Artificial Intelligence in Healthcare: Review and Prediction Case Studies

Guoguang Rong, Arnaldo Mendez, Elie Bou Assi, Bo Zhao, Mohamad Sawan

PDF(1345 KB)
PDF(1345 KB)
Engineering ›› 2020, Vol. 6 ›› Issue (3) : 291-301. DOI: 10.1016/j.eng.2019.08.015

Artificial Intelligence in Healthcare: Review and Prediction Case Studies

Author information +
History +

Abstract

Artificial intelligence (AI) has been developing rapidly in recent years in terms of software algorithms, hardware implementation, and applications in a vast number of areas. In this review, we summarize the latest developments of applications of AI in biomedicine, including disease diagnostics, living assistance, biomedical information processing, and biomedical research. The aim of this review is to keep track of new scientific accomplishments, to understand the availability of technologies, to appreciate the tremendous potential of AI in biomedicine, and to provide researchers in related fields with inspiration. It can be asserted that, just like AI itself, the application of AI in biomedicine is still in its early stage. New progress and breakthroughs will continue to push the frontier and widen the scope of AI application, and fast developments are envisioned in the near future. Two case studies are provided to illustrate the prediction of epileptic seizure occurrences and the filling of a dysfunctional urinary bladder.

Keywords

Artificial intelligence / Machine learning / Deep learning Neural network / Biomedical research / Healthcare applications / Epileptic seizure / Urinary bladder filling

Cite this article

Download citation ▾
Guoguang Rong, Arnaldo Mendez, Elie Bou Assi, Bo Zhao, Mohamad Sawan. Artificial Intelligence in Healthcare: Review and Prediction Case Studies. Engineering, 2020, 6(3): 291‒301 https://doi.org/10.1016/j.eng.2019.08.015

References

[[1]]
Minsky M. Steps toward artificial intelligence. Proc IRE 1961;49(1):8–30.
[[2]]
Weng J, McClelland J, Pentland A, Sporns O, Stockman I, Sur M, et al. Autonomous mental development by robots and animals. Science 2001;291 (5504):599–600.
[[3]]
Wooldridge M, Jennings NR. Intelligent agents: theory and practice. Knowl Eng Rev 1995;10(2):115–52.
[[4]]
Huang G, Huang GB, Song S, You K. Trends in extreme learning machines: a review. Neural Netw 2015;61:32–48.
[[5]]
Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 1982;79(8):2554–8.
[[6]]
Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature 1998;393(6684):440–2.
[[7]]
Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol 2002;64:355–405.
[[8]]
Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw 2015;61:85–117.
[[9]]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436–44.
[[10]]
Arel I, Rose DC, Karnowski TP. Deep machine learning—a new frontier in artificial intelligence research. IEEE Comput Intell Mag 2010;5(4):13–8.
[[11]]
Dinkelbach HU, Vitay J, Beuth F, Hamker FH. Comparison of GPU- and CPUimplementations of mean-firing rate neural networks on parallel hardware. Network Comput Neural Syst 2012;23(4):212–36.
[[12]]
Naveros F, Garrido JA, Carrillo RR, Ros E, Luque NR. Corrigendum: event- and time-driven techniques using parallel CPU–GPU co-processing for spiking neural networks. Front Neuroinform 2018;12:24.
[[13]]
Naveros F, Luque NR, Garrido JA, Carrillo RR, Anguita M, Ros E. A spiking neural simulator integrating event-driven and time-driven computation schemes using parallel CPU–GPU co-processing: a case study. IEEE Trans Neural Netw Learn Syst 2015;26(7):1567–74.
[[14]]
Nurvitadhi E, Sheffield D, Sim J, Mishra A, Venkatesh G, Marr D. Accelerating binarized neural networks: comparison of FPGA, CPU, GPU, and ASIC. In: Proceedings of 2016 International Conference on Field-Programmable Technology; 2016 Dec 7–9; Xi’an, China; 2016. p. 77–84.
[[15]]
Bartolozzi C, Indiveri G. Synaptic dynamics in analog VLSI. Neural Comput 2007;19(10):2581–603.
[[16]]
Kwon MW, Baek MH, Hwang S, Park K, Jang T, Kim T, et al. Integrate-and-fire neuron circuit using positive feedback field effect transistor for low power operation. J Appl Phys 2018;124(15):152107.
[[17]]
Grollier J, Querlioz D, Stiles MD. Spintronic nanodevices for bioinspired computing. Proc IEEE 2016;104(10):2024–39.
[[18]]
Jeong H, Shi L. Memristor devices for neural networks. J Phys D Appl Phys 2018;52(2):023003.
[[19]]
Prezioso M, Merrikh-Bayat F, Hoskins BD, Adam GC, Likharev KK, Strukov DB. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 2015;521(7550):61–4.
[[20]]
Wen S, Huang T, Zeng Z, Chen Y, Li P. Circuit design and exponential stabilization of memristive neural networks. Neural Netw 2015;63:48–56.
[[21]]
Zhang X, Huang A, Hu Q, Xiao Z, Chu PK. Neuromorphic computing with memristor crossbar. Phys Status Solidi A 2018;215(13):1700875.
[[22]]
Yoshida J. IBM guns for 8-bit AI breakthroughs [Internet]. Cambridge: EE Times; 2018 Dec 3 [cited 2019 Jan 17]. Available from: https://www. eetimes.com/document.asp?doc_id=1334029&utm_source=eetimes&utm_ medium=networksearch.
[[23]]
Marshall RC, Freed DB, Karow CM. Learning of subordinate category names by aphasic subjects: a comparison of deep and surface-level training methods. Aphasiology 2001;15(6):585–98.
[[24]]
Erhan D, Bengio Y, Courville A, Manzagol PA, Vincent P, Bengio S. Why does unsupervised pre-training help deep learning? J Mach Learn Res 2010;11:625–60.
[[25]]
Yuan X, Xie L, Abouelenien M. A regularized ensemble framework of deep learning for cancer detection from multi-class, imbalanced training data. Pattern Recognit 2018;77:160–72.
[[26]]
Rodríguez-Pérez R, Bajorath J. Prediction of compound profiling matrices, part II: relative performance of multitask deep learning and random forest classification on the basis of varying amounts of training data. ACS Omega 2018;3(9):12033–40.
[[27]]
Dudek-Dyduch E, Tadeusiewicz R, Horzyk A. Neural network adaptation process effectiveness dependent of constant training data availability. Neurocomputing 2009;72(13–15):3138–49.
[[28]]
Chiang M, Zhang T. Fog and IoT: an overview of research opportunities. IEEE Internet Things J 2016;3(6):854–64.
[[29]]
Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS. Deep learning for visual understanding: a review. Neurocomputing 2016;187:27–48.
[[30]]
Nguyen H, Kieu LM, Wen T, Cai C. Deep learning methods in transportation domain: a review. IET Intell Transp Syst 2018;12(9):998–1004.
[[31]]
Yang D, Jiang K, Zhao D, Yu C, Cao Z, Xie S, et al. Intelligent and connected vehicles: current status and future perspectives. Sci China Technol Sci 2018;61(10):1446–71.
[[32]]
Alshahrani S, Kapetanios E. Are deep learning approaches suitable for natural language processing? In: Métais E, Meziane F, Saraee M, Sugumaran V, Vadera S, editors. Natural language processing and information systems. Cham: Springer; 2016. p. 343–9.
[[33]]
Kim TH. Emerging approach of natural language processing in opinion mining: a review. In: Tomar GS, Grosky WI, Kim TH, Mohammed S, Saha SK, editors. Ubiquitous computing and multimedia applications. Berlin: Springer; 2010. p. 121–8.
[[34]]
Schaal S. Is imitation learning the route to humanoid robots? Trends Cogn Sci 1999;3(6):233–42.
[[35]]
Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng 2018;2(10):719–31.
[[36]]
Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of deep learning in biomedicine. Mol Pharm 2016;13(5):1445–54.
[[37]]
Peng Y, Zhang Y, Wang L. Artificial intelligence in biomedical engineering and informatics: an introduction and review. Artif Intell Med 2010;48(2–3):71–3.
[[38]]
Dahal N, Nandagopal N, Nafalski A. Nedic Z. Modeling of cognition using EEG: a review and a new approach. In: Proceedings of 2011 IEEE Region 10 Conference; 2011 Nov 21–24; Bali, Indonesia; 2011. p. 1045–9.
[[39]]
Dahmani K, Tahiri A, Habert O, Elmeftouhi Y. An intelligent model of home support for people with loss of autonomy: a novel approach. In: Proceedings of 2016 International Conference on Control, Decision and Information Technologies; 2016 Apr 6–8; St. Julian’s, Malta; 2016. p. 182–5.
[[40]]
Rabhi Y, Mrabet M, Fnaiech F. A facial expression controlled wheelchair for people with disabilities. Comput Methods Programs Biomed 2018; 165:89–105.
[[41]]
Hudec M, Smutny Z. RUDO: a home ambient intelligence system for blind people. Sensors 2017;17(8):1926.
[[42]]
Tumpa SN, Islam AB, Ankon MTM. Smart care: an intelligent assistant for pregnant mothers. In: Proceedings of 2017 4th International Conference on Advances in Electrical Engineering; 2017 Sep 28–30; Dhaka, Bangladesh; 2017. p. 754–9.
[[43]]
Wu Q, Zhang YD, Tao W, Amin MG. Radar-based fall detection based on Doppler time–frequency signatures for assisted living. IET Radar Sonar Navig 2015;9(2):164–72.
[[44]]
Lloret J, Canovas A, Sendra S, Parra L. A smart communication architecture for ambient assisted living. IEEE Commun Mag 2015;53(1):26–33.
[[45]]
García-Vázquez JP, Rodríguez MD, Tentori ME, Saldaña D, Andrade ÁG, Espinoza AN. An agent-based architecture for developing activity-aware systems for assisting elderly. J Univers Comput Sci 2010;16(12):1500–20.
[[46]]
Lai DTH, Begg RK, Palaniswami M. Computational intelligence in gait research: a perspective on current applications and future challenges. IEEE Trans Inf Technol Biomed 2009;13(5):687–702.
[[47]]
Chin LC, Basah SN, Yaacob S, Juan YE, Kadir AKAB. Camera systems in human motion analysis for biomedical applications. In: Proceedings of International Conference on Mathematics, Engineering and Industrial Applications 2014; 2014 May 28–30; Penang, Malaysia; 2014. p. 090006.
[[48]]
Man DWK, Tam SF, Hui-Chan CWY. Learning to live independently with expert systems in memory rehabilitation. NeuroRehabilitation 2003;18 (1):21–9.
[[49]]
Ben Abacha A, Zweigenbaum P. MEANS: a medical question-answering system combining NLP techniques and semantic Web technologies. Inf Process Manage 2015;51(5):570–94.
[[50]]
Sarrouti M, Ouatik El Alaoui S. A machine learning-based method for question type classification in biomedical question answering. Methods Inf Med 2017;56(3):209–16.
[[51]]
Sarrouti M, El Alaoui SO. A generic document retrieval framework based on UMLS similarity for biomedical question answering system. In: Proceedings of the 8th KES International Conference on Intelligent Decision Technologies; 2016 Jun 15–17; Puerto de la Cruz, Spain; 2016. p. 207–16.
[[52]]
Sarrouti M, El Alaoui SO. A yes/no answer generator based on sentimentword scores in biomedical question answering. Int J Healthc Inf Syst Inform 2017;12(3):62–74.
[[53]]
Shahar Y. Timing is everything: temporal reasoning and temporal data maintenance in medicine. In: Horn W, Shahar Y, Lindberg G, Andreassen S, Wyatt J, editors. Artificial intelligence in medicine. Berlin: Springer; 1999. p. 30–46.
[[54]]
Rodriguez-Esteban R, Iossifov I, Rzhetsky A. Imitating manual curation of text-mined facts in biomedicine. PLoS Comput Biol 2006;2(9):e118.
[[55]]
Zhou L, Hripcsak G. Temporal reasoning with medical data—a review with emphasis on medical natural language processing. J Biomed Inform 2007;40 (2):183–202.
[[56]]
Athenikos SJ, Han H. Biomedical question answering: a survey. Comput Methods Programs Biomed 2010;99(1):1–24.
[[57]]
Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eDoctor: machine learning and the future of medicine. J Intern Med 2018;284 (6):603–19.
[[58]]
Almeida H, Meurs MJ, Kosseim L, Tsang A. Data sampling and supervised learning for HIV literature screening. IEEE Trans Nanobioscience 2016;15 (4):354–61.
[[59]]
Névéol A, Shooshan SE, Humphrey SM, Mork JG, Aronson AR. A recent advance in the automatic indexing of the biomedical literature. J Biomed Inform 2009;42(5):814–23.
[[60]]
Choi BK, Dayaram T, Parikh N, Wilkins AD, Nagarajan M, Novikov IB, et al. Literature-based automated discovery of tumor suppressor p53 phosphorylation and inhibition by NEK2. Proc Natl Acad Sci USA 2018;115 (42):10666–71.
[[61]]
Yang Z, Tang N, Zhang X, Lin H, Li Y, Yang Z. Multiple kernel learning in protein–protein interaction extraction from biomedical literature. Artif Intell Med 2011;51(3):163–73.
[[62]]
Yu W, Clyne M, Dolan SM, Yesupriya A, Wulf A, Liu T, et al. GAPscreener: an automatic tool for screening human genetic association literature in PubMed using the support vector machine technique. BMC Bioinf 2008;9(1):205.
[[63]]
Plaza L, Díaz A, Gervás P. A semantic graph-based approach to biomedical summarisation. Artif Intell Med 2011;53(1):1–14.
[[64]]
Liu F, Yu H. Learning to rank figures within a biomedical article. PLoS One 2014;9(3):e61567.
[[65]]
Ruffini G. An algorithmic information theory of consciousness. Neurosci Conscious 2017;3(1):nix019.
[[66]]
Arsiwalla XD, Herreros I, Verschure P. On three categories of conscious machines. In: Lepora NF, Mura A, Mangan M, Verschure PFMJ, Desmulliez M, Prescott TJ, editors. Biomimetic and biohybrid systems. Cham: Springer; 2016. p. 389–92.
[[67]]
Christley S, An G. A proposal for augmenting biological model construction with a semi-intelligent computational modeling assistant. Comput Math Organ Theory 2012;18(4):380–403.
[[68]]
Almog DM, Heisler EM. Computer intuition: guiding scientific research in imaging and oral implantology. J Dent Res 1997;76(10):1684–8.
[[69]]
Kanevsky J, Corban J, Gaster R, Kanevsky A, Lin S, Gilardino M. Big data and machine learning in plastic surgery: a new frontier in surgical innovation. Plast Reconstr Surg 2016;137(5):890e–7e.
[[70]]
Negoescu R. Conscience and consciousness in biomedical engineering science and practice. In: Proceedings of International Conference on Advancements of Medicine and Health Care through Technology; 2009 Sep 23–26; Cluj-Napoca, Romania; 2009. p. 209–14.
[[71]]
Sajda P. Machine learning for detection and diagnosis of disease. Annu Rev Biomed Eng 2006;8:537–65.
[[72]]
Molla M, Waddell M, Page D, Shavlik J. Using machine learning to design and interpret gene-expression microarrays. AI Mag 2004;25(1):23–44.
[[73]]
Pham TD, Wells C, Crane DI. Analysis of microarray gene expression data. Curr Bioinform 2006;1(1):37–53.
[[74]]
Shi TW, Kah WS, Mohamad MS, Moorthy K, Deris S, Sjaugi MF, et al. A review of gene selection tools in classifying cancer microarray data. Curr Bioinform 2017;12(3):202–12.
[[75]]
Vashistha R, Dangi AK, Kumar A, Chhabra D, Shukla P. Futuristic biosensors for cardiac health care: an artificial intelligence approach. 3. Biotech 2018;8 (8):358.
[[76]]
Ahmed FE. Artificial neural networks for diagnosis and survival prediction in colon cancer. Mol Cancer 2005;4(1):29.
[[77]]
Foster KR, Koprowski R, Skufca JD. Machine learning, medical diagnosis, and biomedical engineering research–commentary. BioMed Eng Online 2014;13:94.
[[78]]
Krishnan S, Athavale Y. Trends in biomedical signal feature extraction. Biomed Signal Process Control 2018;43:41–63.
[[79]]
Hamada M, Zaidan BB, Zaidan AA. A systematic review for human EEG brain signals based emotion classification, feature extraction, brain condition, group comparison. J Med Syst 2018;42(9):162.
[[80]]
Kehri V, Ingle R, Awale R, Oimbe S. Techniques of EMG signal analysis and classification of neuromuscular diseases. In: Proceedings of the International Conference on Communication and Signal Processing 2016; 2016 Dec 26–27; Lonere, India; 2016. p. 485–91.
[[81]]
Rai HM, Chatterjee K. A unique feature extraction using MRDWT for automatic classification of abnormal heartbeat from ECG big data with multilayered probabilistic neural network classifier. Appl Soft Comput 2018;72:596–608.
[[82]]
Cook MJ, O’Brien TJ, Berkovic SF, Murphy M, Morokoff A, Fabinyi G, et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol 2013;12(6):563–71.
[[83]]
Bou Assi E, Nguyen DK, Rihana S, Sawan M. Towards accurate prediction of epileptic seizures: a review. Biomed Signal Process Control 2017;34:144–57.
[[84]]
Fergus P, Hignett D, Hussain A, Al-Jumeily D, Abdel-Aziz K. Automatic epileptic seizure detection using scalp EEG and advanced artificial intelligence techniques. BioMed Res Int 2015;2015:986736.
[[85]]
Stacey WC. Seizure prediction is possible—now let’s make it practical. EBioMedicine 2018;27:3–4.
[[86]]
Kiral-Kornek I, Roy S, Nurse E, Mashford B, Karoly P, Carroll T, et al. Epileptic seizure prediction using big data and deep learning: toward a mobile system. EBioMedicine 2018;27:103–11.
[[87]]
Stoitsis J, Valavanis I, Mougiakakou SG, Golemati S, Nikita A, Nikita KS. Computer aided diagnosis based on medical image processing and artificial intelligence methods. Nucl Instrum Methods Phys Res A 2006;569(2):591–5.
[[88]]
Fasihi MS, Mikhael WB. Overview of current biomedical image segmentation methods. In: Proceedings of 2016 International Conference on Computational Science and Computational Intelligence; 2016 Dec 15–17; Las Vegas, NV, USA; 2016. p. 803–8.
[[89]]
Jo Y, Cho H, Lee SY, Choi G, Kim G, Min HS, et al. Quantitative phase imaging and artificial intelligence: a review. IEEE J Sel Top Quantum Electron 2019;25 (1):6800914.
[[90]]
Ghafarpour A, Zare I, Zadeh HG, Haddadnia J, Zadeh FJS, Zadeh ZE, et al. A review of the dedicated studies to breast cancer diagnosis by thermal imaging in the fields of medical and artificial intelligence sciences. Biomed Res 2016;27(2):543–52.
[[91]]
Personal ultrasound [Internet]. New York: Butterfly Network; c2019 [cited 2019 Jan 17]. Available from: https://english.butterflynetwork.com/.
[[92]]
Elkin PL, Schlegel DR, Anderson M, Komm J, Ficheur G, Bisson L. Artificial intelligence: bayesian versus heuristic method for diagnostic decision support. Appl Clin Inform 2018;9(2):432–9.
[[93]]
Safdar S, Zafar S, Zafar N, Khan NF. Machine learning based decision support systems (DSS) for heart disease diagnosis: a review. Artif Intell Rev 2018;50 (4):597–623.
[[94]]
Haque S, Mital D, Srinivasan S. Advances in biomedical informatics for the management of cancer. Ann NY Acad Sci 2002;980(1):287–97.
[[95]]
Ibrahim F, Thio THG, Faisal T, Neuman M. The application of biomedical engineering techniques to the diagnosis and management of tropical diseases: a review. Sensors 2015;15(3):6947–95.
[[96]]
López-Fernández H, Reboiro-Jato M, Pérez Rodríguez JA, Fdez-Riverola F, Glez-Peña D. The artificial intelligence workbench: a retrospective review. ADCAIJ 2016;5(1):73–85.
[[97]]
Tran BX, Vu GT, Ha GH, Vuong QH, Ho MT, Vuong TT, et al. Global evolution of research in artificial intelligence in health and medicine: a bibliometric study. J Clin Med 2019;8(3):360.
[[98]]
Tantin A, Bou Assi E, van Asselt E, Hached S, Sawan M. Predicting urinary bladder voiding by means of a linear discriminant analysis: validation in rats. Biomed Signal Proces Control 2020;55:101667.
[[99]]
Bou Assi E, Gagliano L, Rihana S, Nguyen DK, Sawan M. Bispectrum features and multilayer perceptron classifier to enhance seizure prediction. Sci Rep 2018;8(1):15491.
[[100]]
Sakai K, Yamada K. Machine learning studies on major brain diseases: 5-year trends of 2014–2018. Jpn J Radiol 2019;37(1):34–72.
[[101]]
Martens FMJ, van Kuppevelt HJM, Beekman JAC, Rijkhoff NJM, Heesakkers JPFA. Limited value of bladder sensation as a trigger for conditional neurostimulation in spinal cord injury patients. Neurourol Urodyn 2010;29 (3):395–400.
[[102]]
Mendez A, Sawan M, Minagawa T, Wyndaele JJ. Estimation of bladder volume from afferent neural activity. IEEE Trans Neural Syst Rehabil Eng 2013;21 (5):704–15.
[[103]]
Mendez A, Belghith A, Sawan M. A DSP for sensing the bladder volume through afferent neural pathways. IEEE Trans Biomed Circuits Syst 2014;8 (4):552–64.
[[104]]
Witten IH, Frank E. Data mining: practical machine learning tools and techniques. 2nd ed. San Fransisco: Morgan Kaufmann; 2005.
[[105]]
Motulsky H, Christopoulos A. Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. New York: Oxford University Press; 2004.
[[106]]
Mendez A. Bladder volume decoding from afferent neural activity [dissertation]. Montreal: Polytechnique Montreal; 2013.
[[107]]
Wiebe S, Eliasziw M, Bellhouse DR, Fallahay C. Burden of epilepsy: the Ontario health survey. Can J Neurol Sci 1999;26(4):263–70.
[[108]]
Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, et al. Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE). Epilepsia 2005;46(4):470–2.
[[109]]
Mormann F, Andrzejak RG, Elger CE, Lehnertz K. Seizure prediction: the long and winding road. Brain 2007;130(2):314–33.
[[110]]
Howbert JJ, Patterson EE, Stead SM, Brinkmann B, Vasoli V, Crepeau D, et al. Forecasting seizures in dogs with naturally occurring epilepsy. PLoS One 2014;9(1):e81920.
[[111]]
BouAssi E, Nguyen DK,Rihana S, SawanM.A functional-geneticscheme for seizure forecasting in canine epilepsy. IEEE Trans Biomed Eng 2018;65(6):1339–48.
[[112]]
Gagliano L, Bou Assi E, Nguyen DK, Rihana S, Sawan M. Bilateral preictal signature of phase–amplitude coupling in canine epilepsy. Epilepsy Res 2018;139:123–8.
[[113]]
van Mierlo P, Carrette E, Hallez H, Raedt R, Meurs A, Vandenberghe S, et al. Ictal-onset localization through connectivity analysis of intracranial EEG signals in patients with refractory epilepsy. Epilepsia 2013;54 (8):1409–18.
[[114]]
Bou Assi E, Rihana S, Nguyen DK, Sawan M. Effective connectivity analysis of iEEG and accurate localization of the epileptogenic focus at the onset of operculo-insular seizures. Epilepsy Res 2019;152: 42–51.
PDF(1345 KB)

Accesses

Citations

Detail

Sections
Recommended

/