The effect of carboxymethyl-chitosan nanoparticles on proliferation of keloid fibroblast

Chao FENG, Xiguang CHEN, Jing ZHANG, Gangzheng SUN, Xiaojie CHENG, Zhiguo WANG, Hyun-Jin PARK

PDF(274 KB)
PDF(274 KB)
Front. Chem. China ›› 2011, Vol. 6 ›› Issue (1) : 31-37. DOI: 10.1007/s11458-011-0229-6
RESEARCH ARTICLE
RESEARCH ARTICLE

The effect of carboxymethyl-chitosan nanoparticles on proliferation of keloid fibroblast

Author information +
History +

Abstract

In this study, different molecular weight (MW) carboxymethyl chitosans (CM-chitosan) nanoparticles were prepared by ionic gelification. The particle size of nanoparticles was around 180–250 nm by dynamic light scattering (DLS) and transmission electron microscope (TEM). With the increase of CM-chitosan nanoparticles concentration from 2 to 200 μg/mL, the growth inhibition effects on the keloid fibroblast increased. At the concentration of 100 μg/mL, CM-chitosan nanoparticles with MW 6.3 kDa had a significant inhibitory effect (inhibition ratio 48.79%) of the proliferation of keloid fibroblast. Compared with CM-chitosan solution, the inhibition of CM-chitosan nanoparticles were lower in prior period and similar in later period. By analyzing the different effects of chitosan, CM-chitosan solution and CM-chitosan nanoparticles on proliferation of keloid fibroblast, we have found that the carboxylmethyl groups of CM-chitosan play an important role in inhibition of proliferation of keloid fibroblast.

Keywords

carboxymethyl-chitosan / nanoparticle / keloid fibroblast / proliferation

Cite this article

Download citation ▾
Chao FENG, Xiguang CHEN, Jing ZHANG, Gangzheng SUN, Xiaojie CHENG, Zhiguo WANG, Hyun-Jin PARK. The effect of carboxymethyl-chitosan nanoparticles on proliferation of keloid fibroblast. Front Chem Chin, 2011, 6(1): 31‒37 https://doi.org/10.1007/s11458-011-0229-6

References

[1]
Gopalakannan, A.; Arul , V., Aquaculture2006, 255, 179–187
CrossRef Google scholar
[2]
Qin, C.; Du, Y.; Xiao, L.; Li, Z.; Gao, X., Int. J. Biol. Macromol.2002, 31, 111–117
CrossRef Pubmed Google scholar
[3]
Qin, C.; Zhou, B.; Zeng, L.; Zhang, Z.; Liu, Y.; Du, M.; Xiao, L., Food Chem.2004, 84, 107–115
CrossRef Google scholar
[4]
Zheng, L. Y.; Zhu, J. F., Carbohydr. Polym.2003, 54, 527–530
CrossRef Google scholar
[5]
Lim, S. H.; Hudson, S. M., Carbohydr. Res.2004, 339, 313–319
CrossRef Pubmed Google scholar
[6]
Qi, L.; Xu, Z.; Jiang, X.; Hu, C.; Zou, X., Carbohydr. Res.2004, 339, 2693–2700
Pubmed
[7]
Jung, E. J.; Youn, D. K.; Lee, S. H.; No, H. K.; Ha, J. G.; Prinyawiwatkul, W., Int. J. Food Sci. Technol.2010, 45, 676–682
CrossRef Google scholar
[8]
Kong, M.; Chen, X.; Xue, Y.; Liu, C.; Yu, L.; Ji, Q.; Cha, D. S.; Park, H. J., Front. Mater. Sci. China2008, 2, 214–220
CrossRef Google scholar
[9]
Ueno, H.; Yamada, H.; Tanaka, I.; Kaba, N.; Matsuura, M.; Okumura, M.; Kadosawa, T.; Fujinaga, T., Biomaterials1999, 20, 1407–1414
CrossRef Pubmed Google scholar
[10]
Muzzarelli, R. A. A., Carbohydr. Polym.2009, 76, 167–182
CrossRef Google scholar
[11]
Chen, X. G.; Wang, Z.; Liu, W. S.; Park, H. J., Biomaterials2002, 23, 4609–4614
CrossRef Pubmed Google scholar
[12]
Hjerde, R. J. N., Vårum, K. M.; Grasdalen, H.; Tokura, S.; Smidsrød, O., BoldItalicarbohydr. Polym.1997, 34, 131–139
CrossRef Google scholar
[13]
Abdull Rasad, M. S. B.; Halim, A. S.; Hashim, K.; Rashid, A. H. A.; Yusof, N.; Shamsuddin, S., Carbohydr. Polym.2010, 79, 1094–1100
CrossRef Google scholar
[14]
Dev, A.; Mohan, J. C.; Sreeja, V.; Tamura, H.; Patzke, G. R.; Hussain, F.; Weyeneth, S.; Nair, S. V.; Jayakumar, R., Carbohydr. Polym.2010, 79, 1073–1079
CrossRef Google scholar
[15]
Shi, X.; Du, Y.; Yang, J.; Zhang, B.; Sun, L., J. Appl. Polym. Sci.2006, 100, 4689–4696
CrossRef Google scholar
[16]
Anitha, A.; Divya Rani, V. V.; Krishna, R.; Sreeja, V.; Selvamurugan, N.; Nair, S. V.; Tamura, H.; Jayakumar, R., Carbohydr. Polym.2009, 78, 672–677
CrossRef Google scholar
[17]
Alaish, S. M.; Yager, D. R.; Diegelmann, R. F.; Cohen, I. K., J. Pediatr. Surg.1995, 30, 949–952
CrossRef Pubmed Google scholar
[18]
Butler, P. D.; Longaker, M. T.; Yang, G. P., J. Am. Coll. Surg.2008, 206, 731–741
CrossRef Pubmed Google scholar
[19]
Jagadeesan, J.; Bayat, A., Int. J. Surg.2007, 5, 278–285
CrossRef Pubmed Google scholar
[20]
Tuan, T. L.; Nichter, L. S., Mol. Med. Today1998, 4, 19–24
CrossRef Pubmed Google scholar
[21]
Schäcke, H.; Döcke, W. D.; Asadullah, K., Pharmacol. Ther.2002, 96, 23–43
CrossRef Pubmed Google scholar
[22]
Chen, X. G.; Park, H. J., Carbohydr. Polym.2003, 53, 355–359
CrossRef Google scholar
[23]
Sun, G.; Chen, X.; Li, Y.; Zheng, B.; Gong, Z.; Sun, J.; Chen, H.; Li, J.; Lin, W., Front. Mater. Sci. China2008, 2, 105–112
CrossRef Google scholar
[24]
Shimojoh, M.; Fukushima, K.; Kurita, K., Carbohydr. Polym.1998, 35, 223–231
CrossRef Google scholar
[25]
Wan, A. C.; Khor, E.; Wong, J. M.; Hastings, G. W., Biomaterials1996, 17, 1529–1534
CrossRef Pubmed Google scholar
[26]
Hansen, M. B.; Nielsen, S. E.; Berg, K., J. Immunol. Methods1989, 119, 203–210
CrossRef Pubmed Google scholar
[27]
Calvo, P.; Remuñán-López, C.; Vila-Jato, J. L.; Alonso, M. J., J. Appl. Polym. Sci.1997, 63, 125–132
CrossRef Google scholar

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 81071274).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(274 KB)

Accesses

Citations

Detail

Sections
Recommended

/