
Generation of CRISPR/Cas9-mediated lactoferrin-targeted mice by pronuclear injection of plasmid pX330
Frontiers of Agricultural Science and Engineering ›› 2015, Vol. 2 ›› Issue (3) : 242-248.
Generation of CRISPR/Cas9-mediated lactoferrin-targeted mice by pronuclear injection of plasmid pX330
Lactoferrin is a member of the transferrin family of multifunctional iron binding glycoproteins. While numerous physiological functions have been described for lactoferrin, the mechanisms underlying these functions are not clear. To further study the functions and mechanisms of lactoferrin, we modified the lactoferrin promoter of mice using the CRISPR/Cas9 system to reduce or eliminate lactoferrin expression. Seven mice with lactoferrin promoter mutations were obtained with an efficiency of 24% (7/29) by injecting the plasmid pX330, expressing a small guide RNA and human codon-optimized SpCas9, into fertilized eggs of mice. Plasmid integration and off-targeting of pX330 were not detected. These results confirmed that pronuclear injection of a circular plasmid is a feasible and efficient method for targeted mutagenesis in mice.
lactoferrin / promoter / CRISPR/Cas9 / plasmid pX330
Tab.1 Three target sites within the basic LF promoter sequences |
Score | gRNA |
---|---|
92 | CCCTACACAGGCGCTGGTACAGG |
88 | AGTACCCCCTACACAGGCGCTGG |
82 | AGCGCCTGTGTAGGGGGTACTGG |
Note: The gRNAs are scored by inverse likelihood of offtarget binding. |
Fig.1 Preparation of the CRISPR/Cas9 plasmids. (a) Schematic of sgRNAs targeting sites at critical regions of the LF promoter. The protospacer adjacent motif (PAM) sequence is labeled in blue and a 12 bp seed sequence is highlighted in red; (b) observed expression of red fluorescent protein (RFP) and green fluorescent protein (GFP), 24 h after co-transfection of pX330-sgRNA and 2Se-sgRNA, by fluorescence microscopy. (c) The percentage of RFP+GFP+ cells by flow cytometry 48 h after co-transfection is shown; (d) T7EN1 assay for Cas9-mediated cleavage in C2C12 cells and its densitometry analysis by Image J. |
Tab.2 Generation of mutant mice via pX330 plasmid injection |
No. | Injected | Pregnancy | Newborn | Mutation | Indel mutation frequency | Mutation type |
---|---|---|---|---|---|---|
1 | 238 | 4 | 11 | 3 | 3/11 (27%) | Three mice were all mutated 40 bp upstream of the target locus |
2 | 325 | 5 | 18 | 4 | 4/18 (22%) | Three of four were mutated at the target site, and the other one was mutated at both the target site and 40 bp upstream of the target locus. |
Fig.2 Generation of LF gene promoter mutation mice via the CRISPR/Cas9 system. (a) T7EN1 assay for Cas9-mediated cleavage in newborn mice from the first microinjection. Four pregnant mice resulting from the first microinjection gave birth to 11 mice. WT is the genome of Kunming wild-type mice; (b) T7EN1 assay for Cas9-mediated cleavage in newborn mice from the second microinjection. 3′, 10′, 14′, and 17′ represent the genomes of the newborn mice from the second microinjection; (c) DNA sequences of the WT and four mutant alleles in seven mice. The target site is underlined, and the PAM sequence is labeled in green. -//- represents an omitted base, and 18 and 15 bp are omitted from left to right. The numbers of mutant mice are in brackets. |
Tab.3 Off-target analysis in LF mutant mice |
Site name | Sequence | Indel mutation frequency (Mutant/Total) | Coordinate | Strand |
---|---|---|---|---|
Target site | CCCTACACAGGCGCTGGTACAGG | / | chr 9: 111019095–111019117 | − |
OT1 | aCaTACtCAGGCtCTGGTACAGG | 0/7 | chr 19: 48087277– 48087299 | − |
OT2 | CtgTACACAGGtGCTGGTAaTGG | 0/7 | chr 18: 35579256–35579278 | + |
OT3 | tCCTgCACAGGCtCTGGTAtAGG | 0/7 | chr 2: 121955005–121955027 | − |
OT4 | tCCTgCACAGGCtCTGGTAtAGG | 0/7 | chr X: 91332097–91332119 | + |
OT5 | tCCTgCACAGGCtCTGGTAtAGG | 0/3 | chr X: 92015969–92015991 | − |
OT6 | CCacACACAGGgaCTGGTACAGG | 0/3 | chr 4: 135896156–135896178 | + |
OT7 | CaCTACACAGGaGCTtGTACTGG | 0/3 | chr 7: 107035334–107035356 | − |
OT8 | CCCTgCgCtGGCcCTGGTACAGG | 0/3 | chr 3: 27673749–27673771 | − |
OT9 | CCCcACACAaGCtCTGcTACTGG | 0/3 | chr 10: 111084383–111084405 | + |
OT10 | CCCcAaACAGGaGCTGGTAgGGG | 0/3 | chr X: 134240517–134240539 | + |
OT11 | CCCTttACAGtCcCTGGTACAGG | 0/3 | chr 1: 166363559–166363581 | − |
OT12 | CCCTACAtAGatGCTGtTACAGG | 0/3 | chr 19: 48586214–48586236 | − |
Note: +, sense strand; −, antisense strand. Mismatches from the on-target sequence are lower-case and boldfaced. |
[1] |
Sorensen M, Sorensen S. The proteins in whey. Compte rendu des Travaux du Laboratoire de Carlsberg Ser Chim, 1940, 23(7): 55–99
|
[2] |
Groves M L. The isolation of a red protein from milk. Journal of the American Chemical Society, 1960, 82(13): 3345–3350
CrossRef
ADS
Google scholar
|
[3] |
Johanson B, Virtanen A I, Tweit R C, Dodson R M. Isolation of an iron-containing red protein from human milk. Acta Chemica Scandinavica, 1960, 14(2): 510–512
CrossRef
ADS
Google scholar
|
[4] |
Montreuil J, Tonnelat J, Mullet S. Preparation and properties of lactosiderophilin (lactotransferrin) of human milk. Biochimica et Biophysica Acta, 1960, 45: 413–421
CrossRef
ADS
Pubmed
Google scholar
|
[5] |
Actor J K, Hwang S A, Kruzel M L. Lactoferrin as a natural immune modulator. Current Pharmaceutical Design, 2009, 15(17): 1956–1973
CrossRef
ADS
Pubmed
Google scholar
|
[6] |
Ward P P, Conneely O M. Lactoferrin: role in iron homeostasis and host defense against microbial infection. Biometals, 2004, 17(3): 203–208
CrossRef
ADS
Pubmed
Google scholar
|
[7] |
Blais A, Malet A, Mikogami T, Martin-Rouas C, Tomé D. Oral bovine lactoferrin improves bone status of ovariectomized mice. American Journal of Physiology, Endocrinology and Metabolism, 2009, 296(6): E1281–E1288
CrossRef
ADS
Pubmed
Google scholar
|
[8] |
Malet A, Bournaud E, Lan A, Mikogami T, Tomé D, Blais A. Bovine lactoferrin improves bone status of ovariectomized mice via immune function modulation. Bone, 2011, 48(5): 1028–1035
CrossRef
ADS
Pubmed
Google scholar
|
[9] |
Mulder A M, Connellan P A, Oliver C J, Morris C A, Stevenson L M. Bovine lactoferrin supplementation supports immune and antioxidant status in healthy human males. Nutrition Research, 2008, 28(9): 583–589
CrossRef
ADS
Pubmed
Google scholar
|
[10] |
Wang Y Z, Shan T Z, Xu Z R, Feng J, Wang Z Q. Effects of the lactoferrin (LF) on the growth performance, intestinal microflora and morphology of weanling pigs. Animal Feed Science and Technology, 2007, 135(3): 263–272
CrossRef
ADS
Google scholar
|
[11] |
Velusamy S K, Ganeshnarayan K, Markowitz K, Schreiner H, Furgang D, Fine D H, Velliyagounder K. Lactoferrin knockout mice demonstrates greater susceptibility to Aggregatibacter actinomycetemcomitans–induced periodontal disease. Journal of Periodontology, 2013, 84(11): 1690–1701
Pubmed
|
[12] |
van der Strate B W, Beljaars L, Molema G, Harmsen M C, Meijer D K. Antiviral activities of lactoferrin. Antiviral Research, 2001, 52(3): 225–239
CrossRef
ADS
Pubmed
Google scholar
|
[13] |
Farnaud S, Evans R W. Lactoferrin—a multifunctional protein with antimicrobial properties. Molecular Immunology, 2003, 40(7): 395–405
CrossRef
ADS
Pubmed
Google scholar
|
[14] |
Yang N, Strøm M B, Mekonnen S M, Svendsen J S, Rekdal O. The effects of shortening lactoferrin derived peptides against tumour cells, bacteria and normal human cells. Journal of Peptide Science, 2004, 10(1): 37–46
CrossRef
ADS
Pubmed
Google scholar
|
[15] |
Garneau J E, Dupuis M È, Villion M, Romero D A, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán A H, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010, 468(7320): 67–71
CrossRef
ADS
Pubmed
Google scholar
|
[16] |
Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): E2579–E2586
CrossRef
ADS
Pubmed
Google scholar
|
[17] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821
CrossRef
ADS
Pubmed
Google scholar
|
[18] |
Mussolino C, Cathomen T. RNA guides genome engineering. Nature Biotechnology, 2013, 31(3): 208–209
CrossRef
ADS
Pubmed
Google scholar
|
[19] |
Cho S W, Kim S, Kim J M, Kim J S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31(3): 230–232
CrossRef
ADS
Pubmed
Google scholar
|
[20] |
Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, Zhang X, Zhang P, Huang X. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Research, 2013, 23(5): 720–723
CrossRef
ADS
Pubmed
Google scholar
|
[21] |
Hwang W Y, Fu Y, Reyon D, Maeder M L, Tsai S Q, Sander J D, Peterson R T, Yeh J R, Joung J K. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(3): 227–229
CrossRef
ADS
Pubmed
Google scholar
|
[22] |
Li W, Teng F, Li T, Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(8): 684–686
CrossRef
ADS
Pubmed
Google scholar
|
[23] |
Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang A P, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 2014, 156(4): 836–843
CrossRef
ADS
Pubmed
Google scholar
|
[24] |
Han H, Ma Y, Wang T, Lian L, Tian X, Hu R, Deng S, Li K, Wang F, Li N, Liu G, Zhao Y, Lian Z. One-step generation of myostatin gene knockout sheep via the CRISPR/Cas9 system. Frontiers of Agricultural Science and Engineering, 2014, 1(1): 2–5
CrossRef
ADS
Google scholar
|
[25] |
Liu Y H, Teng C T. Characterization of estrogen-responsive mouse lactoferrin promoter. Journal of Biological Chemistry, 1991, 266(32): 21880–21885
Pubmed
|
[26] |
Ramakrishna S, Cho S W, Kim S, Song M, Gopalappa R, Kim J S, Kim H. Surrogate reporter-based enrichment of cells containing RNA-guided Cas9 nuclease-induced mutations. Nature Communications, 2014, 5(3378): 3378
Pubmed
|
[27] |
Dejosez M, Krumenacker J S, Zitur L J, Passeri M, Chu L F, Songyang Z, Thomson J A, Zwaka T P. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell, 2008, 133(7): 1162–1174
CrossRef
ADS
Pubmed
Google scholar
|
[28] |
Yang H, Wang H, Shivalila C S, Cheng A W, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 2013, 154(6): 1370–1379
CrossRef
ADS
Pubmed
Google scholar
|
[29] |
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823
CrossRef
ADS
Pubmed
Google scholar
|
[30] |
Mashiko D, Fujihara Y, Satouh Y, Miyata H, Isotani A, Ikawa M. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Scientific Reports, 2013, 3(3355): 3355
Pubmed
|
[31] |
Fu Y, Sander J D, Reyon D, Cascio V M, Joung J K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 2014, 32(3): 279–284
CrossRef
ADS
Pubmed
Google scholar
|
[32] |
Ran F A, Hsu P D, Lin C Y, Gootenberg J S, Konermann S, Trevino A E, Scott D A, Inoue A, Matoba S, Zhang Y, Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154(6): 1380–1389
CrossRef
ADS
Pubmed
Google scholar
|
[33] |
Tsai S Q, Wyvekens N, Khayter C, Foden J A, Thapar V, Reyon D, Goodwin M J, Aryee M J, Joung J K. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnology, 2014, 32(6): 569–576
CrossRef
ADS
Pubmed
Google scholar
|
[34] |
Wang H, Yang H, Shivalila C S, Dawlaty M M, Cheng A W, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153(4): 910–918
CrossRef
ADS
Pubmed
Google scholar
|
/
〈 |
|
〉 |