A Review of 3D Printing Technology for Medical Applications

Qian Yan, Hanhua Dong, Jin Su, Jianhua Han, Bo Song, Qingsong Wei, Yusheng Shi

PDF(4089 KB)
PDF(4089 KB)
Engineering ›› 2018, Vol. 4 ›› Issue (5) : 729-742. DOI: 10.1016/j.eng.2018.07.021
Research Additive Manufacturing—Review

A Review of 3D Printing Technology for Medical Applications

Author information +
History +

Abstract

Abstract

Donor shortages for organ transplantations are a major clinical challenge worldwide. Potential risks that are inevitably encountered with traditional methods include complications, secondary injuries, and limited source donors. Three-dimensional (3D) printing technology holds the potential to solve these limitations; it can be used to rapidly manufacture personalized tissue engineering scaffolds, repair tissue defects in situ with cells, and even directly print tissue and organs. Such printed implants and organs not only perfectly match the patient’s damaged tissue, but can also have engineered material microstructures and cell arrangements to promote cell growth and differentiation. Thus, such implants allow the desired tissue repair to be achieved, and could eventually solve the donor-shortage problem. This review summarizes relevant studies and recent progress on four levels, introduces different types of biomedical materials, and discusses existing problems and development issues with 3D printing that are related to materials and to the construction of extracellular matrix in vitro for medical applications.

Keywords

3D printing / Implant / Scaffold / Biomedical material

Cite this article

Download citation ▾
Qian Yan, Hanhua Dong, Jin Su, Jianhua Han, Bo Song, Qingsong Wei, Yusheng Shi. A Review of 3D Printing Technology for Medical Applications. Engineering, 2018, 4(5): 729‒742 https://doi.org/10.1016/j.eng.2018.07.021

References

[[1]]
Wolfe R.A., Roys E.C., Merion R.M.. Trends in organ donation and transplantation in the United States, 1999–2008. Am J Transplant. 2010; 10(4 Pt 2): 961-962.
[[2]]
Yeong W.Y., Chua C.K., Leong K.F., Chandrasekaran M., Lee M.W.. Indirect fabrication of collagen scaffold based on inkjet printing technique. Rapid Prototyping J. 2006; 12(4): 229-237.
[[3]]
Butscher A., Bohner M., Doebelin N., Hofmann S., Müller R.. New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes. Acta Biomater. 2013; 9(11): 9149-9158.
[[4]]
Saunders R.E., Gough J.E., Derby B.. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials. 2008; 29(2): 193-203.
[[5]]
Xu T., Zhao W., Zhu J.M., Albanna M.Z., Yoo J.J., Atala A.. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013; 34(1): 130-139.
[[6]]
Derby B.. Printing and prototyping of tissues and scaffolds. Science. 2012; 338(6109): 921-926.
[[7]]
Wang K., Ho C.C., Zhang C., Wang B.. A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications. Engineering. 2017; 3(5): 653-662.
[[8]]
Zhao Y., Yao R., Ouyang L., Ding H., Zhang T., Zhang K., . Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication. 2014; 6(3): 035001.
[[9]]
Yap Y.L., Tan Y.S.E., Tan H.K.J., Zhen K.P., Xue Y.L.. 3D printed bio-models for medical applications. Rapid Prototyping J. 2017; 23(2): 227-235.
[[10]]
Mogali S.R., Yeong W.Y., Tan H., Tan G.J.S., Abrahams P.H., Zary N., . Evaluation by medical students of the educational value of multi-material and multi-colored three-dimensional printed models of the upper limb for anatomical education. Anat Sci Educ. 2018; 11(1): 54-64.
[[11]]
Altamimi A.A., Fernandes P.R.A., Peach C., Cooper G., Diver C.. Metallic bone fixation implants: a novel design approach for reducing the stress shielding phenomenon. Vitr Phys Prototyping. 2017; 12(2): 141-151.
[[12]]
Zhang Y., Yang Z., Li X., Chen Y., Zhang S., Du M., . Custom prosthetic reconstruction for proximal tibial osteosarcoma with proximal tibiofibular joint involved. Surg Oncol. 2008; 17(2): 87-95.
[[13]]
Galasso O., Mariconda M., Brando A., Iannò B.. Disassembly of a distal femur modular prosthesis after tumor resection. J Arthroplasty. 2010; 25(2): 334.e5–9
[[14]]
Winder J., Cooke R.S., Gray J., Fannin T., Fegan T.. Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. J Med Eng Technol. 1999; 23(1): 26-28.
[[15]]
Bian W.G., Lei P., Liang F.H., Bone Xu.H.Z.. morphogenetic protein-2 and gel complex on hydroxyapatite-coated porous titanium to repair defects of distal femur in rabbits. Chin J Orthop Trauma. 2007; 9(6): 550-554. Chinese
[[16]]
Sing S.L., Wang S., Agarwala S., Wiria F.E., Ha T.M.H., Yeong W.Y.. Fabrication of titanium based biphasic scaffold using selective laser melting and collagen immersion. Int J Bioprinting. 2017; 1(3): 65-71.
[[17]]
Sánchez-Salcedo S., Colilla M., Izquierdo-Barba I., Vallet-Regí M.. Preventing bacterial adhesion on scaffolds for bone tissue engineering. Int J Bioprinting. 2016; 2(1): 20-34.
[[18]]
Zong Q.G., Yuan C.J., Wang Y.F., Su Z.P.. Design and preparation of biocompatible zwitterionic hydroxyapatite. J Mater Chem B. 2013; 1(11): 1595-1606.
[[19]]
Izquierdo-Barba I., García-Martín J.M., Álvarez R., Palmero A., Esteban J., Pérez-Jorge C., . Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation. Acta Biomater. 2015; 15: 20-28.
[[20]]
Langer R., Vacanti J.P.. Tissue engineering. Science. 1993; 260(5110): 920-926.
[[21]]
Li S., Qian T., Wang X., Liu J., Gu X.. Noncoding RNAs and their potential therapeutic applications in tissue engineering. Engineering. 2017; 3(1): 3-15.
[[22]]
Billiet T., Vandenhaute M., Schelfhout J., Van Vlierberghe S., Dubruel P.. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012; 33(26): 6020-6041.
[[23]]
Jia A., Teoh J.E.M., Suntornnond R., Chua C.K.. Design and 3D printing of scaffolds and tissues. Engineering. 2015; 1(2): 261-268.
[[24]]
Mosadegh B., Xiong G., Dunham S., Min J.K.. Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater. 2015; 10(3): 034002.
[[25]]
Ng W.L., Wang S., Yeong W.Y., Naing M.W.. Skin bioprinting: impending reality or fantasy?. Trends Biotechnol. 2016; 34(9): 689-699.
[[26]]
Hutmacher D.W.. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000; 21(24): 2529-2543.
[[27]]
Pan T., Cao X.. Progress in the development of hydrogel-rapid prototyping for tissue engineering. Mater Chin. 2015; 34(3): 236-245. Chinese
[[28]]
Ozbolat I.T., Hospodiuk M.. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016; 76(37): 321-343.
[[29]]
Gudapati H., Dey M., Ozbolat I.. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016; 102: 20-42.
[[30]]
Ng W.L., Lee J.M., Yeong W.Y., Win Naing M.. Microvalve-based bioprinting—process, bio-inks and applications. Biomater Sci. 2017; 5(4): 632-647.
[[31]]
Koch L., Brandt O., Deiwick A., Chichkov B.. Laser assisted bioprinting at different wavelengths and pulse durations with a metal dynamic release layer: a parametric study. Int J Bioprinting. 2017; 3(1): 42-53.
[[32]]
Fedorovich N.E., Schuurman W., Wijnberg H.M., Prins H.J., van Weeren P.R., Malda J., . Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods. 2012; 18(1): 33-44.
[[33]]
Gauvin R., Chen Y.C., Lee J.W., Soman P., Zorlutuna P., Nichol J.W., . Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials. 2012; 33(15): 3824-3834.
[[34]]
Lam C.X.F., Mo X.M., Teoh S.H., Hutmacher D.W.. Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C. 2002; 20(1): 49-56.
[[35]]
Chen L., Zhu W.M., Fei Z.Q., Chen J.L., Xiong J.Y., Zhang J.F., . The study on biocompatibility of porous nHA/PLGA composite scaffolds for tissue engineering with rabbit chondrocytes in vitro. Biomed Res Int. 2013; 2013: 412745.
[[36]]
Hutmacher D.W., Schantz T., Zein I., Ng K.W., Teoh S.H., Tan K.C.. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res. 2001; 55(2): 203-216.
[[37]]
Fisher J.P., Vehof J.W.M., Dean D., van der Waerden J.P., Holland T.A., Mikos A.G., . Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. J Biomed Mater Res. 2002; 59(3): 547-556.
[[38]]
Williams J.M., Adewunmi A., Schek R.M., Flanagan C.L., Krebsbach P.H., Feinberg S.E., . Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005; 26(23): 4817-4827.
[[39]]
Zhang L.. Fabrication and fundamental research of multi-branched blood vessel scaffolds with multi-layered wall [dissertation].
[[40]]
Kim S.S., Utsunomiya H., Koski J.A., Wu B.M., Cima M.J., Sohn J., . Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann Surg. 1998; 228(1): 8-13.
[[41]]
Pati F., Jang J., Ha D.H., Won Kim S., Rhie J.W., Shim J.H., . Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014; 5: 3935.
[[42]]
Martin I., Wendt D., Heberer M.. The role of bioreactors in tissue engineering. Trends Biotechnol. 2004; 22(2): 80-86.
[[43]]
Stephens J.S., Cooper J.A., Phelan F.R.Jr, Dunkers J.P.. Perfusion flow bioreactor for 3D in situ imaging: investigating cell/biomaterials interactions. Biotechnol Bioeng. 2007; 97(4): 952-961.
[[44]]
Hong S., Sycks D., Chan H.F., Lin S., Lopez G.P., Guilak F., . 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater. 2015; 27(27): 4035-4040.
[[45]]
Hockaday L.A., Kang K.H., Colangelo N.W., Cheung P.Y.C., Duan B., Malone E., . Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication. 2012; 4(3): 035005.
[[46]]
Xue S.H., Wang Y., Zhao Y., Zhang T., Lin F., Sun W., . Preliminary study on three dimensional bioprinting of human dental pulp cells. Sci Tech Eng. 2012; 12(17): 4103-4107.
[[47]]
Cohen D.L., Lipton J.I., Bonassar L.J., Lipson H.. Additive manufacturing for in situ repair of osteochondral defects. Biofabrication. 2010; 2(3): 035004.
[[48]]
Cui X., Breitenkamp K., Finn M.G., Lotz M., D’Lima D.D.. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012; 18(11–12): 1304-1312.
[[49]]
Liu Y., Zhou G., Cao Y.. Recent progress in cartilage tissue engineering—our experience and future directions. Engineering. 2017; 3(1): 28-35.
[[50]]
Gratson G.M., Xu M., Lewis J.A.. Microperiodic structures: direct writing of three-dimensional webs. Nature. 2004; 428(6981): 386.
[[51]]
Ivirico J.L.E., Bhattacharjee M., Kuyinu E., Nair L.S., Lauencin C.T.. Regenerative engineering for knee osteoarthritis treatment: biomaterials and cell-based technologies. Engineering. 2017; 3(1): 16-27.
[[52]]
Wu C., Luo Y., Cuniberti G., Xiao Y., Gelinsky M.. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater. 2011; 7(6): 2644-2650.
[[53]]
Arakaki K., Kitamura N., Fujiki H., Kurokawa T., Iwamoto M., Ueno M., . Artificial cartilage made from a novel double-network hydrogel: in vivo effects on the normal cartilage and ex vivo evaluation of the friction property. J Biomed Mater Res A. 2010; 93(3): 1160-1168.
[[54]]
Kirschner C.M., Anseth K.S.. Hydrogels in healthcare: from static to dynamic material microenvironments. Acta Mater. 2013; 61(3): 931-944.
[[55]]
Ronken S., Wirz D., Daniels A.U., Kurokawa T., Gong J.P., Arnold M.P.. Double-network acrylamide hydrogel compositions adapted to achieve cartilage-like dynamic stiffness. Biomech Model Mechanobiol. 2013; 12(2): 243-248.
[[56]]
Sharma B., Fermanian S., Gibson M., Unterman S., Herzka D.A., Cascio B., . Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci Transl Med. 2013; 5(167): 167ra6.
[[57]]
Sun J.Y., Zhao X., Illeperuma W.R., Chaudhuri O., Oh K.H., Mooney D.J., . Highly stretchable and tough hydrogels. Nature. 2012; 489(7414): 133-136.
[[58]]
Gong J.P.. Why are double network hydrogels so tough?. Soft Matter. 2010; 6(12): 2583-2590.
[[59]]
Sherwood J.K., Riley S.L., Palazzolo R., Brown S.C., Monkhouse D.C., Coates M., . A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials. 2002; 23(24): 4739-4751.
[[60]]
Cui T., Yan Y., Zhang R., Liu L., Xu W., Wang X.. Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration. Tissue Eng Part C Methods. 2009; 15(1): 1-9.
[[61]]
Qin L., Li D.C., Cheng C., Zhang W.J., Liu Y.X.. Tissue-engineered soft tissue oriented manufacturing technologies and additive manufacturing. Chin J Tissue Eng Res. 2014; 18(8): 1263-1269. Chinese
[[62]]
Mironov V., Kasyanov V., Markwald R.R.. Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol. 2011; 22(5): 667-673.
[[63]]
Kolesky D.B., Truby R.L., Gladman A.S., Busbee T.A., Homan K.A., Lewis J.A.. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014; 26(19): 3124-3130.
[[64]]
Michael S., Sorg H., Peck C.T., Koch L., Deiwick A., Chichkov B., . Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013; 8(3): e57741.
[[65]]
Mannoor M.S., Jiang Z., James T., Kong Y.L., Malatesta K.A., Soboyejo W.O., . 3D printed bionic ears. Nano Lett. 2013; 13(6): 2634-2639.
[[66]]
Yang Y., Wang K., Gu X., Leong K.W.. Biophysical regulation of cell behavior-cross talk between substrate stiffness and nanotopography. Engineering. 2017; 3(1): 36-54.
[[67]]
Wang M., Wu Y., Lu S., Chen T., Zhao Y.. Fabrication and characterization of selective laser melting printed Ti–6Al–4V alloys subjected to heat treatment for customized implants design. Prog Nat Sci-Mater Int. 2016; 26(6): 671-677.
[[68]]
Fischer M., Joguet D., Robin G., Peltier L., Laheurte P.. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders. Mater Sci Eng C Mater Biol Appl. 2016; 62(2): 852-859.
[[69]]
Sing S.L., Yeong W.Y., Wiria F.E.. Selective laser melting of titanium alloy with 50 wt% tantalum: microstructure and mechanical properties. J Alloys Compd. 2016; 660: 461-470.
[[70]]
Sing S.L., Wiria F.E., Yeong W.Y.. Selective laser melting of lattice structures: a statistical approach to manufacturability and mechanical behavior. Robot Cim-Int Manuf. 2018; 49: 170-180.
[[71]]
Speirs M., Van Hooreweder B., Van Humbeeck J., Kruth J.P.. Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison. J Mech Behav Biomed Mater. 2017; 70: 53-59.
[[72]]
Yang Y., Wu P., Lin X., Liu Y., Bian H.. System development, formability quality and microstructure evolution of selective laser-melted magnesium. Virt Phys Prototyping. 2016; 11(3): 1-9.
[[73]]
Lu Y., Ren L., Wu S., Yang C., Lin W.. CoCrWCu alloy with antibacterial activity fabricated by selective laser melting: densification, mechanical properties and microstructural analysis. Powder Technol. 2018; 325: 289-300.
[[74]]
Lu Y., Ren L., Xu X., Yang Y., Wu S., Luo J., . Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting. J Mech Behav Biomed Mater. 2018; 81: 130-141.
[[75]]
Xu T., Binder K.W., Albanna M.Z., Dice D., Zhao W., Yoo J.J., . Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication. 2013; 5(1): 015001.
[[76]]
Yue J., Zhao P., Gerasimov J.Y., Marieke V.D.L., Grotenhuis A.. 3D-printable antimicrobial composite resins. Adv Funct Mater. 2015; 25(43): 6756-6767.
[[77]]
Pistone A., Iannazzo D., Espro C., Galvagno S., Tampieri A.. Tethering of Gly-Arg-Gly-Asp-Ser-Pro-Lys peptides on Mg-doped hydroxyapatite. Engineering. 2017; 3(1): 55-59.
[[78]]
Jia M.A., Zhao Y., Wang X., Liu L., Qin H., Li M.. A study on the chondrogenesis of collagen gel containing rapid prototyping PLGA and chon-drocytes in vivo. J Practical Stomatol. 2009; 25(1): 9-12.
[[79]]
Wu G.. Preparation of 3D printed porous hydroxyapatite scaffold coated with collagen/rhBMP-2 chitosan microspheres and ectopic bone formation investigation in vivo. [dissertation]Chinese
[[80]]
Sing S.L., Yeong W.Y., Wiria F.E., Tay B.Y., Zhao Z.. Direct selective laser sintering and melting of ceramics: a review. Rapid Prototyping J. 2017; 23(3): 611-623.
[[81]]
Trombetta R., Inzana J.A., Schwarz E.M., Kates S.L., Awad H.A.. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng. 2017; 45(1): 23-44.
[[82]]
Song C.. Study on digital and direct manufacturing of customized implant based on selective laser melting. [dissertation]Chinese
[[83]]
Lee A.Y., Jia A., Chua C.K.. Two-way 4D printing: a review on the reversibility of 3D-printed shape memory materials. Engineering. 2017; 3(5): 663-674.
[[84]]
Quan W.. 3D-printed alginate/hydroxyapatite hydrogel in combination of Atsttrin to repair bone defects. [dissertation]Chinese
[[85]]
Yan Y., Li S., Xiong Z., Wang X.H., Zhang T., Zhang R.J.. Fabrication technology of tissue engineering scaffold based on rapid prototyping. J Mech Eng. 2010; 46(5): 93-98.
[[86]]
McGuigan A.P., Sefton M.V.. Design criteria for a modular tissue-engineered construct. Tissue Eng. 2007; 13(5): 1079-1089.
[[87]]
Chai G., Zhang Y., Liu Q.H., Ma S.X., Hu Q.X., Cui L., . A pilot study of three dimensional printing of human bone marrow stem cells (hBMSCs). Shanghai J Stomatol. 2010; 19(1): 77-80. Chinese
[[88]]
Mironov V., Drake C., Wen X.. Research project: Charleston bioengineered kidney project. Biotechnol J. 2006; 1(9): 903-905.
Acknowledgements

This work was sponsored by the National Key R&D Program of China (2016YFB1101303), the Wuhan Morning Light Plan of Youth Science and Technology (0216110066), and the Academic Frontier Youth Team at Huazhong University of Science and Technology.

Compliance with ethics guidelines

Qian Yan, Hanhua Dong, Jin Su, Jianhua Han, Bo Song, Qingsong Wei, and Yusheng Shi declare that they have no conflict of interest or financial conflicts to disclose.

PDF(4089 KB)

Accesses

Citations

Detail

Sections
Recommended

/