Acetylacetone-TiO2 Promoted Large Area Compatible Cascade Electron Transport Bilayer for Efficient Perovskite Solar Cells

Hyong Joon Lee, Jin Kyoung Park, Jin Hyuck Heo, Sang Hyuk Im

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (2) : 12582. DOI: 10.1002/eem2.12582
RESEARCH ARTICLE

Acetylacetone-TiO2 Promoted Large Area Compatible Cascade Electron Transport Bilayer for Efficient Perovskite Solar Cells

Author information +
History +

Abstract

In designing efficient perovskite solar cells (PSCs), the selection of suitable electron transport layers (ETLs) is critical to the final device performance as they determine the driving force for selective charge extraction. SnO2 nanoparticles (NPs) based ETLs have been a popular choice for PSCs due to superior electron mobility, but their relatively deep-lying conduction band energy levels (ECB) result in substantial potential loss. Meanwhile, TiO2 NPs establish favorable band alignment owing to shallower ECB, but their low intrinsic mobility and abundant surface trap sites impede the final performance. For this reason, constructing a cascaded bilayer ETL is highly desirable for efficient PSCs, as it can rearrange energy levels and exploit on advantages of an individual ETL. In this study, we prepare SnO2 NPs and acetylacetone-modified TiO2 (Acac-TiO2) NPs and implement them as bilayer SnO2/Acac-TiO2 (BST) ETL, to assemble cascaded energy band structure. SnO2 contributes to rapid charge carrier transport from high electron mobility while Acac-TiO2 minimizes band-offset and effectively suppresses interfacial recombination. Accordingly, the optimized BST ETL generates synergistic influence and delivers power conversion efficiency (PCE) as high as 23.14% with open-circuit voltage (VOC) reaching 1.14 V. Furthermore, the BST ETL is transferred to a large scale and the corresponding mini module demonstrates peak performance of 18.39% PCE from 25 cm2 aperture area. Finally, the BST-based mini module exhibit excellent stability, maintaining 83.1% of its initial efficiency after 1000 h under simultaneous 1 Sun light-soaking and damp heat (85 ℃/RH 85%) environment.

Keywords

acetylacetone / large area / perovskite / solar cells / TiO2

Cite this article

Download citation ▾
Hyong Joon Lee, Jin Kyoung Park, Jin Hyuck Heo, Sang Hyuk Im. Acetylacetone-TiO2 Promoted Large Area Compatible Cascade Electron Transport Bilayer for Efficient Perovskite Solar Cells. Energy & Environmental Materials, 2024, 7(2): 12582 https://doi.org/10.1002/eem2.12582

References

[1]
NREL. NREL best efficiency chart. https://www.nrel.gov/pv/cellefficiency.html. (accessed September 9, 2022).
[2]
H. Tan , A. Jain , O. Voznyy , X. Lan , F. P. García de Arquer , J. Z. Fan , R. Quintero-Bermudez , M. Yuan , B. Zhang , Y. Zhao , F. Fan , P. Li , L. N. Quan , Y. Zhao , Z.-H. Lu , Z. Yang , S. Hoogland , E. H. Sargent , Science 2017, 355, 722.
[3]
F. Ye , D. Zhang , X. Xu , H. Guo , S. Liu , S. Zhang , Y. Wu , W.-H. Zhu , Sol. RRL 2021, 5, 2000736.
[4]
L. Lin , T. W. Jones , T. C.-J. Yang , N. W. Duffy , J. Li , L. Zhao , B. Chi , X. Wang , G. J. Wilson , Adv. Funct. Mater. 2021, 31, 2008300.
[5]
S. Y. Hong , H. J. Lee , J. K. Park , J. H. Heo , S. H. Im , Int. J. Energy Res. 2022, 46, 22819.
[6]
M. S. You , J. H. Heo , J. K. Park , B. J. Park , S. H. Im , Sol. Energy Mater. Sol. Cells 2019,
CrossRef Google scholar
[7]
C. Chen , Y. Jiang , Y. Wu , J. Guo , X. Kong , X. Wu , Y. Li , D. Zheng , S. Wu , X. Gao , Z. Hou , G. Zhou , Y. Chen , J.-M. Liu , K. Kempa , J. Gao , Sol. RRL 2020, 4, 1900499.
[8]
Z. Wang , X. Zhu , J. Feng , C. Wang , C. Zhang , X. Ren , S. Priya , S. Liu , D. Yang , Adv. Sci. 2021, 8, 2002860.
[9]
S. S. Shin , W. S. Yang , J. H. Noh , J. H. Suk , N. J. Jeon , J. H. Park , J. S. Kim , W. M. Seong , S. I. Seok , Nat. Commun. 2015, 6, 7410.
[10]
Z. Wang , J. Lou , X. Zheng , W.-H. Zhang , Y. Qin , ACS Sustain. Chem. Eng. 2019, 7, 7421.
[11]
K.-H. Hu , Z.-K. Wang , K.-L. Wang , M.-P. Zhuo , Y. Zhang , F. Igbari , Q.-Q. Ye , L.-S. Liao , Sol. RRL 2019, 3, 1900201.
[12]
Q. Jiang , X. Zhang , J. You , Small 2018, 14, 1801154.
[13]
L. Qiu , Z. Liu , L. K. Ono , Y. Jiang , D.-Y. Son , Z. Hawash , S. He , Y. Qi , Adv. Funct. Mater. 2019, 29, 1806779.
[14]
G. Bai , Z. Wu , J. Li , T. Bu , W. Li , W. Li , F. Huang , Q. Zhang , Y.-B. Cheng , J. Zhong , Sol. Energy 2019, 183, 306.
[15]
J. Ma , X. Zheng , H. Lei , W. Ke , C. Chen , Z. Chen , G. Yang , G. Fang , Sol. RRL 2017, 1, 1700118.
[16]
J. A. Raiford , C. C. Boyd , A. F. Palmstrom , E. J. Wolf , B. A. Fearon , J. J. Berry , M. D. McGehee , S. F. Bent , Adv. Energy Mater. 2019, 9, 1902353.
[17]
Q. Jiang , L. Zhang , H. Wang , X. Yang , J. Meng , H. Liu , Z. Yin , J. Wu , X. Zhang , J. You , Nat. Energy 2016, 2, 16177.
[18]
T. Bu , J. Li , F. Zheng , W. Chen , X. Wen , Z. Ku , Y. Peng , J. Zhong , Y.-B. Cheng , F. Huang , Nat. Commun. 2018, 9, 4609.
[19]
G. Yang , C. Chen , F. Yao , Z. Chen , Q. Zhang , X. Zheng , J. Ma , H. Lei , P. Qin , L. Xiong , W. Ke , G. Li , Y. Yan , G. Fang , Adv. Mater. 2018, 30, 1706023.
[20]
E. H. Anaraki , A. Kermanpur , L. Steier , K. Domanski , T. Matsui , W. Tress , M. Saliba , A. Abate , M. Grätzel , A. Hagfeldt , J.-P. Correa-Baena , Energ. Environ. Sci. 2016, 9, 3128.
[21]
W. Ke , G. Fang , Q. Liu , L. Xiong , P. Qin , H. Tao , J. Wang , H. Lei , B. Li , J. Wan , G. Yang , Y. Yan , J. Am. Chem. Soc. 2015, 137, 6730.
[22]
Z. Xiong , L. Lan , Y. Wang , C. Lu , S. Qin , S. Chen , L. Zhou , C. Zhu , S. Li , L. Meng , K. Sun , Y. Li , ACS Energy Lett. 2021, 6, 3824.
[23]
Z. Guo , A. K. Jena , I. Takei , G. M. Kim , M. A. Kamarudin , Y. Sanehira , A. Ishii , Y. Numata , S. Hayase , T. Miyasaka , J. Am. Chem. Soc. 2020, 142, 9725.
[24]
D. Yang , R. Yang , K. Wang , C. Wu , X. Zhu , J. Feng , X. Ren , G. Fang , S. Priya , S. Liu , Nat. Commun. 2018, 9, 3239.
[25]
C. Chen , Y. Jiang , J. Guo , X. Wu , W. Zhang , S. Wu , X. Gao , X. Hu , Q. Wang , G. Zhou , Y. Chen , J.-M. Liu , K. Kempa , J. Gao , Adv. Funct. Mater. 2019, 29, 1900557.
[26]
Y. Lee , S. Paek , K. T. Cho , E. Oveisi , P. Gao , S. Lee , J.-S. Park , Y. Zhang , R. Humphry-Baker , A. M. Asiri , M. K. Nazeeruddin , J. Mater. Chem. A 2017, 5, 12729.
[27]
W. Tress , Adv. Energy Mater. 2017, 7, 1602358.
[28]
C. Tian , K. Lin , J. Lu , W. Feng , P. Song , L. Xie , Z. Wei , Small Methods 2020, 4, 1900476.
[29]
Y. Wang , C. Duan , J. Li , W. Han , M. Zhao , L. Yao , Y. Wang , C. Yan , T. Jiu , ACS Appl. Mater. Interfaces 2018, 10, 20128.
[30]
Y. You , W. Tian , L. Min , F. Cao , K. Deng , L. Li , Adv. Mater. Interfaces 2020, 7, 1901406.
[31]
X. Xu , H. Zhang , J. Shi , J. Dong , Y. Luo , D. Li , Q. Meng , J. Mater. Chem. A 2015, 3, 19288.
[32]
W. Ke , C. C. Stoumpos , J. L. Logsdon , M. R. Wasielewski , Y. Yan , G. Fang , M. G. Kanatzidis , J. Am. Chem. Soc. 2016, 138, 14998.
[33]
X. Shi , Y. Tao , Z. Li , H. Peng , M. Cai , X. Liu , Z. Zhang , S. Dai , Sci. China Mater. 2021, 64, 1858.
[34]
Y. Shao , Y. Yuan , J. Huang , Nat. Energy 2016, 1, 15001.
[35]
J. H. Heo , S. Lee , H. J. Lee , J. K. Park , Y. Lee , S. Y. Hong , W.-S. Han , S. H. Im , Sol. RRL 2022, 6, 2200573.
[36]
Y. Hou , X. Chen , S. Yang , C. Li , H. Zhao , H. G. Yang , Adv. Funct. Mater. 2017, 27, 1700878.
[37]
G. Martínez-Denegri , S. Colodrero , M. Kramarenko , J. Martorell , ACS Appl. Energy Mater. 2018, 1, 5548.
[38]
M. Hu , L. Zhang , S. She , J. Wu , X. Zhou , X. Li , D. Wang , J. Miao , G. Mi , H. Chen , Y. Tian , B. Xu , C. Cheng , Sol. RRL 2020, 4, 1900331.
[39]
X. Luo , Y. Gao , P. Zhu , Q. Han , R. Lin , H. Gao , Y. Wang , J. Zhu , S. Li , H. Tan , Sol. RRL 2020, 4, 2000169.
[40]
J. Chen , J. Zhang , C. Huang , Z. Bi , X. Xu , H. Yu , Chem. Eng. J. 2021, 410, 128436.
[41]
Y. Wang , C. Duan , X. Zhang , N. Rujisamphan , Y. Liu , Y. Li , J. Yuan , W. Ma , ACS Appl. Mater. Interfaces 2020, 12, 31659.
[42]
D. Li , Y. Li , Z. Liu , D. Wang , S. F. Liu , Sci. China Technol. Sci. 2021, 64, 1995.
[43]
Y. Chen , C. Xu , J. Xiong , Z. Zhang , X. Zhang , J. Yang , X. Xue , D. Yang , J. Zhang , Org. Electron. 2018, 58, 294.
[44]
L. Yan , Q. Xue , M. Liu , Z. Zhu , J. Tian , Z. Li , Z. Chen , Z. Chen , H. Yan , H.-L. Yip , Y. Cao , Adv. Mater. 2018, 30, 1802509.
[45]
Z. Yang , M. Zhong , Y. Liang , L. Yang , X. Liu , Q. Li , J. Zhang , D. Xu , Adv. Funct. Mater. 2019, 29, 1903621.
[46]
A. Kojima , K. Teshima , Y. Shirai , T. Miyasaka , J. Am. Chem. Soc. 2009, 131, 6050.
[47]
C. Zhen , T. Wu , R. Chen , L. Wang , G. Liu , H.-M. Cheng , ACS Sustain. Chem. Eng. 2019, 7, 4586.
[48]
D. H. Kim , J. H. Heo , S. H. Im , ACS Appl. Mater. Interfaces 2019, 11, 19123.
[49]
A.-N. Cho , I.-H. Jang , J.-Y. Seo , N.-G. Park , J. Mater. Chem. A 2018, 6, 18206.
[50]
H. M. A. Javed , W. Que , X. Yin , L. B. Kong , J. Iqbal , M. Salman Mustafa , Mater. Res. Bull. 2019, 109, 21.
[51]
Y. Ding , B. Ding , H. Kanda , O. J. Usiobo , T. Gallet , Z. Yang , Y. Liu , H. Huang , J. Sheng , C. Liu , Y. Yang , V. I. E. Queloz , X. Zhang , J.-N. Audinot , A. Redinger , W. Dang , E. Mosconic , W. Luo , F. De Angelis , M. Wang , P. Dörflinger , M. Armer , V. Schmid , R. Wang , K. G. Brooks , J. Wu , V. Dyakonov , G. Yang , S. Dai , P. J. Dyson , M. K. Nazeeruddin , Nat. Nanotechnol. 2022, 17, 598.
[52]
H. Huang , H. Yan , M. Duan , J. Ji , X. Liu , H. Jiang , B. Liu , S. Sajid , P. Cui , Y. Li , M. Li , Appl. Surf. Sci. 2021, 544, 148583.
[53]
J.-X. Song , X.-X. Yin , Z.-F. Li , Y.-W. Li , Rare Metals 2021, 40, 2730.
[54]
H. Pan , H. Shao , X. L. Zhang , Y. Shen , M. Wang , J. Appl. Phys. 2021, 129, 130904.
[55]
Y. Masuda , Sci. Rep. 2021, 11, 11304.
[56]
B. Liu , A. Khare , E. S. Aydil , ChemComm 2012, 48, 8565.
[57]
Q. Dong , Y. Shi , K. Wang , Y. Li , S. Wang , H. Zhang , Y. Xing , Y. Du , X. Bai , T. Ma , J. Phys. Chem. C 2015, 119, 10212.
[58]
W. Li , R. Liang , A. Hu , Z. Huang , Y. N. Zhou , RSC Adv. 2014, 4, 36959.
[59]
K. Madhusudan Reddy , S. V. Manorama , A. Ramachandra Reddy , Mater. Chem. Phys. 2003, 78, 239.
[60]
S. Naz , I. Javid , S. Konwar , K. Surana , P. K. Singh , M. Sahni , B. Bhattacharya , SN Appl. Sci. 2020, 2, 975.
[61]
J. Meyer , S. Hamwi , M. Kröger , W. Kowalsky , T. Riedl , A. Kahn , Adv. Mater. 2012, 24, 5408.
[62]
H.-S. Kim , C.-R. Lee , J.-H. Im , K.-B. Lee , T. Moehl , A. Marchioro , S.-J. Moon , R. Humphry-Baker , J.-H. Yum , J. E. Moser , M. Grätzel , N.-G. Park , Sci. Rep. 2012, 2, 591.
[63]
J. H. Heo , M. S. You , M. H. Chang , W. Yin , T. K. Ahn , S.-J. Lee , S.-J. Sung , D. H. Kim , S. H. Im , Nano Energy 2015, 15, 530.
[64]
J. H. Heo , D. S. Lee , F. Zhang , C. Xiao , S. J. Heo , H. J. Lee , K. Zhu , S. H. Im , Sol. RRL 2021, 5, 2100733.
[65]
M. Cai , N. Ishida , X. Li , X. Yang , T. Noda , Y. Wu , F. Xie , H. Naito , D. Fujita , L. Han , Joule 2018, 2, 296.
[66]
M. Jahandar , N. Khan , M. Jahankhan , C. E. Song , H. K. Lee , S. K. Lee , W. S. Shin , J.-C. Lee , S. H. Im , S.-J. Moon , J. Ind. Eng. Chem. 2019, 80, 265.
[67]
Q. Dong , Y. Fang , Y. Shao , P. Mulligan , J. Qiu , L. Cao , J. Huang , Science 2015, 347, 967.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/