Balancing food security, vertebrate biodiversity, and healthy rice agroecosystems in Southeast Asia

Catherine R. Proppera,*, Jodi L. Sedlockb, Richard E. Smedleyc,d, Oliver Frithc,e, Molly E. Shuman-Goodiera,f, Alejandro Grajal-Puchea, Alexander M. Stuartc,g, Grant R. Singletona,c,h

Crop and Environment ›› 2024, Vol. 3 ›› Issue (1) : 43-50.

PDF
Crop and Environment ›› 2024, Vol. 3 ›› Issue (1) : 43-50. DOI: 10.1016/j.crope.2023.11.005
Review article

Balancing food security, vertebrate biodiversity, and healthy rice agroecosystems in Southeast Asia

  • Catherine R. Proppera,*, Jodi L. Sedlockb, Richard E. Smedleyc,d, Oliver Frithc,e, Molly E. Shuman-Goodiera,f, Alejandro Grajal-Puchea, Alexander M. Stuartc,g, Grant R. Singletona,c,h
Author information +
History +

Abstract

Rice is the dominant food staple and an important economic resource throughout Asia. Lowland rice production also provides important wetland habitats in support of biodiversity that may provide ecosystem services back to the rice agroecosystems. This review summarizes the literature on the ecosystem benefits that amphibians, birds, bats, and rodents support in the context of the Southeast Asia rice agroecosystems. The literature provides evidence that these taxonomic groups contribute to cultural, regulatory, and provisioning services in support of smallholder farmers and may allow for economic benefits through reduced use of chemical inputs into crops. We encourage a multipronged research approach to bring stakeholders together to provide structured and scalable education programs that will lead to improved human and agroecosystem health through the promotion of understanding the positive feedbacks from biodiversity in these important agricultural wetland habitats.

Keywords

Agroecosystems / Ecosystem services / Rice production / Southeast Asia / Vertebrate biodiversity

Cite this article

Download citation ▾
Catherine R. Propper, Jodi L. Sedlock, Richard E. Smedley, Oliver Frith, Molly E. Shuman-Goodier, Alejandro Grajal-Puche, Alexander M. Stuart, Grant R. Singleton. Balancing food security, vertebrate biodiversity, and healthy rice agroecosystems in Southeast Asia. Crop and Environment, 2024, 3(1): 43‒50 https://doi.org/10.1016/j.crope.2023.11.005

References

[1] Adil S., Altaf M., Hussain T., Umair M., Ni J., Abbasi A.M., Bussmann R.W., Ashraf S., 2022. Cultural and medicinal use of amphibians and reptiles by indigenous people in Punjab, Pakistan with comments on conservation implications for Herpetofauna. Animals 12, 2062. https://doi.org/10.3390/ani12162062.
[2] Ahmed N., Thompson S., Hardy B., Turchini G.M., 549-565. https://doi.org/10.1080/23308249.2020.1833833.
[3] Aizpurua O., Budinski I., Georgiakakis P., Gopalakrishnan S., Ibañez C., Mata V., Rebelo H., Russo D., Szodoray-Parádi F., Zhelyazkova V., Zrncici V., Thomas M., Gilbert P., Alberdi A., 2018. Agriculture shapes the trophic niche of a bat preying on multiple pest arthropods across Europe: Evidence from DNA metabarcoding. Mol. Ecol. 27, 815-825. https://doi.org/10.1111/mec.14474.
[4] Alroy J.,2015. Current extinction rates of reptiles and amphibians. Proc. Natl. Acad. Sci. U. S. A. 112, 13003-13008. https://doi.org/10.1073/pnas.1508681112.
[5] Azman N.M., Sah S.A.M., Ahmad A., Rosely N.F., 2019. Contribution of rice fields to bird diversity in Peninsular Malaysia. Sains Malays. 48, 1811-1821. https://doi.org/10.17576/jsm-2019-4809-02.
[6] Baker N.J., Bancroft B.A., Garcia T.S., 2013. A meta-analysis of the effects of pesticides and fertilizers on survival and growth of amphibians. Sci. Total Environ. 449, 150-156.
[7] Baker-Munton C.,2018. Bat faeces turn to “black gold” Globe, Lines of Thought Across Southeast Asia. https://southeastasiaglobe.com/black-gold/. (Accessed 7 December 2023).
[8] Bambaradeniya C.N., Amerasinghe F.P., 2003. Biodiversity associated with the rice field agroecosystem in Asian countries: a brief review. International Water Management Institute (IWMI) Working Paper 63, Colombo, Sri Lanka, pp. 1-24. https://doi.org/10.3910/2009.193.
[9] Banks P.B., Smith H.M., 2015. The ecological impacts of commensal species: black rats, Rattus rattus, at the urban-bushland interface. Wildl. Res. 42, 86-97. https://doi.org/10.1071/WR15048.
[10] Barlow J., França F., Gardner T.A., Hicks C.C., Lennox G.D., Berenguer E., Castello L., Economo E.P., Ferreira J., Guénard B., Gontijo Leal C., Isaac V., Lees A.C., Parr C.L., Wilson S.K., Young P.J., Graham N.A.J., 2018. The future of hyperdiverse tropical ecosystems. Nature 559, 517-526. https://doi.org/10.1038/s41586-018-0301-1.
[11] Belmain S.R., Htwe N.M., Kamal N.Q., Singleton G.R., 2015. Estimating rodent losses to stored rice as a means to assess efficacy of rodent management. Wildl. Res. 42, 132-142. https://doi.org/10.1071/WR14189.
[12] Blitzer E.J., Dormann C.F., Holzschuh A., Klein A.M., Rand T.A., Tscharntke T., 34-43. https://doi.org/10.1016/j.agee.2011.09.005.
[13] Bourdin P., Paris T., Serrano F., Smedley R., Hettel G., 2015. Guide to the birds of Philippine rice fields. International Rice Research Institute, Los Baños, Philippines.
[14] Chhay S.,2012. Cambodian bats: a review of farming practices and economic value of lesser Asiatic yellow house bat Scotophilus kuhlii (Leach, 1821), in Kandal and Takeo provinces, Cambodia. Cambodian J. Nat. Hist. 2, 164.
[15] Courouble M., Davidson N., Dinesen L., Fennessy S., Galewski T., Guelmami A., Kumar R., McInnes R., Perennou C., Rebelo L.M., Robertson H., Segura-Champagnon L., Simpson M., Stroud D., 2021. Convention on Wetlands, Global Wetland Outlook: Special Edition 2021. Secretariat of the Convention on Wetlands, Gland, Switzerland.
[16] de la Riva E.G., Ulrich W., Batáry P., Baudry J., Beaumelle L., Bucher R., Čerevková A., Felipe-Lucia M.R., Gallé R., Kesse-Guyot E., Rembiałkowska E., 2023. From functional diversity to human well-being: a conceptual framework for agroecosystem sustainability. Agric. Syst. 208, 103659. https://doi.org/10.1016/j.agsy.2023.103659.
[17] de Miranda M., Fonseca M., Lima A., de Moraes T., Aparecido Rodrigues F., 2015. Environmental impacts of rice cultivation. Am. J. Plant Sci. 6, 2009-2018. https://doi.org/10.4236/ajps.2015.612201.
[18] Dickman C.R.,1999. Rodent-ecosystem relationships: a review. In: Singleton, G.R., Hinds, L.A., Leirs, H., Zhang, Z. (Eds.), Ecologically-based Management of Rodent Pests. Australian Centre for International Agricultural Research, Canberra, Australian, pp. 113-133.
[19] Duru M., Therond O., Martin G., Martin-Clouaire R., Magne M.A., Justes E., Journet E.P., Aubertot J.N., Savary S., Bergez J.E., Sarthou J.P., 2015. How to implement biodiversity-based agriculture to enhance ecosystem services: a review. Agron. Sustain. Dev. 35, 1259-1281. https://doi.org/10.1007/s13593-015-0306-1.
[20] Egea-Serrano A., Relyea R.A., Tejedo M., Torralva M., 2012. Understanding of the impact of chemicals on amphibians: a meta-analytic review. Ecol. Evol. 2, 1382-1397.
[21] Elphick C.S.,2000. Functional equivalency between rice fields and seminatural wetland habitats. Conserv. Biol. 14, 181-191. https://doi.org/10.1046/j.1523-1739.2000.98314.x.
[22] Elphick C.S., Baicich P., Parsons K.C., Fasola M., Mugica L., 2010a. The future for research on waterbirds in rice fields. Waterbirds 33, 231-243. https://doi.org/10.1675/063.033.s117.
[23] Elphick C.S., Parsons K.C., Fasola M., Mugica L., 2010b. Ecology and Conservation of Birds in Rice Fields: A Global Review. Waterbirds society.
[24] Fang K., Dai W., Chen H., Wang J., Gao H., Sha Z., Cao L., 147123. https://doi.org/10.1016/j.scitotenv.2021.147123.
[25] FAO (Food and Agriculture Organization), 2020. How to Feed the World in 2050. https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf.
[26] Fasola M., Ruiz X., 1996. The value of rice fields as substitutes for natural wetlands for waterbirds in the Mediterranean region. Colon. Waterbirds 19, 122-128.
[27] Fernando C.,1993. Rice field ecology and fish culture - an overview. Hydrobiologia 259, 91-113. https://doi.org/10.1007/BF00008375.
[28] Fiedler L.A.,1990. Rodents as a food source. In: Davis, L.R., Marsh, R.E. (Eds.), Proceedings of the Fourteenth Vertebrate Pest Conference 1990, University ofCalifornia, Davis, California, USA. https://digitalcommons.unl.edu/vpc14/30.
[29] Furey N.M., Whitten T., Cappelle J., Racey P.A., 2016. The conservation status of Cambodian cave bats. In: Laumanns, M. (Ed.), International Speleological Project to Cambodia 2016. Spel€aoclub Berlin, Berlin, Germany, pp. 82-95.
[30] Gardner R.C., Finlayson C., 2018. Convention on Wetlands, Global Wetland Outlook: State of the World’s Wetlands and their Services to People. Ramsar Convention Secretariat, Gland, Switzerland.
[31] Global Rice Science Partnership (GRiSP), 2013. Rice Almanac, Fourth Edition.International Rice Research Institute, Los Baños, Philippines. https://archive.org/details/RiceAlmanac/mode/2up.
[32] Gurr G.M., Lu Z., Zheng X., Xu H., Zhu P., Chen G., Yao X., Cheng J., Zhu Z., Catindig J.L., Villareal S., Chien H.V., Cuong L.Q., Channoo C., Chengwattana N., Lan L.P., Hai L.H., Chaiwong J., Nicol H.I., Perovic D.J., Wratten S.D., Heong K.L., 16014. https://doi.org/10.1038/nplants.2016.14.
[33] Hocking D.J., Babbitt K.J., 2014. Amphibian contributions to ecosystem services. Herpetol. Conserv. Biol. 9, 1-17.
[34] Hodgkin T., Hunter D., Wood S., Demers N., 2015. Agricultural biodiversity, food security and human health. In: Romanelli, C., Cooper, D., Campbell-Lendrum, D., Maiero, M., Karesh, W.B., Hunter, D. (Eds.), Connecting Global Priorities: Biodiversity and Human Health: A State of Knowledge Review. World Health Organization, Geneva, Switzerland, pp. 75-95.
[35] Horgan F.G., Ramal A.F., Villegas J.M., Almazan M.L.P., Bernal C.C., Jamoralin A., Pasang J.M., Orboc G., Agreda V., Arroyo C., 2017. Ecological engineering with high diversity vegetation patches enhances bird activity and ecosystem services in Philippine rice fields. Reg. Environ. Chang. 17, 1355-1367. https://doi.org/10.1007/s10113-016-0984-5.
[36] Horgan F.G., Vu Q., Mundaca E.A., Crisol-Martínez E., 2022. Restoration of rice ecosystem services: 'Ecological engineering for pest management' incentives and practices in the Mekong Delta Region of Vietnam. Agronomy 12, 1042. https://doi.org/10.3390/agronomy12051042.
[37] Hou P., Bai J., Chen Y., Hou J., Zhao J., Ma Y., Zhai J., 1007442. https://doi: 10.3389/fmars.2022.1007442.
[38] Htwe N.M., Singleton G.R., Hinds L.A., Propper C.R., Sluydts V., 39-45. https://doi.org/10.1016/j.agee.2012.07.023.
[39] Hughes,C.E.,2017.Are theremany different routes to becoming a global biodiversityhotspot? Proc. Natl. Acad. Sci. U. S. A. 114, 4275-4277. https://doi.org/10.1002/ecs2.1624.
[40] Ibáñez C., Curcó A., Riera X., Ripoll I., Sánchez C., 2010. Influence on birds of rice field management practices during the growing season: a review and an experiment. Waterbirds 33, 167-180.
[41] IPBES, 2019. In: Brondizio, E.S., Settele, J., Díaz, S., Ngo, H.T. (Eds.), The IPBES Global Assessment on Biodiversity and Ecosystem Services. IPBES secretariat, Bonn, Germany.
[42] Ito H.C., Shiraishi H., Nakagawa M., Takamura N., 2020. Combined impact of pesticides and other environmental stressors on animal diversity in irrigation ponds. PLoS One 15, e0229052. https://doi.org/10.1371/journal.pone.0229052.
[43] Jaureguiberry P., Titeux N., Wiemers M., Bowler D.E., Coscieme L., Golden A.S., Guerra C.A., Jacob U., Takahashi Y., Settele J., Díaz S., Molnár Z., Purvis A., 2022. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982. https://doi.org/10.1126/sciadv.abm9982.
[44] Jayasiri N., Yadav S., Propper C.R., Kumar V., Dayawansa N., Singleton G.R., 2022. Assessing environmental impacts of pesticide usage in paddy ecosystems: a case study in Deduru Oya river basin, Sri Lanka. Environ. Toxicol. Chem. 41, 343-355. https://doi.org/10.1002/etc.5261.
[45] Keping M.,2023. Kunming-Montreal global biodiversity framework: an important global agenda for biodiversity conservation. Biodivers. Sci. 31, 23133.
[46] Khatiwada J.R., Ghimire S., Khatiwada S.P., Paudel B., Bischof R., Jiang J., Haugaasen T., 307-314. https://doi.org/10.1016/j.agee.2016.06.025.
[47] Kingston T.,2010. Research priorities for bat conservation in Southeast Asia: a consensusapproach. Biodivers. Conserv. 19, 471-484. https://doi.org/10.1007/s10531-008-9458-5.
[48] Kunz T.H., de Torrez E.B., Bauer D., Lobova T., Fleming T.H., 2011. Ecosystem services provided by bats. Ann. N.Y. Acad. Sci. 1223, 1-38. https://doi.org/10.1111/j.1749-6632.2011.06004.x.
[49] Lampayan R., Rejesus R., Bouman B.A., Singleton G.R., 95-108. https://doi.org/10.1016/j.fcr.2014.10.013.
[50] Landis D.A., Wratten S.D., Gurr G.M., 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175-201. https://doi.org/10.1146/annurev.ento.45.1.175.
[51] Lebov J., Grieger K., Womack D., Zaccaro D., Whitehead N., Kowalcyk B., 44-50. https://doi.org/10.1016/j.onehlt.2017.03.004.
[52] Leelapaibul W., Bumrungrsi S., Pattanawiboon A., 2005. Diet of wrinkle-lipped freetailed bat (Tadarida plicata Buchannan, 1800) in central Thailand: Insectivorous bats potentially act as biological pest control agents. Acta Chiropt. 7, 111-119. https://doi.org/10.3161/1733-5329(2005)7.
[53] Li Z., Wang Q., Sun K., Feng J., 791237. https://doi.org/10.3389/fvets.2021.791237.
[54] Lin K., Wu J., 2020. Effect of introducing frogs and fish on soil phosphorus availability dynamics and their relationship with rice yield in paddy fields. Sci. Rep. 10, 21. https://doi.org/10.1038/s41598-019-56644-z.
[55] Ma Z., Cai Y., Li B., Chen J., 2010. Managing wetland habitats for waterbirds: an international perspective. Wetlands 30, 15-27. https://doi.org/10.1007/s13157-009-0001-6.
[56] Maslo B., Valentin R., Leu K., Kerwin K., Hamilton G.C., Bevan A., Fefferman N.H., Fonesca D.M., 2017. Chirosurveillance: The use of native bats to detect invasive agricultural pests. PLoS One 12, e0173321. https://doi.org/10.1371/journal.pone.0173321.
[57] Meerburg B.G., Singleton G.R., Kijlstra A., 2009. Rodent-borne diseases and their risks for public health. Crit. Rev. Microbiol. 35, 221-270. https://doi.org/10.1080/10408410902989837.
[58] Mendelson J.R., Lips K.R., Gagliardo R.W., Rabb G.B., Collins J.P., Diffendorfer J.E., Daszak P., Ibanez R.D., Zippel K.C., Lawson D.P., Wright K.M., Stuart S.N., Gascon C., Da Silva H.R., Burrowes P.A., Joglar R.L., La Marca E., Lotters S., Du Preez L.H., Weldon C., Hyatt A., Rodriguez-Mahecha J.V., Hunt S., Robertson H., Lock B., Raxworthy C.J., Frost D.R., Lacy R.C., Alford R.A., Campbell J.A., Parra-Olea G., Bolanos F., Calvo Domingo J.J., Halliday T., Murphy J.B., Wake M.H., Coloma L.A., Kuzmin S.L., Price M.S., Howell K.M., Lau M., Pethiyagoda R., Boone M., Lannoo M.J., Blaustein A.R., Dobson A., Griffiths R.A., Crump M.L., Wake D.B., Brodie Jr., E.D., 2006. Confronting amphibian declines and extinctions. Science 313, 48. https://doi.org/10.1126/science.1128396.
[59] Mesleard F., 24-29. https://doi.org/10.1016/j.aquatox.2016.04.004.
[60] Millennium Ecosystem Assessment, 2005. In: Sarukhan, J., Whyte, A. (Eds.), Ecosystems and Human Well-Being: Synthesis. Island Press, Washington, DC, USA.
[61] Montauban C., Mas M., Wangensteen O.S., Sarto I., Monteys V., 105427. https://doi.org/10.1016/j.cropro.2020.105427.
[62] Myers N.,1988. Threatened biotas: "Hot spots" in tropical forests. Environmentalist 8, 187-208. https://doi.org/10.1007/BF02240252.
[63] Naito R., Yamasaki M., Lmanishi A., Natuhara Y., Morimoto Y., 2012. Effects of water management, connectivity, and surrounding land use on habitat use by frogs in rice paddies in Japan. Zool. Sci. 29, 577-584. https://doi.org/10.2108/zsj.29.577.
[64] Nakano R., Ihara F., Mishiro K., Toyama M., Toda S., 2015. High duty cycle pulses suppress orientation flights of crambid moths. J. Insect Physiol. 83, 15-21.
[65] Nakano R., Ito A., Tokumaru S., 2022. Sustainable pest control inspired by prey-predator ultrasound interactions. Proc. Natl. Acad. Sci. U. S. A. 119, e2211007119.
[66] Navedo J.G., Hahn S., Parejo M., 288-297. https://doi.org/10.1016/j.scitotenv.2014.12.068.
[67] Nguyen T.N., Ruangwiset A., Bumrungsri S., 1-6. https://doi.org/10.1016/J.MAMBIO.2019.03.003.
[68] Nurhasan M., Maehre H.K., Malde M.K., Stormo S.K., Halwart M., James D., Elvevoll E.O., 205-213. https://doi.org/10.1016/j.jfca.2009.12.001.
[69] Ohba S.Y., 89-95. https://doi.org/10.1016/j.actatropica.2014.11.002.
[70] Olker J.H., Elonen C.M., Pilli A., Anderson A., Kinziger B., Erickson S., Skopinski M., Pomplun A., LaLone C.A., Russom C.L., Hoff D., 2022. The ECOTOXicology knowledgebase: a curated database of ecologically relevant toxicity tests to support environmental research and risk assessment. Environ. Toxicol. Chem. 41, 1520-1539. https://doi.org/10.1002/etc.5324.
[71] Phillips B.B., Bullock J.M., Osborne J.L., Gaston K.J., 2020. Ecosystem service provision by road verges. J. Appl. Ecol. 57, 488-501. https://doi.org/10.1111/1365-2664.13556.
[72] Pisey S.,2017. Activity of insectivorous bats over rice fields surrounding free-range bat guano farms in Cambodia. Thesis. Royal University of Phnom Penh, Cambodia.
[73] Propper C.R., Hardy L.J., Howard B.D., Flor R.J.B., Singleton G.R., 2020. Role of farmer knowledge in agro-ecosystem science: rice farming and amphibians in the Philippines. Hum.-Wildl. Interact. 14, 273-286. https://doi.org/10.26077/7c28-0418.
[74] Propper C.R., Singleton G.R., Sedlock J.L., Smedley R.E., Firth O.B., Shuman-Goodier, M.E., Lorica, R.P., Grajal-Puche, A., Horgan, F.G., Prescott, C.V., Stuart, A.M., 2023. Faunal biodiversity in rice-dominated wetlands-An essential component of sustainable rice production. In: Connor, M., Gummert, M., Singleton, G.R. (Eds.), Closing Rice Yield Gaps in Asia: Innovations, Scaling, and Policies for Environmentally Sustainable Lowland Rice Production. Springer, Cham, Switzerland, pp. 93-120.
[75] Puig-Montserrat X., Flaquer C., Gómez-Aguilera N., Burgas A., Mas M., Tuneu C., Marqués E., López-Baucells A., 2020. Bats actively prey on mosquitoes and other deleterious insects in rice paddies: Potential impact on human health and agriculture. Pest Manag. Sci. 76, 3759-3769. https://doi.org/10.1002/ps.5925.
[76] Reichman O.J., Seabloom E.W., 2002. The role of pocket gophers as subterranean ecosystem engineers. Trends Ecol. Evol. 17, 44-49. https://doi.org/10.1016/S0169-5347(01)02329-1.
[77] Reid R.E. 929220. https://doi.org/10.3389/fevo.2022.929220.
[78] Sakmay S.,2015. Rice protects critically endangered birds. In: Daltry, J.C., Furey, N.M., Chnthon, H., Souter, N.J. (Eds.), Annual Meeting of the Association of Tropical Biology & Conservation: Asia-Pacific Chapter. Phenom Penh, Cambodia.
[79] Salvani G.G., Jumawan J.C., 2023. Butachlor at environmentally relevant concentrations induces partial feminization in male Luzon wart frog Fejervarya vittigera Wiegmann, 1834. J. Hazard. Mat. Advan. 10, 100275.
[80] Sawangproh W., Round P.D., Poonswad P., 2012. Asian openbill stork Anastomus oscitans as a predator of the invasive alien gastropod Pomacea analiculate in Thailand. Iiberus 30, 111-117.
[81] Secretariat of the Convention on Biological Diversity, 2020. Global Biodiversity Outlook 5 - Summary for Policy Makers (Montreal).
[82] Sedlock J.L., Stuart A.M., Horgan F.G., Hadi B., Como Jacobson A., Alviola P.A., Alvarez J.D.V., 2019. Local-scale bat guild activity differs with rice growth stage at ground level in the Philippines. Diversity 11, 148. https://doi.org/10.3390/d11090148.
[83] Seshadri K.S., Allwin J., Seena N.K., Ganesh T., 2745-2762. https://doi.org/10.1080/00222933.2020.1867772.
[84] Settele J., Settle W.H., 2018. Conservation biological control: Improving the science base. Biol. Sci. 115, 8241-8243. https://doi.org/10.1073/pnas.1810334115.
[85] Sha Z., Chu Q., Zhao Z., Yue Y., Lu L., Yuan J., Cao L., 2017. Variations in nutrient and trace element composition of rice in an organic rice-frog coculture system. Sci. Rep. 7, 15706. https://doi.org/10.1038/s41598-017-15658-1.
[86] Shuman-Goodier, 100-108. https://doi.org/10.1016/j.agee.2019.04.008.
[87] Shuman-Goodier, 758-766. https://doi.org/10.1016/j.scitotenv.2016.04.205.
[88] Shuman-Goodier, 115955. https://doi.org/10.1016/j.envpol.2020.115955.
[89] Shuman-Goodier M.E., Singleton G.R., Propper C.R., 2017. Competition and pesticide exposure affect development of invasive (Rhinella marina) and native (Fejervarya vittigera) rice paddy amphibian larvae. Ecotoxicology 26, 1293-1304. https://doi.org/10.1007/s10646-017-1854-8.
[90] Singleton G.R.,2003. Impacts of rodents on rice production in Asia. IRRI Discussion Paper Series No. 45, Los Baños, Philippines.
[91] Singleton G.R., Belmain S.R., Brown P., Aplin K.P., Htwe N.M., 2010. Impacts of rodent outbreaks on food security in Asia. Wildl. Res. 37, 355-359. https://doi.org/10.1071/WR10084.
[92] Singleton G.R., Brown P.R., Jacob J., Aplin K.P., 2007. Unwanted and unintended effects of culling: A case for ecologically-based rodent management. Integr. Zool. 2, 247-259. https://doi.org/10.1111/j.1749-4877.2007.00067.x.
[93] Singleton G.R., Joshi R.C., Sebastian L.S., 2008. Philippine rodents - a need for reappraisal. Ecological management of rodents: the good, the bad, and hindi naman masayadong pangit. In: Singleton, G.R., Joshi, R.C., Sebastian, L.S. (Eds.), Philippine Rats: Ecology and Management. Philippine Rice Research Institute, Neuva Ecija, Philippines, pp. 1-7.
[94] Smedley R.E.,2017. Avian diversity of rice fields in Southeast Asia. Thesis. University of Reading, UK.
[95] Srilopan S., Bumrungsri S., Jantarit S., 2018. The wrinkle-lipped free-tailed bat (Chaerephon plicatus Buchannan, 1800) feeds mainly on brown planthoppers in rice fields of central Thailand. Acta Chiropt. 20, 207-219. https://doi.org/10.3161/15081109ACC2018.20.1.016.
[96] Stafford J.D., Kaminski R.M., Reinecke K.J., 2010. Avian foods, foraging and habitat conservation in world rice fields. Waterbirds 33, 133-150. https://doi.org/10.1675/063.033.s110.
[97] Stenseth N.C., Leirs H., Skonhoft A., Davis S.A., Pech R.P., Andreassen H.P., Singleton G.R., Lima M., Machang'u R.S., Makundi R.H., Zhang Z.B., Brown P.R., Shi D.Z., Wan X.R., 2003. Mice, rats, and people: the bio-economics of agricultural rodent pests. Front. Ecol. Environ. 1, 367-375.
[98] Stokes V.L., Banks P.B., Pech R.P., Spratt D.M., 2009. Competition in an invaded rodent community reveals black rats as a threat to native bush rats in littoral rainforest of south-eastern Australia. J. Appl. Ecol. 46, 1239-1247. https://doi.org/10.1111/j.1365-2664.2009.01735.x.
[99] Stuart A.M., Prescott C.V., Singleton G.R., 2016. Can a native rodent species effectively limit the invasive potential of a non-native rodent species in tropical agroforest habitats? Pest Manag. Sci. 72, 1168-1177. https://doi.org/10.1002/ps.4095.
[100] Stuart A.M., Prescott C.V., Singleton G.R., Joshi R.C., 2011. Knowledge, attitudes and practices of farmers on rodent pests and their management in the lowlands of the Sierra Madre Biodiversity Corridor, Philippines. Crop Prot. 30, 147-154. https://doi.org/10.3390/agronomy12051169.
[101] Stuart A.M., Singleton G.R., Prescott C.V., Joshi R.C., Sebastian L.S., 2007. The rodent species of the Ifugao Rice Terraces, Philippines - target or non-target species for management? Int. J. Pest Manage. 53, 139-146. https://doi.org/10.1080/09670870701192433.
[102] Stuart S.N., Chanson J.S., Cox N.A., Young B.E., Rodrigues A.S.L., Fischman D.L., Waller R.W., 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783-1786. https://doi.org/10.1126/science.1103538.
[103] Summers-Smith J.D.,1995. The Tree Sparrow. Summers-Smith, Guisborough, USA.
[104] Taylor I.R., Schultz M.C., 2010. Waterbird use of rice fields in Australia. Waterbirds 33, 71-82. https://doi.org/10.1675/063.033.s105.
[105] Tekken V., Spangenberg J.H., Burkhard B., Escalada M., 153-166. https://doi.org/10.1016/j.ecoser.2017.04.010.
[106] Teng Q., Hu X.F., Luo F., Cheng C., Ge X., Yang M., Liu L., 2016. Influences of introducing frogs in the paddy fields on soil properties and rice growth. J. Soils Sediments 16, 51-61. https://doi.org/10.1007/s11368-015-1183-6.
[107] Teo S.S.,2001. Evaluation of different duck varieties for the control of the golden apple snail (Pomacea canaliculata) in transplanted and direct seeded rice. Crop Prot. 20, 599-604.
[108] Thi S., Furey N.M., Jurgens J.A., 2014. Effect of bat guano on the growth of five economically important plant species. J. Trop. Agric. 52, 169-173.
[109] Tuneu-Corral C., Puig-Montserrat X., Riba-Bertolín D., Russo D., Rebelo H., Cabeza M., López-Baucells A., 2023. Pest suppression by bats and management strategies to favour it: a global review. Biol. Rev. 98, 1564-1582. https://doi.org/10.1111/brv.12967.
[110] Utthammachai K., Bumrungsri S., Chimchome V., Russ J., Mackie I., 2008. The habitat use and feeding activity of Tadarida plicata in Thailand. Thai J. For. 27, 21-27.
[111] Valencia-Aguilar, 257-272. https://doi.org/10.1080/21513732.2013.821168.
[112] Vandergragt M.L., Warne M.S.J., Borschmann G., Johns C.V., 2020. Pervasive pesticide contamination of wetlands in the Great Barrier Reef catchment area. Integr. Environ. Assess. Manag. 16, 968-982. https://doi.org/10.1002/ieam.4298.
[113] Wagner M., Scherer C., Alvarez-Muñoz D., Brennholt N., Bourrain X., Buchinger S., Fries E., Grosbois C., Klasmeier J., Marti T., Rodriguez-Mozaz S., Urbatzka R., Vethaak A.D., Winther-Nielson M., Reifferscheid G., 2014. Microplastics in freshwater ecosystems: what we know and what we need to know. Environ. Sci. Eur. 26, 12. https://doi.org/10.1186/s12302-014-0012-7.
[114] Wanger T.C., Darras K., Bumrungsri S., Tscharntke T., Klein A.M., 220-223. https://doi.org/10.1016/j.biocon.2014.01.030.
[115] Williams-Guillén K., Olimpi, E., Maas, B., Taylor, P.J., Arlettaz, R., 2015. Bats in the anthropogenic matrix: challenges and opportunities for the conservation of chiroptera and their ecosystem services in agricultural landscapes. In: Voigt, C.C., Kingston, T. (Eds.), Bats in the Anthropocene: Conservation of Bats in a Changing World. Springer, Cham, Switzerland, pp. 151-186. https://doi.org/10.1007/978-3-319-25220-9_6.
[116] Wood C.Y., Qiao Y., Li P., Ding P., Lu B., Xi Y., 2010. Implications of rice agriculture for wild birds in China. Waterbirds 33, 30-43. https://doi.org/10.1675/063.033.s103.
[117] Yu F., Wang D.X., Yi X.F., Shi X.X., Huang Y.K., Zhang H.W., Zhang X.P., 2014. Does animal-mediated seed dispersal facilitate the formation of Pinus armandii - Quercus aliena var. acuteserrata forests? PLoS One 9, e89886. https://doi.org/10.1371/journal.pone.0089886.
[118] Zha Y.P., Chen J.Y., Jin Z.B., Wang C.B., Lei C.L., 2013. Effects of ultrasound on the fecundity and development of the cotton bollworm, Helicoverpa armigera(Hübner) 29, 93-98.
Funding
* E-mail address: catherine.propper@nau.edu (C.R. Propper).
PDF

Accesses

Citations

Detail

Sections
Recommended

/