Spatiotemporal variation in water footprint of grain production in China

Pute WU, Yubao WANG, Xining ZHAO, Shikun SUN, Jiming JIN

Front. Agr. Sci. Eng. ›› 0

PDF(1556 KB)
PDF(1556 KB)
Front. Agr. Sci. Eng. ›› DOI: 10.15302/J-FASE-2015060
RESEARCH ARTICLE
RESEARCH ARTICLE

Spatiotemporal variation in water footprint of grain production in China

Author information +
History +

Abstract

Water shortage has become a significant constraint to grain production in China. A more holistic approach is needed to understand the links between grain production and water consumption. Water footprint provides a framework to assess water utilization in agriculture production. This paper analyzes the spatiotemporal variation in water footprint of grain production (WFGP) in China from 1951 to 2010. The results show that, jointly motivated by the improvement of agricultural production and water use efficiency, WFGP in all areas showed a decreasing trend. National average WFGP has decreased from 3.38 to 1.31 m3·kg-1. Due to regional differences in agricultural production and water use efficiency, spatial distribution of WFGP varies significantly and its pattern has changed through time. Moreover, WFGP may show significant differences within areas of similar climatic conditions and agricultural practices, indicating that there is a strong need to improve the management of water use technology. Statistical analysis revealed that regional differences in grain yield are the main cause for variations in spatiotemporal WFGP. However, the scope for further increases in grain yield is limited, and thus, the future goal of reducing WFGP is to decrease the water use per unit area.

Keywords

water footprint / grain production / grain secu- rity / water scarcity / water-saving

Cite this article

Download citation ▾
Pute WU, Yubao WANG, Xining ZHAO, Shikun SUN, Jiming JIN. Spatiotemporal variation in water footprint of grain production in China. Front. Agr. Sci. Eng., https://doi.org/10.15302/J-FASE-2015060

References

[1]
Cheng H F, Hu Y A. Improving China’s water resources management for better adaptation to climate change. Climatic Change, 2012, 112(2): 253–282
CrossRef Google scholar
[2]
MWRC (Ministry of Water Resources of China). China water resources bulletin (1997–2010). Beijing: China Water Resources & Hydropower Press, 1998–2011 (in Chinese)
[3]
Ge L Q, Xie G D, Zhang C X, Li S M, Qi Y, Cao S Y, He T T. An evaluation of China’s water footprint. Water Resources Management, 2011, 25(10): 2633–2647
CrossRef Google scholar
[4]
Peng S. Water resources strategy and agricultural development in China. Journal of Experimental Botany, 2011, 62(6): 1709–1713
CrossRef Pubmed Google scholar
[5]
Zhu Y X, Wan B W. The parameter identification of a population model of China. Automatica, 1984, 20(4): 415–428
CrossRef Google scholar
[6]
Brown L. Who will feed China? Wake-up call for a small planet. New York: W.W. Norton & Company, 1995
[7]
Brown L R, Halweil B. China’s water shortage could shake world food security. World Watch, 1998, 11(4): 10–16
Pubmed
[8]
Frank F, Tuan F, Wailes E. Rising demand for meat: who will feed China’s hogs? In: China’s Food and Agriculture: Issues for the 21st Century. Washington: USDA- Economic Research Service, 2002
[9]
Liu J, Diamond J, Savenije H H G. China’s environment in a globalizing world. Nature, 2005, 435(7046): 1179–1186
CrossRef Pubmed Google scholar
[10]
Allan J A. Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible. In: Priorities for Water Resources Allocation and Management. London: ODA , 1993: 13–26
[11]
Hoekstra A Y. Virtual water trade: proceedings of the international expert meeting on virtual water trade. Value of Water Research Report Series No.12, UNESCO-IHE, 2003
[12]
Herath I, Green S, Singh R, Horne D, van der Zijp D, Clothier B. Water footprinting of agricultural products: a hydrological assessment for the water footprint of New Zealand’s wines. Journal of Cleaner Production, 2013, 41: 232–243
CrossRef Google scholar
[13]
Chapagain A K, Hoekstra A Y. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecological Economics, 2011, 70(4): 749–758
CrossRef Google scholar
[14]
Feng K A, Chapagain A, Suh S, Pfister S, Hubacek K. Comparison of bottom-up and top-down approaches to calculating the water footprints of nations. Economic Systems Research, 2011, 23(4): 371–385
CrossRef Google scholar
[15]
Stoeglehner G, Edwards P, Daniels P, Narodoslawsky M. The water supply footprint (WSF): a strategic planning tool for sustainable regional and local water supplies. Journal of Cleaner Production, 2011, 19(15): 1677–1686
CrossRef Google scholar
[16]
Hoekstra A Y, Chapagain A K, Aldaya M M, Mekonnen M M. The water footprint assessment manual: setting the global standard. London: Earthscan, 2011
[17]
Ma J, Hoekstra A Y, Wang H, Chapagain A K, Wang D. Virtual versus real water transfers within China. Philosophical Transactions of the Royal Society, 2006, 361(1469): 835–842
CrossRef Pubmed Google scholar
[18]
Aldaya M M, Allan J A, Hoekstra A Y. Strategic importance of green water in international crop trade. Ecological Economics, 2010, 69(4): 887–894
CrossRef Google scholar
[19]
Chapagain A K, Hoekstra A Y. The global component of freshwater demand and supply: an assessment of virtual water flows between nations as a result of trade in agricultural and industrial products. Water International, 2008, 33(1): 19–32
CrossRef Google scholar
[20]
Gerbens-Leenes P W, Van Lienden A R, Hoekstra A Y, Van der Meer T H. Biofuel scenarios in a water perspective: the global blue and green water footprint of road transport in 2030. Global Environmental Change, 2012, 22(3): 764–775
CrossRef Google scholar
[21]
Mekonnen M M, Hoekstra A Y. The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 2011, 15(5): 1577–1600
CrossRef Google scholar
[22]
Sun S, Wu P, Wang Y, Zhao X, Liu J, Zhang X. The impacts of interannual climate variability and agricultural inputs on water footprint of crop production in an irrigation district of China. Science of the Total Environment, 2013, 444: 498–507
CrossRef Pubmed Google scholar
[23]
CMA (China Meteorological Administration).&nbsp;China Meteorological Data Sharing Service System.&nbsp;China Meteorological Administration, Beijing, China.&nbsp;http://cdc.cma.gov.cn/,&nbsp;2011-<month>9</month>-<day>6</day>&nbsp;(in Chinese)
[24]
DCS-NBSC (Department of Comprehensive Statistics of National Bureau of Statistics of China).&nbsp;China compendium of statistics 1949-2004.&nbsp;Beijing:&nbsp;China Statistics Press,&nbsp;2005&nbsp;(in Chinese)
[25]
NBSC (National Bureau of Statistics of China).&nbsp;China statistical yearbook (2005-2011).&nbsp;Beijing:&nbsp;China Statistics Press,&nbsp;2006&ndash;2011 (in Chinese)
[26]
YEC-CWR(Yearbook Editorial Committee of China Water Resources).&nbsp;Yearbook of China water resources (1990-2010).&nbsp;Beijing:&nbsp;China Water Resources & Hydropower Press,&nbsp;1991&ndash;2011&nbsp;(in Chinese)
[27]
Döll P,&nbsp;Siebert S.&nbsp;Global modeling of irrigation water requirements.&nbsp;Water Resource Research,&nbsp;2002,&nbsp;38(4):&nbsp;8-1&ndash;8-10
[28]
Wang Y B,&nbsp;Wu P T,&nbsp;Zhao X N,&nbsp;Li J L,&nbsp;Lv L,&nbsp;Shao H B.&nbsp;The optimization for crop planning and some advances for water-saving crop planning in the semiarid Loess Plateau of China.&nbsp;Journal Agronomy & Crop Science,&nbsp;2010,&nbsp;196(1):&nbsp;55&ndash;65
CrossRef Google scholar
[29]
Wu P T,&nbsp;Wang Y B,&nbsp;Zhao X N.&nbsp;2010 China water footprint of grain production and virtual water flows.&nbsp;Beijing:&nbsp;China Water Resources & Hydropower Press,&nbsp;2012&nbsp;(in Chinese)
[30]
Blanke A,&nbsp;Rozelle S,&nbsp;Lohmar B,&nbsp;Wang J X,&nbsp;Huang J K.&nbsp;Water saving technology and saving water in China.&nbsp;Agricultural Water Management,&nbsp;2007,&nbsp;87(2):&nbsp;139&ndash;150
CrossRef Google scholar
[31]
Pereira L S,&nbsp;Cai L G,&nbsp;Hann M J.&nbsp;Farm water and soil management for improved water use in the North China Plain.&nbsp;Irrigation and Drainage,&nbsp;2003,&nbsp;52(4):&nbsp;299&ndash;317
CrossRef Google scholar
[32]
Fang Q X,&nbsp;Ma L,&nbsp;Green T R,&nbsp;Yu Q,&nbsp;Wang T D,&nbsp;Ahuja L R.&nbsp;Water resources and water use efficiency in the North China Plain: current status and agronomic management options.&nbsp;Agricultural Water Management,&nbsp;2010,&nbsp;97(8):&nbsp;1102&ndash;1116
[33]
Berg V,&nbsp;Bakkes J,&nbsp;Bouwman L.&nbsp;EU resource efficiency perspectives in a global context.&nbsp;Bithoven: Wageningen University & Research Centre,&nbsp;2011
[34]
Hoekstra A Y.&nbsp;The water footprint of modern consumer society.&nbsp;London and New York:&nbsp;Routledeg,&nbsp;2013
[35]
Dalin C,&nbsp;Qiu H,&nbsp;Hanasaki N,&nbsp;Mauzerall D L,&nbsp;Rodriguez-Iturbe I.&nbsp;Balancing water resource conservation and food security in China.&nbsp;Proceedings of the National Academy of Sciences of the United States of America,&nbsp;2015,&nbsp;112(15):&nbsp;4588&ndash;4593
CrossRef Pubmed Google scholar

Acknowledgements

We thank Jianmin Zhao, Xinchun Cao, Jing Liu, Ping Li, Xiaolei Li and Tianwa Zhou for their work on earlier versions of the manuscript. This work is jointly supported by the Special Foundation of National Science & Technology Supporting Plan (2011BAD29B09), National Natural Science Foundation of China (51409218), 111 Project (B12007) and the Chinese Universities Scientific Fund (2014YB050).
Compliance with ethics guidelines Pute Wu, Yubao Wang, Xining Zhao, Shikun Sun and Jiming Jin declare that they have no conflict of interest or financial conflicts to disclose.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1556 KB)

Accesses

Citations

Detail

Sections
Recommended

/