, and SOCO International Workshops on Intelligence and Security Informatics. 2008, 320-330
[33]
Cheok A D, Yang X, Ying Z Z, Billinghurst M, Kato H. Touch-space: mixed reality game space based on ubiquitous, tangible, and social computing. Personal and Ubiquitous Computing, 2002, 6(5-6): 430-442
[34]
Huberman B A. Crowdsourcing and attention. Computer, 2008, 41(11): 103-105
CrossRef Google scholar
[35]
Golder S A, Huberman B A. Usage patterns of collaborative tagging systems. Journal of Information Science, 2006, 32(2): 198-208
CrossRef Google scholar
[36]
Domes G, Heinrichs M, Michel A, Berger C, Herpertz S C. Oxytocin improves “mind-reading” in humans. Biological Psychiatry, 2007, 61(6): 731-733
CrossRef Google scholar
[37]
Castellano C, Fortunato S, Loreto V. Statistical physics of social dynamics. Reviews of Modern Physics, 2009, 81: 591-646
CrossRef Google scholar
[38]
Newman M E J. Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2001, 64(1): 016131
CrossRef Google scholar
[39]
Killgore W D S, Yurgelun-Todd D A. Neural correlates of emotional intelligence in adolescent children. Cognitive, Affective & Behavioral Neuroscience, 2007, 7(2): 140-151
CrossRef Google scholar
[40]
Lazer D, Pentland A, Adamic L, Aral S, Barabasi A L, Brewer D, Christakis N, Contractor N, Fowler J, Gutmann M, Jebara T, King G, Macy M, Roy D, Van Alstyne M. Computational Social Science. Science, 2009, 323(5915): 721-723
CrossRef Google scholar
[41]
Li X, Zeng D, Mao W, Wang F Y. Online communities: a social computing perspective. In: Proceedings of IEEE ISI 2008 PAISI, PACCF, and SOCO International Workshops on Intelligence and Security Informatics. 2008, 355-365
[42]
Li X, Mao W, Zeng D, Su P, Wang F Y. Performance evaluation of classification methods in cultural modeling. In: Proceedings of 2009 IEEE International Conference on Intelligence and Security Informatics. 2009, 248-250
[43]
Peng J, Zeng D. Topic-based web page recommendation using tags. In: Proceedings of 2009 IEEE International Conference on Intelligence and Security Informatics. 2009, 269-271
CrossRef Google scholar
[44]
Zeng D, Chen H, Lusch R, Li S H. Social media analytics and intelligence. IEEE Intelligent Systems, 2010, 25(6): 13-16
CrossRef Google scholar
[45]
Wang F Y, Zeng D, Hendler J A, Zhang Q, Feng Z, Gao Y, Wang H, Lai G. A study of the human flesh search engine: crowd-powered expansion of online knowledge. Computer, 2010, 43(8): 45-53
CrossRef Google scholar
[46]
Li X, Mao W, Zeng D, Wang F Y. Agent-based social simulation and modeling in social computing. In: Proceedings of IEEE ISI 2008 PAISI, PACCF, and SOCO International Workshops on Intelligence and Security Informatics. 2008, 401-412
[47]
Wang F Y. The emergence of intelligent enterprises: from CPS to CPSS. IEEE Intelligent Systems, 2010, 25(4): 85-88
CrossRef Google scholar
[48]
Insel T R, Fernald R D. How the brain processes social information: searching for the social brain. Annual Review of Neuroscience, 2004, 27: 697-722
CrossRef Google scholar
[49]
Nelson E E, Leibenluft E, McClure E B, Pine D S. The social reorientation of adolescence: a neuroscience perspective on the process and its relation to psychopathology. Psychological Medicine, 2005, 35(2): 163-174
CrossRef Google scholar
[50]
Phillips M L, Ladouceur C D, Drevets W C. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 2008, 13: 833-857
CrossRef Google scholar
[51]
Girvan M, Newman M E J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(724 KB)

Accesses

Citations

Detail

Sections
Recommended

/