Calculations of ionization energies and electron affinities for atoms and molecules: A comparative study with different methods

Neil Qiang SU, Igor Ying ZHANG, Jianming WU, Xin XU

Front. Chem. China ›› 0

PDF(463 KB)
PDF(463 KB)
Front. Chem. China ›› DOI: 10.1007/s11458-011-0256-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Calculations of ionization energies and electron affinities for atoms and molecules: A comparative study with different methods

Author information +
History +

Abstract

In the present work, we examined the performance of 36 density functionals, including the newly developed doubly hybrid density functional XYG3 (Y. Zhang, X. Xu, and W. A. Goddard III, Proc. Natl. Acad. Sci, USA, 2009, 106, 4963), to calculate ionization energies (IEs) and electron affinities (EAs). We used the well-established G2-1 set as reference, which contains 14 atoms and 24 molecules for IE, along with 7 atoms and 18 molecules for EA. XYG3 leads to mean absolute deviations (MADs) of 0.057 and 0.080 eV for IEs and EAs, respectively, using the basis set of 6–311+ G(3df,2p). In comparison with some other functionals, MADs for IEs are 0.109 (B2PLYP), 0.119 (M06-2X), 0.159 (X3LYP), 0.161 (PBE), 0.162 (B3LYP), 0.165 (PBE0), 0.173 (TPSS), 0.200 (BLYP), and 0.215 eV (LC-BLYP). MADs for EAs are 0.090 (X3LYP), 0.090 (B2PLYP), 0.102 (PBE), 0.103 (M06-2X), 0.104 (TPSS), 0.105 (BLYP), 0.106 (B3LYP), 0.126 (LC-BLYP), and 0.128 eV (PBE0).

Keywords

ionization energy / electron affinity / DFT / XYG3 / B3LYP

Cite this article

Download citation ▾
Neil Qiang SU, Igor Ying ZHANG, Jianming WU, Xin XU. Calculations of ionization energies and electron affinities for atoms and molecules: A comparative study with different methods. Front Chem Chin, https://doi.org/10.1007/s11458-011-0256-3

References

[1]
Lias, S. G.; Bartmess, J. E., http://webbook.nist.gov/chemistry/ion (retrieved <month>Oct</month>. <day>19</day>, 2011)
[2]
Parr, R. G.; Yang, W., Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989
[3]
Chemical Reactivity Theory, A Density Functional View, Ed. Chattaraj, P. K., CRC Press, Taylor & Francis Group, New York, 2009
[4]
Pearson, R. G., Chemical Hardness. Wiley-VCH, Weinheim, Germany, 1997
[5]
Geerlings, P.; De Proft, F.; Langenaeker, W., Chem. Rev.2003, 103, 1793-1873
CrossRef Google scholar
[6]
Mulliken, R. S., J. Chem. Phys.1934, 2, 782-793
CrossRef Google scholar
[7]
Ayers, P. W., J. Math. Chem.2008, 43, 285-303
CrossRef Google scholar
[8]
Parr, R. G.; Pearson, R. G., J. Am. Chem. Soc.1983, 105, 7512-7516
CrossRef Google scholar
[9]
Parr, R. G.; Szentpaly, L. V.; Liu, S., J. Am. Chem. Soc.1999, 121, 1922-1924
CrossRef Google scholar
[10]
Yokojima, S.; Yoshiki, N.; Yanoi, W.; Okada, A., J. Phys. Chem. B2009, 113, 16384-16392
CrossRef Google scholar
[11]
Smalo, H. S.; Astrand, P. O.; Ingebrigtsen, S., IEEE Trans. Dielectr. Electr. Insul.2010, 17, 733-741
CrossRef Google scholar
[12]
Steenken, S.; Telo, J. P.; Novais, H. M.; Candeias, L. P., J. Am. Chem. Soc.1992, 114, 4701-4709
CrossRef Google scholar
[13]
Khistyaev, K.; Bravaya, K. B.; Kamarchik, E.; Kostko, O.; Ahmed, M.; Krylov, A. I., Faraday Discuss.2011, 150, 313-330
CrossRef Google scholar
[14]
Vijayaraj, R.; Subramanian, V.; Chattaraj, P. K., J. Chem. Theory Comput.2009, 5, 2744-2753
CrossRef Google scholar
[15]
Fayet, G.; Joubert, L.; Rotureau, P.; Adamo, C., Chem. Phys. Lett.2009, 467, 407-411
CrossRef Google scholar
[16]
Pandey, P. P.; Gupta, A. K.; Singh, P. P., Asian J. Chem.2008, 20, 6417-6434
[17]
Thanikaivelan, P.; Subramanian, V.; Rao, J. R.; Nair, B. U., Chem. Phys. Lett.2000, 323, 59-70
CrossRef Google scholar
[18]
Stanton, J. F.; Gauss, J., J. Chem. Phys.1999, 111, 8785-8788
CrossRef Google scholar
[19]
Kemeny, A. E.; Francisco, J. S.; Dixon, D. A.; Feller, D., J. Chem. Phys.2003, 118, 8290-8295
CrossRef Google scholar
[20]
Parthiban, S.; Martin, J. M. L., J. Chem. Phys.2001, 114, 6014-6029
CrossRef Google scholar
[21]
Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A., J. Chem. Phys.1989, 90, 5622-5629
CrossRef Google scholar
[22]
Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A., J. Chem. Phys.1991, 94, 7221-7230
CrossRef Google scholar
[23]
Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A., J. Chem. Phys.1998, 109, 7764-7776
CrossRef Google scholar
[24]
Curtiss, L. A.; Redfern, P. C.; Raghavachari, K., J. Chem. Phys.2007, 126, 84108-84112
CrossRef Google scholar
[25]
Montgomery, J. A. Jr; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A., J. Chem. Phys.1999, 110, 2822-2827
CrossRef Google scholar
[26]
Wood, G. P. F.; Radom, L.; Petersson, G. A.; Barnes, E. C.; Frisch, M. J.; and Montgomery, Jr. J. A., J. Chem. Phys. 2006, 125, 094106/1-16
[27]
Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A., J. Chem. Phys.1998, 109, 42-55
CrossRef Google scholar
[28]
Rienstra-Kiracofe, J. C.; Tschumper, G. S.; Schaefer, H. F.; Nandi, S.; Ellison, G. B., Chem. Rev.2002, 102, 231-282
CrossRef Google scholar
[29]
Zhang, H. Y.; Sung, Y. M.; Wang, X. L., Chem. Euro. J.2003, 9, 502-508
CrossRef Google scholar
[30]
Joanteguy, S.; Pfister-Guillouzo, G.; Chermette, H., J. Phys. Chem. A1999, 103, 3505-3511
CrossRef Google scholar
[31]
Becke, A. D., Phys. Rev. A1988, 38, 3098-3100
CrossRef Google scholar
[32]
Lee, C. T.; Yang, W. T.; Parr, R. G., Phys. Rev. B1988, 37, 785-789
CrossRef Google scholar
[33]
Perdew, J. P., Phys. Rev. B1986, 33, 8822-8824
CrossRef Google scholar
[34]
Perdew, J. P.; Wang, Y., Phys. Rev. B1992, 45, 13244-13249
CrossRef Google scholar
[35]
Slater, J. C., Quamtum Theory of Molecules and Solids, v.4, McGraw-Hill, New York, 1974
[36]
Vosko, S. H.; Wilk, L.; Nusair, M., Can. J. Phys.1980, 58, 1200-1211
CrossRef Google scholar
[37]
Becke, A. D., J. Chem. Phys.1993, 98, 5648-5652
CrossRef Google scholar
[38]
Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J., J. Phys. Chem.1994, 98, 11623-11627
CrossRef Google scholar
[39]
Van Voorhis, T.; Scuseria, G. E., J. Chem. Phys.1998, 109, 400-410
CrossRef Google scholar
[40]
Tao, J.; Perdew, J.; Staroverov, V.; and Scuseria, G., Phys. Rev. Lett. 2003, 91, 146401/1-4
[41]
Zhao, Y.; and Truhlar, D. G., J. Chem. Phys. 2006, 125, 194101/1-18
[42]
Boese, A. D.; Handy, N. C., J. Chem. Phys.2002, 116, 9559-9569
CrossRef Google scholar
[43]
Schmider, H. L.; Becke, A. D., J. Chem. Phys.1998, 108, 9624-9631
CrossRef Google scholar
[44]
Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K., J. Chem. Phys.2001, 115, 3540-3544
CrossRef Google scholar
[45]
Vydrov, O. A.; Heyd, J.; Krukau, A.; and Scuseria, G. E., J. Chem. Phys. 2006, 125, 074106/1-9
[46]
Yanai, T.; Tew, D.; Handy, N. C., Chem. Phys. Lett.2004, 393, 51-57
CrossRef Google scholar
[47]
Chai, J. D.; and Head-Gordon, M., J. Chem. Phys. 2009, 131, 174105/1-13
[48]
Chai, J. D.; and Head-Gordon, M., J. Chem. Phys. 2008, 128, 084106/1-15
[49]
Chai, J. D.; Head-Gordon, M., Phys. Chem. Chem. Phys.2008, 10, 6615-6620
CrossRef Google scholar
[50]
Grimme, S., J. Comput. Chem.2006, 27, 1787-1799
CrossRef Google scholar
[51]
Schwabe, T.; Grimme, S., Phys. Chem. Chem. Phys.2007, 9, 3397-3406
CrossRef Google scholar
[52]
Zhang, Y.; Xu, X.; Goddard, W. A. III, Proc. Natl. Acad. Sci. U.S.A.2009, 106, 4963-4968
CrossRef Google scholar
[53]
Zhao, Y.; Lynch, B. J.; Truhlar, D. G., J. Phys. Chem. A2004, 108, 4786-4791
CrossRef Google scholar
[54]
Grimme, S., J. Chem. Phys. 2006, 124, 034108/1-16
[55]
Karton, A.; Tarnopolsky, A.; Lamère, J. F.; Schatz, G. C.; Martin, J. M. L., J. Phys. Chem. A2008, 112, 12868-12886
CrossRef Google scholar
[56]
Zhang, I. Y.; Luo, Y.; and Xu, X., J. Chem. Phys. 2010, 132, 194105/1-11
[57]
Zhang, I. Y.; Luo, Y.; and Xu, X., J. Chem. Phys. 2010, 133, 104105/1-12
[58]
Zhang, I. Y.; Wu, J. M.; Xu, X., Chem. Commun.2010, 46, 3057-3070
CrossRef Google scholar
[59]
Furche, F.; and Perdew, J. P., J. Chem. Phys. 2006, 124, 044103/1-27
[60]
Perdew, J.; Burke, K.; Ernzerhof, M., Phys. Rev. Lett.1996, 77, 3865-3868
CrossRef Google scholar
[61]
Boese, A. D.; Handy, N. C., J. Chem. Phys.2001, 114, 5497-5503
CrossRef Google scholar
[62]
Becke, A. D., J. Chem. Phys.1993, 98, 1372-1377
CrossRef Google scholar
[63]
Xu, X.; Goddard, W. A. III, Proc. Natl. Acad. Sci. U.S.A.2004, 101, 2673-2677
CrossRef Google scholar
[64]
Xu, X.; Zhang, Q. S.; Muller, R. P.; and Goddard III, W. A., J. Chem. Phys. 2005, 122, 014105/1-14
[65]
Adamo, C.; Barone, V., J. Chem. Phys.1999, 110, 6158-6169
CrossRef Google scholar
[66]
Ernzerhof, M.; Scuseria, G. E., J. Chem. Phys.1999, 110, 5029-5036
CrossRef Google scholar
[67]
Cohen, A. J.; Handy, N. C., Mol. Phys.2001, 99, 607-615
CrossRef Google scholar
[68]
Xu, X.; Goddard, W. A. III, J. Phys. Chem.2004, 108, 8495-8504
CrossRef Google scholar
[69]
Hamprecht, F. A.; Cohen, A.; Tozer, D. J.; Handy, N. C., J. Chem. Phys.1998, 109, 6264-6271
CrossRef Google scholar
[70]
Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P., J. Chem. Phys.2003, 119, 12129-12137
CrossRef Google scholar
[71]
Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; and Scuseria, G. E., J. Chem. Phys. 2006, 125, 224106/1-5
[72]
Zhao, Y.; Truhlar, D. G., Theor. Chem. Acc.2008, 120, 215-241
CrossRef Google scholar
[73]
Zhang, I. Y.; Xu, X., Int. Rev. Phys. Chem.2011, 30, 115-160
CrossRef Google scholar
[74]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2009.
[75]
Knoll, E. H.; Friesner, R. A., J. Phys. Chem. B2006, 110, 18787-18802
CrossRef Google scholar
[76]
Huber, K. P.; Herzberg, G. H., Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules, van Nostrand-Reinhold, New York, 1979
[77]
Ding, X. L.; Wu, J. M.; Xu, X., Chem. J. Chin. Univ.2008, 29, 396-398
[78]
Rösch, N.; Trickey, S. B., J. Chem. Phys.1997, 106, 8940-8941
CrossRef Google scholar
[79]
Galbraith, J. M.; Schaefer, H. F. III, J. Chem. Phys.1996, 105, 862-864
CrossRef Google scholar
[80]
Jensen, F., J. Chem. Theory Comput.2010, 6, 2726-2735
CrossRef Google scholar
[81]
Zhang, I. Y.; Wu, J. M.; Luo, Y.; Xu, X., J. Comput. Chem.2011, 32, 1824-1838
CrossRef Google scholar
[82]
Zhang, I. Y.; Wu, J. M.; Luo, Y.; Xu, X., J. Chem. Theory Comput.2010, 6, 1462-1469
CrossRef Google scholar

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 91027044, 20973138, 21133004), and the Ministry of Science and Technology of China (Nos. 2007CB815206, 2011CB808505).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(463 KB)

Accesses

Citations

Detail

Sections
Recommended

/