Enhancing maize radiation use efficiency under high planting density by shaping canopy architecture with a plant growth regulator

Guanmin Huang, Yuling Guo, Weiming Tan, Mingcai Zhang, Zhaohu Li, Yuyi Zhou*, Liusheng Duan*

Crop and Environment ›› 2024, Vol. 3 ›› Issue (1) : 51-64.

PDF
Crop and Environment ›› 2024, Vol. 3 ›› Issue (1) : 51-64. DOI: 10.1016/j.crope.2023.11.004
Research article

Enhancing maize radiation use efficiency under high planting density by shaping canopy architecture with a plant growth regulator

  • Guanmin Huang, Yuling Guo, Weiming Tan, Mingcai Zhang, Zhaohu Li, Yuyi Zhou*, Liusheng Duan*
Author information +
History +

Abstract

Optimized maize (Zea mays L.) canopy architecture enhances density-tolerance. DHEAP (N, N-Diethyl-2-hexanoyl oxygen radicals-ethyl amine (2-ethyl chloride) phosphonic acid salt) has been shown to increase maize upper canopy strata compactness, but its overall effect on the whole canopy structure and how it shapes the canopy structure remain unclear. This study examined how DHEAP affected the canopy structure of maize hybrids Zhengdan 958 (ZD958) and Xianyu 335 (XY335), with distinct canopy structures, under different planting densities. The results showed that DHEAP increased the leaf orientation value (LOV) of upper canopy strata by 8.0% while reducing middle and lower strata LOV by 11.7% and 18.4%, respectively. This indicates that DHEAP shaped a canopy structure that was compact in the upper strata and loose in the middle and lower strata. Multiple linear regression analysis showed that leaf angle had a greater impact on the upper canopy strata, while leaf auricle size had a greater impact on the middle and lower canopy strata. After DHEAP treatment, light transmission above different canopy strata increased at the reproductive stage. Concurrently, the middle canopy captured more light energy, enhanced yield formation, and boosted radiation use efficiency by 21.9% under high density. In terms of grain yield, DHEAP treatment resulted in a 9.1% and 23.9% increase in ZD958 and XY335, respectively, under high-density conditions. These results suggest that DHEAP shaped the maize canopy structure with high density tolerance, improved the distribution of light within the canopy, and increased grain yield.

Keywords

Canopy architecture / Maize / Plant growth regulator / Planting density / Radiation use efficiency

Cite this article

Download citation ▾
Guanmin Huang, Yuling Guo, Weiming Tan, Mingcai Zhang, Zhaohu Li, Yuyi Zhou, Liusheng Duan. Enhancing maize radiation use efficiency under high planting density by shaping canopy architecture with a plant growth regulator. Crop and Environment, 2024, 3(1): 51‒64 https://doi.org/10.1016/j.crope.2023.11.004

References

[1] Bartel C.A., Moore K.J., Fei S.Z., Lenssen A.W., Hintz R.L., Kling S.M., 2022. Evaluating chemical suppression treatments to alter the red: far-red ratio in perennial groundcovers for maize production. Agronomy 12, 1854.
[2] Chen C., Qian C., Deng A., Zhang W., 94-103. https://doi.org/10.1016/j.eja.2011.07.003.
[3] Dhugga K.S.,2007. Maize biomass yield and composition for biofuels. Crop Sci. 47, 2211-2227.
[4] Franklin K.A.,2008. Shade avoidance. New Phytol. 179, 930-944.
[5] Gao Z., Liang X., Zhang L., Lin S., Zhao X., Zhou L., Shen S., Zhou S., 2017. Spraying exogenous 6-benzyladenine and brassinolide at tasseling increases maize yield by enhancing source and sink capacity. Field Crops Res. 211, 1-9.
[6] Geng W., Sun Z., Ren B., Ren H., Zhao B., Liu P., Zhang J., 2022. Spraying ethephon effectively increased canopy light transmittance of densely planted summer maize, thus achieving synergistic improvement in stalk lodging resistance and grain yield. Plants 11, 2219.
[7] Guo X., Yang Y., Liu H., Liu G., Liu W., Wang Y., Zhao R., Ming B., Xie R., Wang K.,Hou P., Xiao C., Li S., 2021. Effects of solar radiation on root and shoot growth of maize and the quantitative relationship between them. Crop Sci. 61, 1414-1425.
[8] Hou P., Liu Y., Liu W., Liu G., Xie R., Wang K., Ming B., Wang Y., Zhao R., Zhao W., Wang Y., Bian S., Ren H., Zhao X., Shi L., Zhang L., Yu L., Gao J., Yu X., Shen L., Yang S., Zhang Z., Xue J., Ma X., Wang X., Lu T., Dong B., Li G., Ma B., Li J., Deng X., Liu Y., Yang Q., Fu H., Liu X., Chen X., Huang C., Li S., 2020. How to increase maize production without extra nitrogen input. Resour. Conserv. Recycl. 160, 104913.
[9] Huang G., Liu Y., Guo Y., Peng C., Tan W., Zhang M., Li Z., Zhou Y., Duan L., 2021. A novel plant growth regulator improves the grain yield of high-density maize crops by reducing stalk lodging and promoting a compact plant type. Field Crops Res. 260, 107982.
[10] Huang S., Gao Y., Li Y., Xu L., Tao H., Wang P., 2017. Influence of plant architecture on maize physiology and yield in the Heilonggang River valley. Crop J. 5, 52-62.
[11] Jia Q., Sun L., Mou H., Ali S., Liu D., Zhang Y., Zhang P., Ren X., Jia Z., 2018. Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions. Agric. Water Manage. 201, 287-298.
[12] Kenchanmane Raju S.K., Adkins M., Enersen A., Santana de Carvalho D., Studer A.J., 2020. Leaf angle extractor: a high-throughput image processing framework for leaf angle measurements in maize and sorghum. Appl. Plant Sci. 8, e11385.
[13] Ku L., Zhao W., Zhang J., Wu L., Wang C., Wang P., Zhang W., Chen Y., 2010. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor. Appl. Genet. 121, 951-959.
[14] Li Q., Gao L., Liu D., Xu L., Zhang X., Zhang C., 2021. Novel insights of maize structural feature in China. Euphytica 217, 1-17.
[15] Liu G., Hou P., Xie R., Ming B., Wang K., Xu W., Liu W., Yang Y., Li S., 2017. Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha-1. Field Crops Res. 213, 221-230.
[16] Li Y., Ma X., Wang T., Li Y., Liu C., Liu Z., Sun B., Shi Y., Song Y., Carlone M., Bubeck D., Bhardwaj H., Whitaker D., Wilson W., Jones E., Wright K., Sun S., Niebur W., Smith S., 2011. Increasing maize productivity in China by planting hybrids with germplasm that responds favorably to higher planting densities. Crop Sci. 51, 2391-2400.
[17] Li Y., Ming B., Fan P., Liu Y., Wang K., Hou P., Xue J., Li S., Xie R., 2022. Quantifying contributions of leaf area and longevity to leaf area duration under increased planting density and nitrogen input regimens during maize yield improvement. Field Crops Res. 283, 108551.
[18] Luo N., Meng Q., Feng P., Qu Z., Yu Y., Liu D.L., Müller C., Wang P., 2023. China can be self-sufficient in maize production by 2030 with optimal crop management. Nat. Commun. 14, 2637.
[19] Luo N., Wang X., Hou J., Wang Y., Wang P., Meng Q., 2020. Agronomic optimal plant density for yield improvement in the major maize regions of China. Crop Sci. 60, 1580-1590.
[20] Ma D., Xie R., Niu X., Li S., Long H., Liu Y., 2014. Changes in the morphological traits of maize genotypes in China between the 1950s and 2000s. Eur. J. Agron. 58, 1-10.
[21] Martinez-Vazquez P.,2016. Crop lodging induced by wind and rain. Agric. For. Meteorol. 228-229, 265-275.
[22] Mei X., Nan J., Zhao Z., Yao S., Wang W., Yang Y., Bai Y., Dong E., Liu C., Cai Y., 2021. Maize transcription factor ZmNF-YC13 regulates plant architecture. J. Exp. Bot. 72, 4757-4772.
[23] Ortez O.A., McMechan A.J., Hoegemeyer T., Ciampitti I.A., Nielsen R.L., Thomison P.R., Abendroth L.J., Elmore R.W., 2022. Conditions potentially affecting corn ear formation, yield, and abnormal ears: a review. Crop Forage Turfgrass Manag. 8, e20173.
[24] Pepper G., Pearce R., Mock J., 1977. Leaf orientation and yield of maize. Crop Sci. 17, 883-886.
[25] Ritchie S.W., Hanway J.J., Benson G.O., 1993. How a Corn Plant Develops. Special Report No. 48. Iowa State University Cooperative Extension Service, Iowa, USA. http://maize.agron.iastate.edu/corngrows.html.
[26] Robertson D.J., Julias M., Lee S.Y., Cook D.D., 2017. Maize stalk lodging: morphological determinants of stalk strength. Crop Sci. 57, 926-934.
[27] Sangoi L., Gracietti M.A., Rampazzo C., Bianchetti P., 2002. Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Res. 79, 39-51.
[28] Sher A., Khan A., Cai L.J., Ahmad M.I., Asharf U., Jamoro S.A., 2017. Response of maize grown under high plant density; performance, issues and management-a critical review. Adv. Crop Sci. Technol. 5, 1-8.
[29] Shiferaw B., Prasanna B.M., Hellin J., Bänziger M., 2011. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global foodsecurity. Food Secur. 3, 307-327.
[30] Sinclair T.R., Muchow R.C., 1999. Radiation use efficiency. Adv. Agron. 65, 215-265.
[31] Stubbs C.J., Kunduru B., Bokros N., Verges V., Porter J., Cook D.D., DeBolt S., McMahan C., Sekhon R.S., Robertson D.J., 2023. Moving toward short stature maize: the effect of plant height on maize stalk lodging resistance. Field Crops Res. 300, 109008.
[32] Subedi K.D., Ma B.L., 2005. Ear position, leaf area, and contribution of individual leaves to grain yield in conventional and leafy maize hybrids. Crop Sci. 45, 2246-2257.
[33] Sun H., Zhang X., Chen S., Pei D., Liu C., 2007. Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain. Ind. Crop. Prod. 25, 239-247.
[34] Tan W., Hou N., Pang S., Zhu X., Li Z., Wen L., Duan L., 2012. Improved biological effects of uniconazole using porous hollow silica nanoparticles as carriers. Pest Manag. Sci. 68, 437-443.
[35] Testa G., Reyneri A., Blandino M., 2016. Maize grain yield enhancement through high plant density cultivation with different inter-row and intra-row spacings. Eur. J. Agron. 72, 28-37.
[36] Tetio-Kagho F., Gardner F., 1988. Responses of maize to plant population density. I. Canopy development, light relationships, and vegetative growth. Agron. J. 80, 930-935.
[37] Tian J., Wang C., Xia J., Wu L., Xu G., Wu W., Li D., Qin W., Han X., Chen Q., Jin W., Tian F., 2019. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365, 658-664.
[38] Wei S., Wang X., Li G., Qin Y., Jiang D., Dong S., 2019. Plant density and nitrogen supply affect the grain-filling parameters of maize kernels located in different ear positions. Front. Plant Sci. 10, 180.
[39] Xu C., Gao Y., Tian B., Ren J., Meng Q., Wang P., 2017. Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Res. 200, 71-79.
[40] Xue J., Gou L., Zhao Y., Yao M., Yao H., Tian J., Zhang W., 2016. Effects of light intensity within the canopy on maize lodging. Field Crops Res. 188, 133-141.
[41] Xue J., Xie R., Zhang W., Wang K., Hou P., Ming B., Gou L., Li S., 2017. Research progress on reduced lodging of high-yield and -density maize. J. Integr. Agric. 16, 2717-2725.
[42] Yang Y., Guo X., Hou P., Xue J., Liu G., Liu W., Wang Y., Zhao R., Ming B., Xie R., Wang K., Li S., 2020. Quantitative effects of solar radiation on maize lodging resistance mechanical properties. Field Crops Res. 255, 107906.
[43] Yue K., Li L., Xie J., Wang L., Liu Y., Anwar S., 2022. Tillage and nitrogen supply affects maize yield by regulating photosynthetic capacity, hormonal changes and grain filling in the Loess Plateau. Soil Tillage Res. 218, 105317.
[44] Zhang Q., Zhang L., Evers J., Werf W.V.D., Zhang W., Duan L., 2014a. Maize yield and quality in response to plant density and application of a novel plant growth regulator. Field Crops Res. 164, 82-89.
[45] Zhang Q., Zhou F., Zhao W., Tan W., Li W., Lai Y., Zhang M., Li Z., Duan L., 2014b. Effect of N, N-diethyl-2-(hexanoyloxy) ethan-1-aminium (2-chloroethyl) 16, 287-292.
[46] Zhang W., Yu C., Zhang K., Zhou Y., Tan W., Zhang L., Li Z., Duan L., 2017. Plant growth regulator and its interactions with environment and genotype affect maize optimal plant density and yield. Eur. J. Agron. 91, 34-43.
[47] Zhang Z., Chen L., Yu J., 2023. Maize WRKY28 interacts with the DELLA protein D8 to affect skotomorphogenesis and participates in the regulation of shade avoidance and plant architecture. J. Exp. Bot. 74, 3122-3141.
Funding
* E-mail addresses: zhouyuyi@cau.edu.cn (Y. Zhou), duanlsh@cau.edu.cn (L. Duan).
PDF

Accesses

Citations

Detail

Sections
Recommended

/