Revealing the Multifunctional Electrocatalysis of Indium-Modulated Phthalocyanine for High-Performance Lithium-Sulfur Batteries

Yang Guo, Zhaoqing Jin, Jianhao Lu, Zilong Wang, Zihao Song, Anbang Wang, Weikun Wang, Yaqin Huang

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12479. DOI: 10.1002/eem2.12479
RESEARCH ARTICLE

Revealing the Multifunctional Electrocatalysis of Indium-Modulated Phthalocyanine for High-Performance Lithium-Sulfur Batteries

Author information +
History +

Abstract

The sluggish kinetics of complicated multiphase conversions and the severe shuttling effect of lithium polysulfides (LiPSs) significantly hinder the applications of Li-S battery, which is one of the most promising candidates for the next-generation energy storage system. Herein, a bifunctional electrocatalyst, indium phthalocyanine self-assembled with carbon nanotubes (InPc@CNT) composite material, is proposed to promote the conversion kinetics of both reduction and oxidation processes, demonstrating a bidirectional catalytic effect on both nucleation and dissolution of Li2S species. The theoretical calculation shows that the unique electronic configuration of InPc@CNT is conducive to trapping soluble polysulfides in the reduction process, as well as the modulation of electron transfer dynamics also endows the dissolution of Li2S in the oxidation reaction, which will accelerate the effectiveness of catalytic conversion and facilitate sulfur utilization. Moreover, the InPc@CNT modified separator displays lower overpotential for polysulfide transformation, alleviating polarization of electrode during cycling. The integrated spectroscopy analysis, HRTEM, and electrochemical study reveal that the InPc@CNT acts as an efficient multifunctional catalytic center to satisfy the requirements of accelerating charging and discharging processes. Therefore, the Li-S battery with InPc@CNT-modified separator obtains a discharge-specific capacity of 1415 mAh g-1 at a high rate of 0.5 C. Additionally, the 2 Ah Li-S pouch cells deliver 315 Wh kg-1 and achieved 80% capacity retention after 50 cycles at 0.1 C with a high sulfur loading of 10 mg cm-2. Our study provides a practical method to introduce bifunctional electrocatalysts for boosting the electrochemical properties of Li-S batteries.

Keywords

bidirectional catalyst / indium phthalocyanine / lithium-sulfur batteries / pouch cells

Cite this article

Download citation ▾
Yang Guo, Zhaoqing Jin, Jianhao Lu, Zilong Wang, Zihao Song, Anbang Wang, Weikun Wang, Yaqin Huang. Revealing the Multifunctional Electrocatalysis of Indium-Modulated Phthalocyanine for High-Performance Lithium-Sulfur Batteries. Energy & Environmental Materials, 2024, 7(1): 12479 https://doi.org/10.1002/eem2.12479

References

[1]
R. Deng, M. Wang, H. Yu, S. Luo, J. Li, F. Chu, B. Liu, F. Wu, Energy Environ. Mater. 2021,
CrossRef Google scholar
[2]
L. Y. Tian, Z. Zhang, S. Liu, G. R. Li, X. P. Gao, Energy Environ. Mater. 2022, 5, 10.
[3]
T. Li, X. Bai, U. Gulzar, Y. J. Bai, C. Capiglia, W. Deng, X. Zhou, Z. Liu, Z. Feng, R. Proietti Zaccaria, Adv. Funct. Mater. 2019, 29, 1901730.
[4]
F. Li, Q. Liu, J. Hu, Y. Feng, P. He, J. Ma, Nanoscale 2019, 11, 15418.
[5]
W. J. Chen, C. X. Zhao, B. Q. Li, Q. Jin, X. Q. Zhang, T. Q. Yuan, X. Zhang, Z. Jin, S. Kaskel, Q. Zhang, Energy Environ. Mater. 2020, 3, 160.
[6]
H. Jia, D. Wang, Y. Li, L. Liu, H. Gu, S. Yang, Q. Fu, X. Yan, Y. Wei, ACS Appl. Nano Mater. 2021, 4, 2606.
[7]
M. Zhao, X. Y. Li, X. Chen, B. Q. Li, S. Kaskel, Q. Zhang, J. Q. Huang, eScience 2021, 1, 44.
[8]
C. Geng, W. Hua, D. Wang, G. Ling, C. Zhang, Q. H. Yang, SusMat. 2021, 1, 51.
[9]
J. Wang, G. Li, D. Luo, Y. Zhao, Y. Zhang, G. Zhou, L. Shui, X. Wang, J. Mater. Chem. A 2021, 9, 11160.
[10]
N. Wu, J. Wang, C. Liao, L. Han, L. Song, Y. Hu, X. Mu, Y. Kan, J. Energy Chem. 2022, 64, 372.
[11]
F. Zeng, A. Wang, W. Wang, Z. Jin, Y. S. Yang, J. Mater. Chem. A 2017, 5, 12879.
[12]
Z. L. Wang, J. H. Jiang, J. H. Lu, A. B. Wang, Z. Q. Jin, W. K. Wang, J. Cent. South Univ. 2021, 28, 3681.
[13]
D. Luo, Z. Zhang, G. Li, S. Cheng, S. Li, J. Li, R. Gao, M. Li, S. Sy, Y. P. Deng, Y. Jiang, Y. Zhu, H. Dou, Y. Hu, A. Yu, Z. Chen, ACS Nano 2020, 14, 4849.
[14]
J. Zhang, C. You, H. Lin, J. Wang, Energy Environ. Mater. 2022,
CrossRef Google scholar
[15]
J. S. Yeon, Y. H. Ko, T. H. Park, H. Park, J. Kim, H. S. Park, Energy Environ. Mater. 2021, 5, 555.
[16]
J. Wang, Y. Zhao, G. Li, D. Luo, J. Liu, Y. Zhang, X. Wang, L. Shui, Z. Chen, Nano Energy 2021, 84, 105891.
[17]
X. Y. Li, S. Feng, M. Zhao, C. X. Zhao, X. Chen, B. Q. Li, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. Engl. 2022, 61, e202114671.
[18]
D. Cai, B. Liu, D. Zhu, D. Chen, M. Lu, J. Cao, Y. Wang, W. Huang, Y. Shao, H. Tu, W. Han, Adv. Energy Mater. 2020, 10, 1904273.
[19]
K. Xiao, J. Wang, Z. Chen, Y. Qian, Z. Liu, L. Zhang, X. Chen, J. Liu, X. Fan, Z. X. Shen, Small 2019, 15, 1901454.
[20]
D. Tian, X. Song, Y. Qiu, X. Sun, B. Jiang, C. Zhao, Y. Zhang, X. Xu, L. Fan, N. Zhang, Energy Environ. Mater. 2021,
CrossRef Google scholar
[21]
W. Yao, W. Zheng, J. Xu, C. Tian, K. Han, W. Sun, S. Xiao, ACS Nano 2021, 15, 7114.
[22]
R. Wang, C. Luo, T. Wang, G. Zhou, Y. Deng, Y. He, Q. Zhang, F. Kang, W. Lv, Q. H. Yang, Adv. Mater. 2020, 32, e2000315.
[23]
B. Q. Li, H. J. Peng, X. Chen, S. Y. Zhang, J. Xie, C. X. Zhao, Q. Zhang, CCS Chem. 2019, 1, 128.
[24]
S. Yang, Y. Yu, X. Gao, Z. Zhang, F. Wang, Chem. Soc. Rev. 2021, 50, 12985.
[25]
S. Alfadhli, H. A. M. Ali, E. F. M. El-Zaidia, R. A. S. Alatawi, A. A. A. Darwish, I. S. Yahia, J. Mater. Sci. Mater. Electron. 2021, 32, 1907.
[26]
W. Hua, H. Li, C. Pei, J. Xia, Y. Sun, C. Zhang, W. Lv, Y. Tao, Y. Jiao, B. Zhang, S. Z. Qiao, Y. Wan, Q. H. Yang, Adv. Mater. 2021, 33, e2101006.
[27]
B. Bursa, D. Wrobel, A. Biadasz, K. Kedzierski, K. Lewandowska, A. Graja, M. Szybowicz, M. Durmus, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 128, 489.
[28]
J. Zhou, X. Liu, L. Zhu, J. Zhou, Y. Guan, L. Chen, S. Niu, J. Cai, D. Sun, Y. Zhu, J. Du, G. Wang, Y. Qian, Joule 2018, 2, 2681.
[29]
Z. Ji, B. Han, Q. Li, C. Zhou, Q. Gao, K. Xia, J. Wu, J. Phys. Chem. C 2015, 119, 20495.
[30]
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
[31]
S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
[32]
H. F. Schaefer, H. Schaefer, J. Plenum Press 1977, 4, 95.
[33]
J. W. Hehre, J. Chem. Phys. 1972, 56, 2257.
[34]
P. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213.
[35]
A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.

RIGHTS & PERMISSIONS

2022 2022 Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/