The next-generation therapies in ophthalmology for blindness worldwide

Jie Xu, Chang-Jun Zhang, Jia-Yi Jiang, Zi-Bing Jin

Eye & ENT Research ›› 2024, Vol. 1 ›› Issue (1) : 20-38.

PDF(520 KB)
PDF(520 KB)
Eye & ENT Research ›› 2024, Vol. 1 ›› Issue (1) : 20-38. DOI: 10.1002/eer3.4
REVIEW ARTICLE

The next-generation therapies in ophthalmology for blindness worldwide

Author information +
History +

Abstract

With the rapid and groundbreaking development in 21st century medicine on a global scale, new possibilities have emerged for addressing eye diseases, that can be blindness, and that conventional pharmaceuticals and surgical interventions have not hitherto been able to adequately treat. Gene enhancement/supplementation, gene editing, and stem cell therapies have now emerged as key subdisciplines. Here we discuss the current state and prospects of regenerative therapy in the field of ophthalmology, with a primary focus on diseases affecting the cornea, retina, and optic nerve. Our review summarizes the latest advances, challenges, and opportunities in these fields, as well as the potential applications and limitations of different strategies. The review also highlights the importance of interdisciplinary and collaborative innovation models for achieving breakthroughs in therapeutic development for sight-loss diseases worldwide.

Keywords

blindness / gene editing / gene therapy / global / stem cell therapy

Cite this article

Download citation ▾
Jie Xu, Chang-Jun Zhang, Jia-Yi Jiang, Zi-Bing Jin. The next-generation therapies in ophthalmology for blindness worldwide. Eye & ENT Research, 2024, 1(1): 20‒38 https://doi.org/10.1002/eer3.4

References

[1]
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789-1858.
[2]
Burton MJ, Ramke J, Marques AP, et al. The lancet global health commission on global eye health: vision beyond 2020. Lancet Global Health. 2021;9(4):e489-e551.
[3]
Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;394(10204):1145-1158.
CrossRef Google scholar
[4]
Bourne RRA, Flaxman SR, Braithwaite T, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Global Health. 2017;5(9):e888-e897.
[5]
Martínez-Alberquilla I, Gasull X, Pérez-Luna P, Seco-Mera R, Ruiz-Alcocer J, Crooke A. Neutrophils and neutrophil extracellular trap components: emerging biomarkers and therapeutic targets for agerelated eye diseases. Ageing Res Rev. 2022;74:101553.
CrossRef Google scholar
[6]
GBD 2019 Blindness and Vision Impairment Collaborators, and Vision Loss Expert Group of the Global Burden of Disease Study. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study. Lancet Global Health. 2021;9(2):e130-e143.
[7]
GBD 2019 Blindness and Vision Impairment Collaborators, and Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Global Health. 2021;9(2):e144-e160.
[8]
Hyman L, Wu SY, Connell AM, et al. Prevalence and causes of visual impairment in the Barbados Eye Study. Ophthalmology. 2001;108(10):1751-1756.
CrossRef Google scholar
[9]
Muñoz B, West SK, Rubin GS, et al. Causes of blindness and visual impairment in a population of older Americans: the Salisbury Eye Evaluation Study. Arch Ophthalmol. 2000;118(6):819-825.
CrossRef Google scholar
[10]
World Population Prospects 2017 -Volume I: Comprehensive Tables (2021). (United Nations).
[11]
Tielsch JM, Sommer A, Witt K, Katz J, Royall RM. Blindness and visual impairment in an American urban population. The Baltimore Eye Survey. Arch Ophthalmol. 1990;108(2):286-290.
CrossRef Google scholar
[12]
Attebo K, Mitchell P, Smith W. Visual acuity and the causes of visual loss in Australia. The Blue Mountains eye study. Ophthalmology. 1996;103(3):357-364.
CrossRef Google scholar
[13]
VanNewkirk MR, Weih L, McCarty CA, Taylor HR. Cause-specific prevalence of bilateral visual impairment in Victoria, Australia: the visual impairment project. Ophthalmology. 2001;108(5):960-967.
CrossRef Google scholar
[14]
Klaver CC, Wolfs RC, Vingerling JR, Hofman A, de Jong PT. Agespecific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam Study. Arch Ophthalmol. 1998;116(5):653-658.
CrossRef Google scholar
[15]
Klein R, Klein BE, Linton KL, De Mets DL. The Beaver Dam Eye Study: visual acuity. Ophthalmology. 1991;98(8):1310-1315.
CrossRef Google scholar
[16]
Thulasiraj RD, Nirmalan PK, Ramakrishnan R, et al. Blindness and vision impairment in a rural south Indian population: the Aravind Comprehensive. Eye Surv Ophthalmol. 2003;110(8):1491-1498.
CrossRef Google scholar
[17]
Wong TY, Tham Y-C. Sabanayagam C, Cheng C-Y. Patterns and risk factor profiles of visual loss in a multiethnic Asian population: the Singapore Epidemiology of Eye Diseases Study. Am J Ophthalmol. 2019;206:48-73.
CrossRef Google scholar
[18]
Saw S. Causes of blindness, low vision, and questionnaire-assessed poor visual function in Singaporean Chinese adults*1 The Tanjong Pagar Survey. Ophthalmology. 2004;111(6):1161-1168.
CrossRef Google scholar
[19]
Iwase A, Araie M, Tomidokoro A, Yamamoto T, Shimizu H, Kitazawa Y. Prevalence and causes of low vision and blindness in a Japanese adult population. Ophthalmology. 2006;113(8):1354. e1-1362.e1.
CrossRef Google scholar
[20]
Chen S, Mienaltowski MJ, Birk DE. Regulation of corneal stroma extracellular matrix assembly. Exp Eye Res. 2015;133:69-80.
CrossRef Google scholar
[21]
Rim THT, Nam JS, Choi M, Lee SC, Lee CS. Prevalence and risk factors of visual impairment and blindness in Korea: the Fourth Korea national health and nutrition examination survey in 2008-2010. Acta Ophthalmol. 2014;92(4).
[22]
Tuft SJ, Coster DJ. The corneal endothelium. Eye. 1990;4(Pt 3):389-424.
CrossRef Google scholar
[23]
Tsai CY, Woung LC, Chou P, et al. The current status of visual disability in the elderly population of Taiwan. Jpn J Ophthalmol. 2005;49(2):166-172.
CrossRef Google scholar
[24]
Oliva MS, Schottman T, Gulati M. Turning the tide of corneal blindness. Indian J Ophthalmol. 2012;60(5):423-427.
CrossRef Google scholar
[25]
Hsu W-M, Cheng C-Y, Liu J-H, Tsai S-Y, Chou P. Prevalence and causes of visual impairment in an elderly Chinese population in Taiwan. Ophthalmology. 2004;111(1):62-69.
CrossRef Google scholar
[26]
Notara M, Alatza A, Gilfillan J, et al. In sickness and in health: corneal epithelial stem cell biology, pathology and therapy. Exp Eye Res. 2010;90(2):188-195.
CrossRef Google scholar
[27]
Xu L, Wang Y, Li Y, et al. Causes of blindness and visual impairment in urban and rural areas in Beijing. Ophthalmology. 2006;113(7):1134.e1-1134.e11.
CrossRef Google scholar
[28]
Dua HS, Azuara-Blanco A. Limbal stem cells of the corneal epithelium. Surv Ophthalmol. 2000;44(5):415-425.
CrossRef Google scholar
[29]
Huang S. Prevalence and causes of visual impairment in Chinese adults in urban Southern China. Arch Ophthalmol. 2009;127(10):1362.
CrossRef Google scholar
[30]
Mobaraki M, Abbasi R, Omidian Vandchali S, Ghaffari M, Moztarzadeh F, Mozafari M. Corneal repair and regeneration: current concepts and future directions. Front Bioeng Biotechnol. 2019;7:135.
CrossRef Google scholar
[31]
Liang YB, Friedman DS, Wong TY, et al. Prevalence and causes of low vision and blindness in a rural Chinese adult population. Ophthalmology. 2008;115(11):1965.e1-1972.e1.
CrossRef Google scholar
[32]
Ramos T, Scott D, Ahmad S. An update on ocular surface epithelial stem cells: cornea and conjunctiva. Stem Cells Int. 2015;2015:601731-601737.
CrossRef Google scholar
[33]
Eslani M, Baradaran-Rafii A, Ahmad S. Cultivated limbal and oral mucosal epithelial transplantation. Semin Ophthalmol. 2012;27(3-4):80-93.
CrossRef Google scholar
[34]
Atallah MR, Palioura S, Perez VL, Amescua G. Limbal stem cell transplantation: current perspectives. Clin Ophthalmol. 2016;10:593-602.
CrossRef Google scholar
[35]
Schwab IR. Cultured corneal epithelia for ocular surface disease. Trans Am Ophthalmol Soc. 1999;97:891-986.
[36]
Koizumi N, Inatomi T, Suzuki T, Sotozono C, Kinoshita S. Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmology. 2001;108(9):1569-1574.
CrossRef Google scholar
[37]
Calonge M, Pérez I, Galindo S, et al. A proof-of-concept clinical trial using mesenchymal stem cells for the treatment of corneal epithelial stem cell deficiency. Transl Res. 2019;206:18-40.
CrossRef Google scholar
[38]
Ruberti JW, Sinha Roy A, Roberts CJ. Corneal biomechanics and biomaterials. Annu Rev Biomed Eng. 2011;13(1):269-295.
CrossRef Google scholar
[39]
Liu X-N, Mi S-L, Chen Y, Wang Y. Corneal stromal mesenchymal stem cells: reconstructing a bioactive cornea and repairing the corneal limbus and stromal microenvironment. Int J Ophthalmol. 2021;14(3):448-455.
CrossRef Google scholar
[40]
Du Y, Carlson EC, Funderburgh ML, et al. Stem cell therapy restores transparency to defective murine corneas. Stem Cells. 2009;27(7):1635-1642.
CrossRef Google scholar
[41]
Ghoubay D, Borderie M, Grieve K, et al. Corneal stromal stem cells restore transparency after N2 injury in mice. Stem Cells Transl Med. 2020;9(8):917-935.
CrossRef Google scholar
[42]
Basu S, Hertsenberg AJ, Funderburgh ML, et al. Human limbal biopsy-derived stromal stem cells prevent corneal scarring. Sci Transl Med. 2014;6(266):266ra172.
CrossRef Google scholar
[43]
Kumar A, Yun H, Funderburgh ML, Du Y. Regenerative therapy for the cornea. Prog Retin Eye Res. 2022;87:101011.
CrossRef Google scholar
[44]
Hertsenberg AJ, Shojaati G, Funderburgh ML, Mann MM, Du Y, Funderburgh JL. Corneal stromal stem cells reduce corneal scarring by mediating neutrophil infiltration after wounding. PLoS One. 2017;12(3):e0171712.
CrossRef Google scholar
[45]
Wu J, Du Y, Mann MM, Yang E, Funderburgh JL, Wagner WR. Bioengineering organized, multilamellar human corneal stromal tissue by growth factor supplementation on highly aligned synthetic substrates. Tissue Eng Part A. 2013;19(17-18):2063-2075.
CrossRef Google scholar
[46]
Wang S, Ghezzi CE, White JD, Kaplan DL. Coculture of dorsal root ganglion neurons and differentiated human corneal stromal stem cells on silk-based scaffolds. J Biomed Mater Res A. 2015;103(10):3339-3348.
CrossRef Google scholar
[47]
Polisetti N, Zenkel M, Menzel-Severing J, Kruse FE, Schlötzer-Schrehardt U. Cell adhesion molecules and stem cell-niche-interactions in the limbal stem cell niche. Stem Cells. 2016;34(1):203-219.
CrossRef Google scholar
[48]
Shojaati G, Khandaker I, Funderburgh ML, et al. Mesenchymal stem cells reduce corneal fibrosis and inflammation via extracellular vesicle-mediated delivery of miRNA. Stem Cells Transl Med. 2019;8(11):1192-1201.
CrossRef Google scholar
[49]
Bikkuzin T, Shi Y, Sun B, et al. Human induced pluripotent stem cell line HMUi001-A derived from corneal stromal cells. Stem Cell Res. 2019;37:101409.
CrossRef Google scholar
[50]
Price MO, Mehta JS, Jurkunas UV, Price FW. Corneal endothelial dysfunction: evolving understanding and treatment options. Prog Retin Eye Res. 2021;82:100904.
CrossRef Google scholar
[51]
Bourne WM. Clinical estimation of corneal endothelial pump function. TransAmOphthalmol Soc. 1998;96:229-239. discussion 239-42.
[52]
Bosch BM, Salero E, Núñez-Toldrà R, Sabater AL, Gil FJ, Perez RA. Discovering the potential of dental pulp stem cells for corneal endothelial cell production: a proof of concept. Front Bioeng Biotechnol. 2021;9:617724.
CrossRef Google scholar
[53]
Pan S-H, Zhao N, Feng X, Jie Y, Jin Z-B. Conversion of mouse embryonic fibroblasts into neural crest cells and functional corneal endothelia by defined small molecules. Sci Adv. 2021;7(23).
CrossRef Google scholar
[54]
Li Z, Duan H, Jia Y, et al. Long-term corneal recovery by simultaneous delivery of hPSC-derived corneal endothelial precursors and nicotinamide. J Clin Invest. 2022;132(1).
CrossRef Google scholar
[55]
Qazi Y, Hamrah P. Gene therapy in corneal transplantation. Semin Ophthalmol. 2013;28(5-6):287-300.
CrossRef Google scholar
[56]
Abud TB, Di Zazzo A, Kheirkhah A, Dana R. Systemic immunomodulatory strategies in high-risk corneal transplantation. J Ophthalmic Vis Res. 2017;12(1):81-92.
CrossRef Google scholar
[57]
Lai C-M, Spilsbury K, Brankov M, Zaknich T, Rakoczy PE. Inhibition of corneal neovascularization by recombinant adenovirus mediated antisense VEGF RNA. Exp Eye Res. 2002;75(6):625-634.
CrossRef Google scholar
[58]
Mohan RR, Tovey JCK, Sharma A, Schultz GS, Cowden JW, Tandon A. Targeted decorin gene therapy delivered with adeno-associated virus effectively retards corneal neovascularization in vivo. PLoS One. 2011;6(10):e26432.
CrossRef Google scholar
[59]
Lu Y, Tai PWL, Ai J, et al. Transcriptome profiling of neovascularized corneas reveals miR-204 as a multi-target biotherapy deliverable by rAAVs. Mol Ther Nucleic Acids. 2018;10:349-360.
CrossRef Google scholar
[60]
Tang X, Sun J, Wang X, Du L, Liu P. Blocking neuropilin-2 enhances corneal allograft survival by selectively inhibiting lymphangiogenesis on vascularized beds. Mol Vis. 2010;16:2354-2361.
[61]
Yuan L, Moyon D, Pardanaud L, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development. 2002;129(20):4797-4806.
CrossRef Google scholar
[62]
Schmitz K, Hitzer S, Behrens-Baumann W. [Immune suppression by combination therapy with basiliximab and cyclosporin in high risk keratoplasty. A pilot study]. Ophthalmologe. 2002;99(1):38-45.
CrossRef Google scholar
[63]
Gong N, Pleyer U, Yang J, et al. Influence of local and systemic CTLA4Ig gene transfer on corneal allograft survival. J Gene Med. 2006;8(4):459-467.
CrossRef Google scholar
[64]
Mori K, Gehlbach P, Yamamoto S, et al. AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci. 2002;43:1994-2000.
[65]
Stuart PM, Griffith TS, Usui N, Pepose J, Yu X, Ferguson TA. CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest. 1997;99(3):396-402.
CrossRef Google scholar
[66]
Yamagami S, Kawashima H, Tsuru T, et al. Role of Fas-Fas ligand interactions in the immunorejection of allogeneic mouse corneal transplants. Transplantation. 1997;64(8):1107-1111.
CrossRef Google scholar
[67]
Fuchsluger TA, Jurkunas U, Kazlauskas A, Dana R. Corneal endothelial cells are protected from apoptosis by gene therapy. Hum Gene Ther. 2011;22(5):549-558.
CrossRef Google scholar
[68]
Cao Q, Li Y, Li Y, Li L. miR-151-5p alleviates corneal allograft rejection by activating PI3K/AKT signaling pathway and balancing Th17/Treg after corneal transplantation via targeting IL-2Rα. Ann Transl Med. 2021;9(18):1410.
CrossRef Google scholar
[69]
Ritter T, Yang J, Dannowski H, Vogt K, Volk H-D, Pleyer U. Effects of interleukin-12p40 gene transfer on rat corneal allograft survival. Transpl Immunol. 2007;18(2):101-107.
CrossRef Google scholar
[70]
Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Prog Retin Eye Res. 2015;49:17-45.
CrossRef Google scholar
[71]
Yu F-SX, Yin J, Xu K, Huang J. Growth factors and corneal epithelial wound healing. Brain Res Bull. 2010;81(2-3):229-235.
CrossRef Google scholar
[72]
Lu L, Reinach PS, Kao WW. Corneal epithelial wound healing. Exp Biol Med. 2001;226(7):653-664.
CrossRef Google scholar
[73]
Barbaro V, Testa A, Di Iorio E, Mavilio F, Pellegrini G, De Luca M. C/EBP delta regulates cell cycle and self-renewal of human limbal stem cells. J Cell Biol. 2007;177(6):1037-1049.
CrossRef Google scholar
[74]
Ghosh, A, Singh, VK, Singh, V, Basu, S, Pati, F (2022). Recent advancements in molecular therapeutics for corneal scar treatment. Cells 11.
CrossRef Google scholar
[75]
Gupta S, Rodier JT, Sharma A, et al. Targeted AAV5-Smad7 gene therapy inhibits corneal scarring in vivo. PLoS One. 2017;12(3):e0172928.
CrossRef Google scholar
[76]
Mittal SK, Omoto M, Amouzegar A, et al. Restoration of corneal transparency by mesenchymal stem cells. Stem Cell Rep. 2016;7(4):583-590.
CrossRef Google scholar
[77]
Marshall DR, Callan PP, Nicholson W. Breastfeeding after reduction mammaplasty. Br J Plast Surg. 1994;47(3):167-169.
CrossRef Google scholar
[78]
Sumioka T, Ikeda K, Okada Y, Yamanaka O, Kitano A, Saika S. Inhibitory effect of blocking TGF-beta/Smad signal on injury-induced fibrosis of corneal endothelium. Mol Vis. 2008;14:2272-2281.
[79]
Wang K, Jiang L, Zhong Y, et al. Ferrostatin-1-loaded liposome for treatment of corneal alkali burn via targeting ferroptosis. Bioeng Transl Med. 2022;7(2):e10276.
CrossRef Google scholar
[80]
Yin D, Ling S, Wang D, et al. Targeting herpes simplex virus with CRISPR-Cas9 cures herpetic stromal keratitis in mice. Nat Biotechnol. 2021;39(5):567-577.
CrossRef Google scholar
[81]
Ling S, Yang S, Hu X, et al. Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice. Nat Biomed Eng. 2021;5(2):144-156.
CrossRef Google scholar
[82]
Jin Z-B, Gao M-L, Deng W-L, et al. Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res. 2019;69:38-56.
CrossRef Google scholar
[83]
Zhang C-J, Ma Y, Jin Z-B. The road to restore vision with photo-receptor regeneration. Exp Eye Res. 2021;202:108283.
CrossRef Google scholar
[84]
Gu P, Harwood LJ, Zhang X, Wylie M, Curry WJ, Cogliati T. Isolation of retinal progenitor and stem cells from the porcine eye. Mol Vis. 2007;13:1045-1057.
[85]
Ballios BG, Cooke MJ, Donaldson L, et al. A hyaluronan-based injectable hydrogel improves the survival and integration of stem cell progeny following transplantation. Stem Cell Rep. 2015;4(6):1031-1045.
CrossRef Google scholar
[86]
Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 2014;15(3):4142-4157.
CrossRef Google scholar
[87]
Xu W, Wang X-T, Xu G-X, Guo J, Huang L-B. Stromal cell-derived factor 1α-stimulated mesenchymal stem cells confer enhanced protection against light-induced retinal degeneration in rats. Curr Eye Res. 2014;39(1):69-78.
CrossRef Google scholar
[88]
Sasahara M, Otani A, Oishi A, et al. Activation of bone marrow-derived microglia promotes photoreceptor survival in inherited retinal degeneration. Am J Pathol. 2008;172(6):1693-1703.
CrossRef Google scholar
[89]
Rezanejad H, Soheili Z-S, Haddad F, et al. In vitro differentiation of adipose-tissue-derived mesenchymal stem cells into neural retinal cells through expression of human PAX6 (5a) gene. Cell Tissue Res. 2014;356(1):65-75.
CrossRef Google scholar
[90]
Ding X, Zhang T, Hong Y, et al. Long-term ultrastructural outcomes of autologous transplantation of retinal pigment epithelium-partial thickness choroid (RPE-PTC) sheet in rabbits. Front Biosci. 2022;27(3):106.
CrossRef Google scholar
[91]
Schwartz SD, Tan G, Hosseini H, Nagiel A. Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Invest Ophthalmol Vis Sci. 2016;57(5):ORSFc1-9.
CrossRef Google scholar
[92]
Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509-516.
CrossRef Google scholar
[93]
Schwartz SD, Hubschman J-P, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713-720.
CrossRef Google scholar
[94]
Song WK, Park K-M, Kim H-J, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Rep. 2015;4(5):860-872.
CrossRef Google scholar
[95]
Liu Y, Xu HW, Wang L, et al. Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration. Cell Discov. 2018;4(1):50.
CrossRef Google scholar
[96]
Hsiung J, Zhu D, Hinton DR. Polarized human embryonic stem cell-derived retinal pigment epithelial cell monolayers have higher resistance to oxidative stress-induced cell death than nonpolarized cultures. Stem Cells Transl Med. 2015;4(1):10-20.
CrossRef Google scholar
[97]
Kashani AH, Lebkowski JS, Rahhal FM, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10(435).
CrossRef Google scholar
[98]
da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36(4):328-337.
CrossRef Google scholar
[99]
Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038-1046.
CrossRef Google scholar
[100]
Araki R, Uda M, Hoki Y, et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature. 2013;494(7435):100-104.
CrossRef Google scholar
[101]
Ballios BG, Cooke MJ, van der Kooy D, Shoichet MS. A hydrogel-based stem cell delivery system to treat retinal degenerative diseases. Biomaterials. 2010;31(9):2555-2564.
CrossRef Google scholar
[102]
Zhang H, Su B, Jiao L, et al. Transplantation of GMP-grade human iPSC-derived retinal pigment epithelial cells in rodent model: the first pre-clinical study for safety and efficacy in China. Ann Transl Med. 2021;9(3):245.
CrossRef Google scholar
[103]
Liu H, Zhang Y, Zhang Y-Y. et al. Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin. Proc Natl Acad Sci USA. 2020;117(52):33628-33638.
CrossRef Google scholar
[104]
Deng W-L, Gao M-L, Lei X-L, et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients. Stem Cell Rep. 2018;10(4):1267-1281.
CrossRef Google scholar
[105]
Zhang C-J, Jin Z-B. Homeostasis and dyshomeostasis of the retina. Current Medicine. 2023;2(1):4.
CrossRef Google scholar
[106]
Shrestha R, Wen Y-T, Tsai R-K. Effective differentiation and biological characterization of retinal pigment epithelium derived from human induced pluripotent stem cells. Curr Eye Res. 2020;45(9):1155-1167.
CrossRef Google scholar
[107]
Calejo MT, Saari J, Vuorenpää H, et al. Co-culture of human induced pluripotent stem cell-derived retinal pigment epithelial cells and endothelial cells on double collagen-coated honeycomb films. Acta Biomater. 2020;101:327-343.
CrossRef Google scholar
[108]
Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472(7341):51-56.
CrossRef Google scholar
[109]
Zhang C-J, Jin K, Jin Z-B. Stem cells and genetic engineering empower therapeutic development for blinding eye diseases. Eye. 2023;4:139-170. Elsevier.
CrossRef Google scholar
[110]
Yang JM, Chung S, Yun K, et al. Long-term effects of human induced pluripotent stem cell-derived retinal cell transplantation in Pde6b knockout rats. Exp Mol Med. 2021;53(4):631-642.
CrossRef Google scholar
[111]
Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849-860.
CrossRef Google scholar
[112]
Tschernutter M, Schlichtenbrede FC, Howe S, et al. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy. Gene Ther. 2005;12(8):694-701.
CrossRef Google scholar
[113]
Vollrath D, Feng W, Duncan JL, et al. Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc Natl Acad Sci USA. 2001;98(22):12584-12589.
CrossRef Google scholar
[114]
Smith AJ, Schlichtenbrede FC, Tschernutter M, Bainbridge JW, Thrasher AJ, Ali RR. AAV-mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Mol Ther. 2003;8(2):188-195.
CrossRef Google scholar
[115]
Ali RR, Sarra GM, Stephens C, et al. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet. 2000;25(3):306-310.
CrossRef Google scholar
[116]
Buck TM, Wijnholds J. Recombinant adeno-associated viral vectors (rAAV)-vector elements in ocular gene therapy clinical trials and transgene expression and bioactivity assays. Int J Mol Sci. 2020;21(12):4197.
CrossRef Google scholar
[117]
Ong T, Pennesi ME, Birch DG, Lam BL, Tsang SH. Adeno-associated viral gene therapy for inherited retinal disease. Pharm Res. 2019;36(2):34.
CrossRef Google scholar
[118]
Toms M, Toualbi L, Almeida PV, Harbottle R, Moosajee M. Successful large gene augmentation of USH2A with non-viral episomal vectors. Mol Ther. 2023;31(9):2755-2766.
CrossRef Google scholar
[119]
Koenekoop RK. The gene for Stargardt disease, ABCA4, is a major retinal gene: a mini-review. Ophthalmic Genet. 2003;24(2):75-80.
CrossRef Google scholar
[120]
Banskota S, Raguram A, Suh S, et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell. 2022;185(2):250.e16-265.e16.
CrossRef Google scholar
[121]
Adijanto J, Naash MI. Nanoparticle-based technologies for retinal gene therapy. Eur J Pharm Biopharm. 2015;95:353-367.
CrossRef Google scholar
[122]
Dalkara D, Byrne LC, Klimczak RR, et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med. 2013;5(189):189ra76.
CrossRef Google scholar
[123]
Hernan I, Gamundi MJ, Planas E, Borràs E, Maseras M, Carballo M. Cellular expression and siRNA-mediated interference of rhodopsin cis-acting splicing mutants associated with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2011;52(6):3723-3729.
CrossRef Google scholar
[124]
Tessitore A, Parisi F, Denti MA, et al. Preferential silencing of a common dominant rhodopsin mutation does not inhibit retinal degeneration in a transgenic model. Mol Ther. 2006;14(5):692-699.
CrossRef Google scholar
[125]
Garanto A, Chung DC, Duijkers L, et al. In vitro and in vivo rescue of aberrant splicing in CEP290-associated LCA by antisense oligonucleotide delivery. Hum Mol Genet. 2016;25:2552-2563.
[126]
Lin Q, Lv J-N, Wu K-C, Zhang C-J, Liu Q, Jin Z-B. Generation of nonhuman primate model of cone dysfunction through in situ AAV-mediated CNGB3 ablation. Mol Ther Methods Clin Dev. 2020;18:869-879.
CrossRef Google scholar
[127]
She K, Liu Y, Zhao Q, et al. Dual-AAV split prime editor corrects the mutation and phenotype in mice with inherited retinal degeneration. Signal Transduct Target Ther. 2023;8(1):57.
CrossRef Google scholar
[128]
Cai Y, Cheng T, Yao Y, et al. In vivo genome editing rescues photoreceptor degeneration via a Cas9/RecA-mediated homology-directed repair pathway. Sci Adv. 2019;5(4):eaav3335.
CrossRef Google scholar
[129]
Sun X, Yang S, Zhao J. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des Devel Ther. 2016:1857-1867.
CrossRef Google scholar
[130]
Huang X, Zhou G, Wu W, et al. Genome editing abrogates angiogenesis in vivo. Nat Commun. 2017;8(1):112.
CrossRef Google scholar
[131]
Veleri S, Lazar CH, Chang B, Sieving PA, Banin E, Swaroop A. Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech. 2015;8(2):109-129.
CrossRef Google scholar
[132]
Sahel J-A, Boulanger-Scemama E, Pagot C, et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med. 2021;27(7):1223-1229.
CrossRef Google scholar
[133]
Shinozaki Y, Kashiwagi K, Namekata K, et al. Purinergic dysregulation causes hypertensive glaucoma-like optic neuropathy. JCI Insight. 2017;2(19).
CrossRef Google scholar
[134]
Harrell CR, Fellabaum C, Arsenijevic A, Markovic BS, Djonov V, Volarevic V. Therapeutic potential of mesenchymal stem cells and their secretome in the treatment of glaucoma. Stem Cells Int. 2019;2019:7869130.
CrossRef Google scholar
[135]
Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Intra-vitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci. 2013;54(12):7544-7556.
CrossRef Google scholar
[136]
Li X, Zhao S, Wang L. Therapeutic effect of adipose-derived stem cell transplantation on optic nerve injury in rats. Mol Med Rep. 2018;17:2529-2534.
[137]
Chung S, Rho S, Kim G, et al. Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury. Int J Mol Med. 2016;37(5):1170-1180.
CrossRef Google scholar
[138]
Ng TK, Fortino VR, Pelaez D, Cheung HS. Progress of mesenchymal stem cell therapy for neural and retinal diseases. World J Stem Cells. 2014;6(2):111-119.
CrossRef Google scholar
[139]
Weiss JN, Levy S. Stem Cell Ophthalmology Treatment Study (SCOTS): bone marrow derived stem cells in the treatment of dominant optic atrophy. Stem Cell Investig. 2019;6:41.
CrossRef Google scholar
[140]
Weiss JN, Levy S, Benes SC. Stem Cell Ophthalmology Treatment Study: bone marrow derived stem cells in the treatment of non-arteritic ischemic optic neuropathy (NAION). Stem Cell Investig. 2017;4:94.
CrossRef Google scholar
[141]
Weiss JN, Levy S, Benes SC. Stem Cell Ophthalmology Treatment Study (SCOTS): bone marrow-derived stem cells in the treatment of Leber’s hereditary optic neuropathy. Neural Regen Res. 2016;11(10):1685-1694.
CrossRef Google scholar
[142]
Weiss J, Levy S, Benes S. Stem Cell Ophthalmology Treatment Study (SCOTS) for retinal and optic nerve diseases: a case report of improvement in relapsing auto-immune optic neuropathy. Neural Regen Res. 2015;10(9):1507.
CrossRef Google scholar
[143]
Ng TK, Yung JSY, Choy KW, et al. Transdifferentiation of periodontal ligament-derived stem cells into retinal ganglion-like cells and its microRNA signature. Sci Rep. 2015;5(1):16429.
CrossRef Google scholar
[144]
Hua Z-Q, Liu H, Wang N, Jin Z-B. Towards stem cell-based neuronal regeneration for glaucoma. Prog Brain Res. 2020;257:99-118.
CrossRef Google scholar
[145]
Abu-Hassan DW, Acott TS, Kelley MJ. The trabecular meshwork: a basic review of form and function. J Ocul Biol. 2014;2.
CrossRef Google scholar
[146]
Buffault J, Labbé A, Hamard P, Brignole-Baudouin F, Baudouin C. The trabecular meshwork: structure, function and clinical implications. A review of the literature. J Fr Ophtalmol. 2020;43(7): e217-e230.
CrossRef Google scholar
[147]
Yun H, Zhou Y, Wills A, Du Y. Stem cells in the trabecular meshwork for regulating intraocular pressure. J Ocul Pharmacol Ther. 2016;32(5):253-260.
CrossRef Google scholar
[148]
Du Y, Yun H, Yang E, Schuman JS. Stem cells from trabecular meshwork home to TM tissue in vivo. Invest Ophthalmol Vis Sci. 2013;54(2):1450-1459.
CrossRef Google scholar
[149]
Doucette LP, Rasnitsyn A, Seifi M, Walter MA. The interactions of genes, age, and environment in glaucoma pathogenesis. Surv Ophthalmol. 2015;60(4):310-326.
CrossRef Google scholar
[150]
Tan J, Liu G, Zhu X, et al. Lentiviral vector-mediated expression of exoenzyme C3 transferase lowers intraocular pressure in monkeys. Mol Ther. 2019;27(7):1327-1338.
CrossRef Google scholar
[151]
Tan J, Fan N, Wang N, et al. Effects of lentivirus-mediated C3 expression on trabecular meshwork cells and intraocular pressure. Invest Ophthalmol Vis Sci. 2018;59(12):4937-4944.
CrossRef Google scholar
[152]
Chrzanowska-Wodnicka M, Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol. 1996;133(6):1403-1415.
CrossRef Google scholar
[153]
Wu J, Bell OH, Copland DA, et al. Gene therapy for glaucoma by ciliary body aquaporin 1 disruption using CRISPR-Cas9. Mol Ther. 2020;28(3):820-829.
CrossRef Google scholar
[154]
Tan J, Liu G, Lan C, et al. Lentiviral vector-mediated expression of C3 transferase attenuates retinal ischemia and reperfusion injury in rats. Life Sci. 2021;272:119269.
CrossRef Google scholar
[155]
Donahue RJ, Fehrman RL, Gustafson JR, Nickells RW. BCLXL gene therapy moderates neuropathology in the DBA/2J mouse model of inherited glaucoma. Cell Death Dis. 2021;12(8):781.
CrossRef Google scholar
[156]
Bosco A, Anderson SR, Breen KT, et al. Complement C3-targeted gene therapy restricts onset and progression of neurodegeneration in chronic mouse glaucoma. Mol Ther. 2018;26(10):2379-2396.
CrossRef Google scholar
[157]
Au NPB, Chand R, Kumar G, et al. A small molecule M1 promotes optic nerve regeneration to restore target-specific neural activity and visual function. Proc Natl Acad Sci USA. 2022;119(44): e2121273119.
CrossRef Google scholar
[158]
Nair KS, Srivastava C, Brown RV, et al. GLIS1 regulates trabecular meshwork function and intraocular pressure and is associated with glaucoma in humans. Nat Commun. 2021;12(1):4877.
CrossRef Google scholar
[159]
Meyerson C, Van Stavern G, McClelland C. Leber hereditary optic neuropathy: current perspectives. Clin Ophthalmol. 2015;9:1165-1176.
CrossRef Google scholar
[160]
Barot M, Gokulgandhi MR, Mitra AK. Mitochondrial dysfunction in retinal diseases. Curr Eye Res. 2011;36(12):1069-1077.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Authors. Eye & ENT Research published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(520 KB)

Accesses

Citations

Detail

Sections
Recommended

/