
Synergistic ligand mediated anion exchange of CsPbI3 quantum dots for high performance white LED and anti-counterfeiting
Yajing Chang, Guoqing Tong, Liping Liu, Junchun Li, Jingting Yang, Zongsheng Chen, Zhigang Li, Shaobo Zhang, Ru Zhou, Yang Jiang
EcoMat ›› 2024, Vol. 6 ›› Issue (3) : e12439.
Synergistic ligand mediated anion exchange of CsPbI3 quantum dots for high performance white LED and anti-counterfeiting
Anion exchange is an effective strategy to regulate the composition and optoelectronic properties of perovskite quantum dots (PQDs). Though promising, it is more desirable to synthesize PQDs to avoid the decrease of photoluminescence quantum yield (PLQY). Herein, we developed a ligand mediated anion exchange approach, in which the phase transition from CsPbBr3 QDs to CsPbI3 QDs was observed with the introduction of N-Acetyl-L-cysteine (NAC) and 1,3-dimethylimidazolium iodide (DMII) aqueous solution in CsPbBr3 QDs solution. NAC is expected to create more halogen vacancies in CsPbBr3 QDs, which provides sufficient adsorption sites for I− ions, resulting in accelerating the anion exchange rate in the process of DMII incorporation. Benefiting from the synergistic ligand mediated anion exchange, high PLQY of 97% and remarkable stability of CsPbI3 QDs are obtained. Furthermore, a white light-emitting diode (WLED) with a lumen efficiency (LE) of 116.82 lm/W is constructed, showing remarkable stability under continuous operation.
anion exchange / anti-counterfeiting code / high PLQY / ligand exchange / white light-emitting diodes
[1] |
Bao C, Yang J, Bai S, et al. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv Mater. 2018;30(38):1803422.
CrossRef
Google scholar
|
[2] |
Lee J-W, Kang SM. Patterning of metal halide perovskite thin films and functional layers for optoelectronic applications. Nano-Micro Lett. 2023;15(1):184.
CrossRef
Google scholar
|
[3] |
Chen Y, Wu X, Chu Y, Zhou J, Zhou B, Huang J. Hybrid field-effect transistors and photodetectors based on organic semiconductor and CsPbI3 perovskite nanorods bilayer structure. Nano-Micro Lett. 2018;10(4):57.
CrossRef
Google scholar
|
[4] |
Xu X, Dong Y, Zhang Y, et al. High-definition colorful perovskite narrowband photodetector array enabled by laser-direct-writing. Nano Res. 2022;15(6):5476-5482.
CrossRef
Google scholar
|
[5] |
Di H, Zeng W, Li B-H, et al. Regulating 3D phase in quasi-2D perovskite films for high-performance and stable photodetectors. Adv Sci. 2023;10(26):2302917.
CrossRef
Google scholar
|
[6] |
Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photon. 2018;12(11):681-687.
CrossRef
Google scholar
|
[7] |
Hassan Y, Park J, Crawford ML, et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature. 2021;591(7848):72-77.
CrossRef
Google scholar
|
[8] |
Li J, Sheng Y, Tong G, et al. Anti-solvent synthesis of three-color indium-based halide perovskite microplate/microcrystal phosphors for high color rendering WLEDs. Adv Opt Mater. 2023;11(16):2300100.
CrossRef
Google scholar
|
[9] |
Shan Q, Song J, Zou Y, et al. High performance metal halide perovskite light-emitting diode: from material design to device optimization. Small. 2017;13(45):1701770.
CrossRef
Google scholar
|
[10] |
Li X, Ma W, Liang D, Cai W, Zhao S, Zang Z. High-performance CsPbBr3@Cs4PbBr6/SiO2 nanocrystals via double coating layers for white light emission and visible light communication. eScience. 2022;2(6):646-654.
CrossRef
Google scholar
|
[11] |
Shi Z, Zhang F, Yan J, et al. Robust frequency-upconversion lasing operated at 400 K from inorganic perovskites microcavity. Nano Res. 2022;15(1):492-501.
CrossRef
Google scholar
|
[12] |
Wang Y, Li X, Song J, Xiao L, Zeng H, Sun H. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv Mater. 2015;27(44):7101-7108.
CrossRef
Google scholar
|
[13] |
Yu X, Cai B, Zhang J, et al. Fullerene modification of WO3 electron transport layer toward high-efficiency MA-free perovskite solar cells with eliminated light-soaking effect. Interdiscip Mater. 2023;2(3):459-469.
CrossRef
Google scholar
|
[14] |
Tian W, Song P, Zhao Y, et al. Monolithic bilayered In2O3 as an efficient interfacial material for high-performance perovskite solar cells. Interdiscip Mater. 2022;1(4):526-536.
CrossRef
Google scholar
|
[15] |
Liu B, Yang H, Zuo Y, et al. Intermediate phase-assisted growth of CsPbBr3 for high performance of carbon-based perovskite solar cells. Rare Met. 2024.
CrossRef
Google scholar
|
[16] |
Li S, Cao Y-L, Li W-H, Bo Z-S. A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Met. 2021;40(10):2712-2729.
CrossRef
Google scholar
|
[17] |
Li Y-HZY. Interface materials for perovskite solar cells. Rare Met. 2021;40:2993.
|
[18] |
Zhang H, Park N-G. Towards sustainability with self-healing and recyclable perovskite solar cells. eScience. 2022;2:567.
|
[19] |
Song J, Li J, Li X, Xu L, Dong Y, Zeng H. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater. 2015;27(44):7162-7167.
CrossRef
Google scholar
|
[20] |
Li X, Wu Y, Zhang S, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater. 2016;26(15):2435-2445.
CrossRef
Google scholar
|
[21] |
Kovalenko MV, Protesescu L, Bodnarchuk MI. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science. 2017;358(6364):745-750.
CrossRef
Google scholar
|
[22] |
Li X, Cao F, Yu D, et al. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small. 2017;13(9):1603996.
CrossRef
Google scholar
|
[23] |
Shu B, Chang Y, Zhang J, Cheng X, Yang D. Synthesis and photoluminescence kinetics of Ce3+-doped CsPbI3 QDs with near-unity PLQY. Nano Res. 2021;14(10):3352-3357.
CrossRef
Google scholar
|
[24] |
Bohn BJ, Tong Y, Gramlich M, et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett. 2018;18(8):5231-5238.
CrossRef
Google scholar
|
[25] |
Zhao J, Cao S, Li Z, Ma N. Amino acid-mediated synthesis of CsPbBr3 perovskite nanoplatelets with tunable thickness and optical properties. Chem Mater. 2018;30(19):6737-6743.
CrossRef
Google scholar
|
[26] |
Zhao Y, Yu S, Yan X, Biwu M. Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. Chem Commun. 2016;52:3887.
|
[27] |
Dou L, Lai M, Kley CS, et al. Spatially resolved multicolor CsPbX3n anowire heterojunctions via anion exchange. Proc Natl Acad Sci U S A. 2017;114(28):7216-7221.
CrossRef
Google scholar
|
[28] |
Siena MCD, Sommer DE, Creutz SE, Dunham ST, Gamelin DR. Spinodal decomposition during anion exchange in colloidal Mn2+-doped CsPbX3 (X = Cl, Br) perovskite nanocrystals. Chem Mater. 2019;31(18):7711-7722.
CrossRef
Google scholar
|
[29] |
Loiudice A, Strach M, Saris S, Chernyshov D, Buonsanti R. Universal oxide shell growth enables in situ structural studies of perovskite nanocrystals during the anion exchange reaction. J Am Chem Soc. 2019;141(20):8254-8263.
CrossRef
Google scholar
|
[30] |
Li J, Xu J, Bao Y, et al. Anion-exchange driven phase transition in CsPbI3 nanowires for fabricating epitaxial perovskite heterojunctions. Adv Mater. 2022;34(19):2109867.
CrossRef
Google scholar
|
[31] |
Yoon Y, Shin Y, Jang H, et al. Highly stable bulk perovskite for blue LEDs with anion-exchange method. Nano Lett. 2021;21(8):3473-3479.
CrossRef
Google scholar
|
[32] |
Zhang Y, Lu D, Gao M, et al. Quantitative imaging of anion exchange kinetics in halide perovskites. Proc Natl Acad Sci U S A. 2019;116(26):12648-12653.
CrossRef
Google scholar
|
[33] |
Sygletou M, Kyriazi M, Kanaras AG, Stratakis E. Anion exchange in inorganic perovskite nanocrystal polymer composites. Chem Sci. 2018;9(42):8121-8126.
CrossRef
Google scholar
|
[34] |
Kazes M, Udayabhaskararao T, Dey S, Oron D. Effect of surface ligands in perovskite nanocrystals: extending in and reaching out. Acc Chem Res. 2021;54(6):1409-1418.
CrossRef
Google scholar
|
[35] |
Zhu H, Tong G, Li J, et al. Enriched-bromine surface state for stable sky-blue spectrum perovskite QLEDs with an EQE of 14.6%. Adv Mater. 2022;34(37):2205092.
CrossRef
Google scholar
|
[36] |
Li F, Huang X, Ma C, et al. Tailoring the Interface with a Multifunctional Ligand for Highly Efficient and Stable FAPbI3 Perovskite Solar Cells and Modules Adv Sci. 2023;10:2301603.
|
[37] |
Ding S, Hao M, Lin T, Bai Y, Wang L. Ligand engineering of perovskite quantum dots for efficient and stable solar cells. J Energy Chem. 2022;37:626-648.
CrossRef
Google scholar
|
[38] |
Parobek D, Dong Y, Qiao T, Rossi D, Son DH. Photoinduced anion exchange in cesium lead halide perovskite nanocrystals. J Am Chem Soc. 2017;139(12):4358-4361.
CrossRef
Google scholar
|
[39] |
Zhou Y, Fang T, Liu G, et al. Perovskite anion exchange: a microdynamics model and a polar adsorption strategy for precise control of luminescence color. Adv Funct Mater. 2021;31(51):2106871.
CrossRef
Google scholar
|
[40] |
Uddin MA, Glover JD, Park SM, Pham JT, Graham KR. Growth of highly stable and luminescent CsPbX3 (X = Cl, Br, and I) nanoplates via ligand mediated anion exchange of CsPbCl3 nanocubes with AlX3. Chem Mater. 2020;32(12):5217-5225.
CrossRef
Google scholar
|
[41] |
Protesescu L, Yakunin S, Bodnarchuk MI, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015;15(6):3692-3696.
CrossRef
Google scholar
|
[42] |
Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk MI, Grotevent MJ, Kovalenko MV. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015;15(8):5635-5640.
CrossRef
Google scholar
|
[43] |
Tao X, Liu B, Tong G, et al. Visible light-driven luminescence evolution of CsPbBr3 quantum dots via surface reconstruction. J Phys Chem C. 2023;127(15):7371-7379.
CrossRef
Google scholar
|
[44] |
Wright AD, Verdi C, Milot RL, et al. Electron–phonon coupling in hybrid lead halide perovskites. Nat Commun. 2016;7(1):11755.
CrossRef
Google scholar
|
[45] |
Lee SM, Moon CJ, Lim H, Lee Y, Choi MY, Bang J. Temperature-dependent photoluminescence of cesium lead halide perovskite quantum dots: splitting of the photoluminescence peaks of CsPbBr3 and CsPb(Br/I)3 quantum dots at low temperature. J Phys Chem C. 2017;121(46):26054-26062.
CrossRef
Google scholar
|
[46] |
Yuan X, Ji S, De Siena MC. Photoluminescence temperature dependence, dynamics, and quantum efficiencies in Mn2+-doped CsPbCl3 perovskite nanocrystals with varied dopant concentration. Chem Mater. 2017;29(18):8003-8011.
CrossRef
Google scholar
|
[47] |
Balena A, Perulli A, Fernandez M, et al. Temperature dependence of the amplified spontaneous emission from CsPbBr3 nanocrystal thin films. J Phys Chem C. 2018;122(10):5813-5819.
CrossRef
Google scholar
|
[48] |
Imran M, Caligiuri V, Wang M, et al. Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J Am Chem Soc. 2018;140(7):2656-2664.
CrossRef
Google scholar
|
[49] |
Huang H, Bodnarchuk M, Kershaw S, Kovalenko M, Rogach A. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett. 2017;2(9):2071-2083.
CrossRef
Google scholar
|
[50] |
Zeng Q, Zhang X, Bing Q, et al. Surface stabilization of colloidal perovskite nanocrystals via multi-amine chelating ligands. ACS Energy Lett. 2022;7(6):1963.
|
[51] |
Chen W, Chen L, Liu F, et al. Perovskite-nanocrystal-doped cellulose nanocrystal ligands for electrospun nanofibers with excellent stability. Small. 2023;19(23):2207685.
CrossRef
Google scholar
|
/
〈 |
|
〉 |