A Review of 3D Printing Technology for Medical Applications
Qian Yan, Hanhua Dong, Jin Su, Jianhua Han, Bo Song, Qingsong Wei, Yusheng Shi
A Review of 3D Printing Technology for Medical Applications
Donor shortages for organ transplantations are a major clinical challenge worldwide. Potential risks that are inevitably encountered with traditional methods include complications, secondary injuries, and limited source donors. Three-dimensional (3D) printing technology holds the potential to solve these limitations; it can be used to rapidly manufacture personalized tissue engineering scaffolds, repair tissue defects in situ with cells, and even directly print tissue and organs. Such printed implants and organs not only perfectly match the patient’s damaged tissue, but can also have engineered material microstructures and cell arrangements to promote cell growth and differentiation. Thus, such implants allow the desired tissue repair to be achieved, and could eventually solve the donor-shortage problem. This review summarizes relevant studies and recent progress on four levels, introduces different types of biomedical materials, and discusses existing problems and development issues with 3D printing that are related to materials and to the construction of extracellular matrix in vitro for medical applications.
3D printing / Implant / Scaffold / Biomedical material
[[1]] |
Wolfe R.A., Roys E.C., Merion R.M.. Trends in organ donation and transplantation in the United States, 1999–2008. Am J Transplant. 2010; 10(4 Pt 2): 961-962.
|
[[2]] |
Yeong W.Y., Chua C.K., Leong K.F., Chandrasekaran M., Lee M.W.. Indirect fabrication of collagen scaffold based on inkjet printing technique. Rapid Prototyping J. 2006; 12(4): 229-237.
|
[[3]] |
Butscher A., Bohner M., Doebelin N., Hofmann S., Müller R.. New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes. Acta Biomater. 2013; 9(11): 9149-9158.
|
[[4]] |
Saunders R.E., Gough J.E., Derby B.. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials. 2008; 29(2): 193-203.
|
[[5]] |
Xu T., Zhao W., Zhu J.M., Albanna M.Z., Yoo J.J., Atala A.. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013; 34(1): 130-139.
|
[[6]] |
Derby B.. Printing and prototyping of tissues and scaffolds. Science. 2012; 338(6109): 921-926.
|
[[7]] |
Wang K., Ho C.C., Zhang C., Wang B.. A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications. Engineering. 2017; 3(5): 653-662.
|
[[8]] |
Zhao Y., Yao R., Ouyang L., Ding H., Zhang T., Zhang K.,
|
[[9]] |
Yap Y.L., Tan Y.S.E., Tan H.K.J., Zhen K.P., Xue Y.L.. 3D printed bio-models for medical applications. Rapid Prototyping J. 2017; 23(2): 227-235.
|
[[10]] |
Mogali S.R., Yeong W.Y., Tan H., Tan G.J.S., Abrahams P.H., Zary N.,
|
[[11]] |
Altamimi A.A., Fernandes P.R.A., Peach C., Cooper G., Diver C.. Metallic bone fixation implants: a novel design approach for reducing the stress shielding phenomenon. Vitr Phys Prototyping. 2017; 12(2): 141-151.
|
[[12]] |
Zhang Y., Yang Z., Li X., Chen Y., Zhang S., Du M.,
|
[[13]] |
Galasso O., Mariconda M., Brando A., Iannò B.. Disassembly of a distal femur modular prosthesis after tumor resection. J Arthroplasty. 2010; 25(2): 334.e5–9
|
[[14]] |
Winder J., Cooke R.S., Gray J., Fannin T., Fegan T.. Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. J Med Eng Technol. 1999; 23(1): 26-28.
|
[[15]] |
Bian W.G., Lei P., Liang F.H., Bone Xu.H.Z.. morphogenetic protein-2 and gel complex on hydroxyapatite-coated porous titanium to repair defects of distal femur in rabbits. Chin J Orthop Trauma. 2007; 9(6): 550-554. Chinese
|
[[16]] |
Sing S.L., Wang S., Agarwala S., Wiria F.E., Ha T.M.H., Yeong W.Y.. Fabrication of titanium based biphasic scaffold using selective laser melting and collagen immersion. Int J Bioprinting. 2017; 1(3): 65-71.
|
[[17]] |
Sánchez-Salcedo S., Colilla M., Izquierdo-Barba I., Vallet-Regí M.. Preventing bacterial adhesion on scaffolds for bone tissue engineering. Int J Bioprinting. 2016; 2(1): 20-34.
|
[[18]] |
Zong Q.G., Yuan C.J., Wang Y.F., Su Z.P.. Design and preparation of biocompatible zwitterionic hydroxyapatite. J Mater Chem B. 2013; 1(11): 1595-1606.
|
[[19]] |
Izquierdo-Barba I., García-Martín J.M., Álvarez R., Palmero A., Esteban J., Pérez-Jorge C.,
|
[[20]] |
Langer R., Vacanti J.P.. Tissue engineering. Science. 1993; 260(5110): 920-926.
|
[[21]] |
Li S., Qian T., Wang X., Liu J., Gu X.. Noncoding RNAs and their potential therapeutic applications in tissue engineering. Engineering. 2017; 3(1): 3-15.
|
[[22]] |
Billiet T., Vandenhaute M., Schelfhout J., Van Vlierberghe S., Dubruel P.. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012; 33(26): 6020-6041.
|
[[23]] |
Jia A., Teoh J.E.M., Suntornnond R., Chua C.K.. Design and 3D printing of scaffolds and tissues. Engineering. 2015; 1(2): 261-268.
|
[[24]] |
Mosadegh B., Xiong G., Dunham S., Min J.K.. Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater. 2015; 10(3): 034002.
|
[[25]] |
Ng W.L., Wang S., Yeong W.Y., Naing M.W.. Skin bioprinting: impending reality or fantasy?. Trends Biotechnol. 2016; 34(9): 689-699.
|
[[26]] |
Hutmacher D.W.. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000; 21(24): 2529-2543.
|
[[27]] |
Pan T., Cao X.. Progress in the development of hydrogel-rapid prototyping for tissue engineering. Mater Chin. 2015; 34(3): 236-245. Chinese
|
[[28]] |
Ozbolat I.T., Hospodiuk M.. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016; 76(37): 321-343.
|
[[29]] |
Gudapati H., Dey M., Ozbolat I.. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016; 102: 20-42.
|
[[30]] |
Ng W.L., Lee J.M., Yeong W.Y., Win Naing M.. Microvalve-based bioprinting—process, bio-inks and applications. Biomater Sci. 2017; 5(4): 632-647.
|
[[31]] |
Koch L., Brandt O., Deiwick A., Chichkov B.. Laser assisted bioprinting at different wavelengths and pulse durations with a metal dynamic release layer: a parametric study. Int J Bioprinting. 2017; 3(1): 42-53.
|
[[32]] |
Fedorovich N.E., Schuurman W., Wijnberg H.M., Prins H.J., van Weeren P.R., Malda J.,
|
[[33]] |
Gauvin R., Chen Y.C., Lee J.W., Soman P., Zorlutuna P., Nichol J.W.,
|
[[34]] |
Lam C.X.F., Mo X.M., Teoh S.H., Hutmacher D.W.. Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C. 2002; 20(1): 49-56.
|
[[35]] |
Chen L., Zhu W.M., Fei Z.Q., Chen J.L., Xiong J.Y., Zhang J.F.,
|
[[36]] |
Hutmacher D.W., Schantz T., Zein I., Ng K.W., Teoh S.H., Tan K.C.. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res. 2001; 55(2): 203-216.
|
[[37]] |
Fisher J.P., Vehof J.W.M., Dean D., van der Waerden J.P., Holland T.A., Mikos A.G.,
|
[[38]] |
Williams J.M., Adewunmi A., Schek R.M., Flanagan C.L., Krebsbach P.H., Feinberg S.E.,
|
[[39]] |
Zhang L.. Fabrication and fundamental research of multi-branched blood vessel scaffolds with multi-layered wall [dissertation].
|
[[40]] |
Kim S.S., Utsunomiya H., Koski J.A., Wu B.M., Cima M.J., Sohn J.,
|
[[41]] |
Pati F., Jang J., Ha D.H., Won Kim S., Rhie J.W., Shim J.H.,
|
[[42]] |
Martin I., Wendt D., Heberer M.. The role of bioreactors in tissue engineering. Trends Biotechnol. 2004; 22(2): 80-86.
|
[[43]] |
Stephens J.S., Cooper J.A., Phelan F.R.Jr, Dunkers J.P.. Perfusion flow bioreactor for 3D in situ imaging: investigating cell/biomaterials interactions. Biotechnol Bioeng. 2007; 97(4): 952-961.
|
[[44]] |
Hong S., Sycks D., Chan H.F., Lin S., Lopez G.P., Guilak F.,
|
[[45]] |
Hockaday L.A., Kang K.H., Colangelo N.W., Cheung P.Y.C., Duan B., Malone E.,
|
[[46]] |
Xue S.H., Wang Y., Zhao Y., Zhang T., Lin F., Sun W.,
|
[[47]] |
Cohen D.L., Lipton J.I., Bonassar L.J., Lipson H.. Additive manufacturing for in situ repair of osteochondral defects. Biofabrication. 2010; 2(3): 035004.
|
[[48]] |
Cui X., Breitenkamp K., Finn M.G., Lotz M., D’Lima D.D.. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012; 18(11–12): 1304-1312.
|
[[49]] |
Liu Y., Zhou G., Cao Y.. Recent progress in cartilage tissue engineering—our experience and future directions. Engineering. 2017; 3(1): 28-35.
|
[[50]] |
Gratson G.M., Xu M., Lewis J.A.. Microperiodic structures: direct writing of three-dimensional webs. Nature. 2004; 428(6981): 386.
|
[[51]] |
Ivirico J.L.E., Bhattacharjee M., Kuyinu E., Nair L.S., Lauencin C.T.. Regenerative engineering for knee osteoarthritis treatment: biomaterials and cell-based technologies. Engineering. 2017; 3(1): 16-27.
|
[[52]] |
Wu C., Luo Y., Cuniberti G., Xiao Y., Gelinsky M.. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater. 2011; 7(6): 2644-2650.
|
[[53]] |
Arakaki K., Kitamura N., Fujiki H., Kurokawa T., Iwamoto M., Ueno M.,
|
[[54]] |
Kirschner C.M., Anseth K.S.. Hydrogels in healthcare: from static to dynamic material microenvironments. Acta Mater. 2013; 61(3): 931-944.
|
[[55]] |
Ronken S., Wirz D., Daniels A.U., Kurokawa T., Gong J.P., Arnold M.P.. Double-network acrylamide hydrogel compositions adapted to achieve cartilage-like dynamic stiffness. Biomech Model Mechanobiol. 2013; 12(2): 243-248.
|
[[56]] |
Sharma B., Fermanian S., Gibson M., Unterman S., Herzka D.A., Cascio B.,
|
[[57]] |
Sun J.Y., Zhao X., Illeperuma W.R., Chaudhuri O., Oh K.H., Mooney D.J.,
|
[[58]] |
Gong J.P.. Why are double network hydrogels so tough?. Soft Matter. 2010; 6(12): 2583-2590.
|
[[59]] |
Sherwood J.K., Riley S.L., Palazzolo R., Brown S.C., Monkhouse D.C., Coates M.,
|
[[60]] |
Cui T., Yan Y., Zhang R., Liu L., Xu W., Wang X.. Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration. Tissue Eng Part C Methods. 2009; 15(1): 1-9.
|
[[61]] |
Qin L., Li D.C., Cheng C., Zhang W.J., Liu Y.X.. Tissue-engineered soft tissue oriented manufacturing technologies and additive manufacturing. Chin J Tissue Eng Res. 2014; 18(8): 1263-1269. Chinese
|
[[62]] |
Mironov V., Kasyanov V., Markwald R.R.. Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol. 2011; 22(5): 667-673.
|
[[63]] |
Kolesky D.B., Truby R.L., Gladman A.S., Busbee T.A., Homan K.A., Lewis J.A.. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014; 26(19): 3124-3130.
|
[[64]] |
Michael S., Sorg H., Peck C.T., Koch L., Deiwick A., Chichkov B.,
|
[[65]] |
Mannoor M.S., Jiang Z., James T., Kong Y.L., Malatesta K.A., Soboyejo W.O.,
|
[[66]] |
Yang Y., Wang K., Gu X., Leong K.W.. Biophysical regulation of cell behavior-cross talk between substrate stiffness and nanotopography. Engineering. 2017; 3(1): 36-54.
|
[[67]] |
Wang M., Wu Y., Lu S., Chen T., Zhao Y.. Fabrication and characterization of selective laser melting printed Ti–6Al–4V alloys subjected to heat treatment for customized implants design. Prog Nat Sci-Mater Int. 2016; 26(6): 671-677.
|
[[68]] |
Fischer M., Joguet D., Robin G., Peltier L., Laheurte P.. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders. Mater Sci Eng C Mater Biol Appl. 2016; 62(2): 852-859.
|
[[69]] |
Sing S.L., Yeong W.Y., Wiria F.E.. Selective laser melting of titanium alloy with 50 wt% tantalum: microstructure and mechanical properties. J Alloys Compd. 2016; 660: 461-470.
|
[[70]] |
Sing S.L., Wiria F.E., Yeong W.Y.. Selective laser melting of lattice structures: a statistical approach to manufacturability and mechanical behavior. Robot Cim-Int Manuf. 2018; 49: 170-180.
|
[[71]] |
Speirs M., Van Hooreweder B., Van Humbeeck J., Kruth J.P.. Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison. J Mech Behav Biomed Mater. 2017; 70: 53-59.
|
[[72]] |
Yang Y., Wu P., Lin X., Liu Y., Bian H.. System development, formability quality and microstructure evolution of selective laser-melted magnesium. Virt Phys Prototyping. 2016; 11(3): 1-9.
|
[[73]] |
Lu Y., Ren L., Wu S., Yang C., Lin W.. CoCrWCu alloy with antibacterial activity fabricated by selective laser melting: densification, mechanical properties and microstructural analysis. Powder Technol. 2018; 325: 289-300.
|
[[74]] |
Lu Y., Ren L., Xu X., Yang Y., Wu S., Luo J.,
|
[[75]] |
Xu T., Binder K.W., Albanna M.Z., Dice D., Zhao W., Yoo J.J.,
|
[[76]] |
Yue J., Zhao P., Gerasimov J.Y., Marieke V.D.L., Grotenhuis A.. 3D-printable antimicrobial composite resins. Adv Funct Mater. 2015; 25(43): 6756-6767.
|
[[77]] |
Pistone A., Iannazzo D., Espro C., Galvagno S., Tampieri A.. Tethering of Gly-Arg-Gly-Asp-Ser-Pro-Lys peptides on Mg-doped hydroxyapatite. Engineering. 2017; 3(1): 55-59.
|
[[78]] |
Jia M.A., Zhao Y., Wang X., Liu L., Qin H., Li M.. A study on the chondrogenesis of collagen gel containing rapid prototyping PLGA and chon-drocytes in vivo. J Practical Stomatol. 2009; 25(1): 9-12.
|
[[79]] |
Wu G.. Preparation of 3D printed porous hydroxyapatite scaffold coated with collagen/rhBMP-2 chitosan microspheres and ectopic bone formation investigation in vivo. [dissertation]Chinese
|
[[80]] |
Sing S.L., Yeong W.Y., Wiria F.E., Tay B.Y., Zhao Z.. Direct selective laser sintering and melting of ceramics: a review. Rapid Prototyping J. 2017; 23(3): 611-623.
|
[[81]] |
Trombetta R., Inzana J.A., Schwarz E.M., Kates S.L., Awad H.A.. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng. 2017; 45(1): 23-44.
|
[[82]] |
Song C.. Study on digital and direct manufacturing of customized implant based on selective laser melting. [dissertation]Chinese
|
[[83]] |
Lee A.Y., Jia A., Chua C.K.. Two-way 4D printing: a review on the reversibility of 3D-printed shape memory materials. Engineering. 2017; 3(5): 663-674.
|
[[84]] |
Quan W.. 3D-printed alginate/hydroxyapatite hydrogel in combination of Atsttrin to repair bone defects. [dissertation]Chinese
|
[[85]] |
Yan Y., Li S., Xiong Z., Wang X.H., Zhang T., Zhang R.J.. Fabrication technology of tissue engineering scaffold based on rapid prototyping. J Mech Eng. 2010; 46(5): 93-98.
|
[[86]] |
McGuigan A.P., Sefton M.V.. Design criteria for a modular tissue-engineered construct. Tissue Eng. 2007; 13(5): 1079-1089.
|
[[87]] |
Chai G., Zhang Y., Liu Q.H., Ma S.X., Hu Q.X., Cui L.,
|
[[88]] |
Mironov V., Drake C., Wen X.. Research project: Charleston bioengineered kidney project. Biotechnol J. 2006; 1(9): 903-905.
|
This work was sponsored by the National Key R&D Program of China (2016YFB1101303), the Wuhan Morning Light Plan of Youth Science and Technology (0216110066), and the Academic Frontier Youth Team at Huazhong University of Science and Technology.
Qian Yan, Hanhua Dong, Jin Su, Jianhua Han, Bo Song, Qingsong Wei, and Yusheng Shi declare that they have no conflict of interest or financial conflicts to disclose.
/
〈 | 〉 |