RESEARCH ARTICLE

Correlation between specific fine root length and mycorrhizal colonization of maize in different soil types

  • Wenke LIU
Expand
  • Environment and Sustainable Development in Agriculture, Key Lab for Agro-Environment & Climate Change, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Received date: 08 Sep 2008

Accepted date: 12 Sep 2008

Published date: 05 Mar 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

A pot experiment was conducted in a glasshouse to investigate the correlation between specific fine root length (SFRL) and root colonization (RC) of maize inoculated with six arbuscular mycorrhizal fungi (AMF) in three soil types. The results showed that six AMF associated with maize presented different abilities in RC and effects on SFRL. In addition, there was a significant correlation between SFRL and RC of arbuscular mycorrhizal maize in Beijing soil (Cinnamon soil), but no significant correlation in Hubei soil (Brunisolic soil) and Guangdong soil (Red soil). It is concluded that mycorrhizal colonization decreased the SFRL of maize, and the correlation between SFRL and RC of mycorrhizal maize depended on soil type.

Cite this article

Wenke LIU . Correlation between specific fine root length and mycorrhizal colonization of maize in different soil types[J]. Frontiers of Agriculture in China, 2009 , 3(1) : 13 -15 . DOI: 10.1007/s11703-009-0004-3

1
Barker S J, Tagu D, Delp G (1998). Regulation of root and fungal morphogenesis in mycorrhizal symbioses. Plant Physiology, 116: 1201–1207

DOI

2
Berta G, Fusconi A, Trotta A (1993). VA mycorrhizal infection and the morphology and function of root systems. Environmental Experimental Botany, 33: 159–173

DOI

3
Bloom A J, Meyerhoff P A, Taylor A R, Rost T L (2003). Root development and absorption of ammonium and nitrate from the rhizosphere. Journal of Plant Growth Regulation, 21: 416–431

DOI

4
Clark R B, Zeto S K (1996). Growth and root colonization of mycorrhizal maize grown on acid and alkaline soil. Soil Biology and Biochemistry, 28: 1505–1511

DOI

5
Comas L H, Bouma T J, Eissenstat D M (2002). Linking root traits to potential growth rate in six temperate tree species. Oecologia, 132: 34–43

DOI

6
Fitter A H, Graves J D, Self G K, Brown T K, Bogie D S, Taylor K (1998). Root production, turnover and respiration under two grassland types along an altitudinal gradient: Influence of temperature and solar radiation. Oecologia, 114: 20–30

DOI

7
Hetrick B A D, Wilson G W T, Todd T C (1992). Relationships of mycorrhizal symbiosis, root strategy, and phenology among tallgrass prairie forbs. Canadian Journal of Botany, 70: 1521–1528

DOI

8
Hodge A (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162: 9–24

DOI

9
Li X L, Geoege E, Marschner H (1991). Extension of the phosphorus depletion zone in VAM white clover in a calcareous soil. Plant and Soil, 136: 41–48

DOI

10
Liu W K (2008). N, P contribution and soil adaptability of four arbuscular mycorrhizal fungi. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 3: 285–288

11
Marschner H (1998). Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Research, 56: 203–207

DOI

12
Newman E I (1966). A method of estimating the total length of root in a sample. Journal of Applied Ecology, 3: 139–145

DOI

13
Ryser P, Lambers H (1995). Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply. Plant and Soil, 170: 251–265

DOI

14
Schroeder M S, Janos D P (2005). Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density. Mycorrhiza, 15: 203–216

DOI

15
Shi J W, Wang M B, Yu L H, Zhang Y P, Zhang G M (2007). Effects of soil available nitrogen and related factors on plant fine root. Chinese Journal of Ecology, 26: 1634-1639 (in Chinese)

16
Smilauerova M, Smilauer P (2002). Morphological responses of plant roots to heterogeneity of soil resources. New Phytologist, 154: 703–715

DOI

17
West J B, Espeleta J F, Donovan L A (2004). Fine root production and turnover across a complex edaphic gradient of a Pinus palustris - A ristida stricta savanna ecosystem. Forest Ecology and Management, 189: 397–406

DOI

18
Wright I J, Westoby M (1999). Differences in seedling growth behavior among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. Journal of Ecology, 87: 85–97

DOI

19
Zangaro W, Nishidate F R, Vandresen J, Andrade G, Nogueira M A (2007). Root mycorrhizal colonization and plant responsiveness are related to root plasticity, soil fertility and successional status of native woody species in southern Brazil. Journal of Tropical Ecology, 23: 53–62

DOI

Options
Outlines

/