Grain yield and protein concentration relationships in rice

Shu Fukai, Jaquie Mitchell*

Crop and Environment ›› 2024, Vol. 3 ›› Issue (1) : 12-24.

PDF
Crop and Environment ›› 2024, Vol. 3 ›› Issue (1) : 12-24. DOI: 10.1016/j.crope.2023.11.002
Review article

Grain yield and protein concentration relationships in rice

  • Shu Fukai, Jaquie Mitchell*
Author information +
History +

Abstract

Grain protein concentration (GPC) is an important aspect of rice grain quality, which contributes to nutritional intake requirements; however, high GPC may also reduce eating quality. Both GPC and grain yield (GY) are greatly affected by nitrogen (N) management, and GPC is strongly linked to GY through shared N pathways. This review aims to determine how GPC in rice is affected under different growing conditions and crop management options and how varieties differ in GPC under different conditions and to identify the link between GPC and GY. It highlights the importance of total N uptake by the crop and that GPC gradually increases with the N application rate up to an optimum at which GY reaches a maximum. While GY varies greatly depending on the growing conditions, GPC tends to be maintained within a relatively narrow range. When a number of genotypes are compared, there is often an inverse relationship between GY and GPC, with a mean reduction in GPC of 0.46 percentage point for each 1.0 t ha-1 increase in GY. However, the balance between GY and GPC is altered based on the genotype's capacity to both take up N from the soil and distribute it to grain, including its ability to translocate N from vegetative organs to growing grain. The balance varies greatly among genotypes, as demonstrated in the case of hybrids, where GY is often higher but GPC is lower compared with inbred varieties. The review concludes with the identification of future research efforts to further understand the GY-GPC relationship.

Keywords

Genotypes / Grain protein / Nitrogen uptake / Rice / Yield

Cite this article

Download citation ▾
Shu Fukai, Jaquie Mitchell. Grain yield and protein concentration relationships in rice. Crop and Environment, 2024, 3(1): 12‒24 https://doi.org/10.1016/j.crope.2023.11.002

References

[1] Awan M.I., Bastiaans L., van Oort P., Ahmad R., Ashraf M.Y., Meinke H., 2014. Nitrogen use and crop performance of rice under aerobic conditions in a semiarid subtropical environment. Agron. J. 106, 199-211. https://doi.org/10.2134/agronj2013.0262.
[2] Balindong J.L., Ward R.M., Liu L., Rose T.J., Pallas L.A., Ovenden B.W., Snell P.J., Waters D.L. 35-42. https://doi.org/10.1016/j.jcs.2017.09.008.
[3] Baxter G., Blanchard C., Zhao J., 414-420. https://doi.org/10.1016/j.jcs.2014.05.002.
[4] Borrell A.K., Garside A.L., Fukai S., Reid D.J., 1998. Season, nitrogen rate, and plant type affect nitrogen uptake and nitrogen use efficiency in rice. Aust. J. Agric. Res. 49, 829-844. https://doi.org/10.1071/A97057.
[5] Champagne E., Wood D., Juliano B., Bechtel D., 2004. The rice grain and its gross composition. In: Champagne, E. (Ed.), Rice Chemistry and Technology. American Association of Cereal Chemists, Minnesota, USA, pp. 77-107.
[6] Deng S.Y., Ashraf U., Nawaz M., Abbas G., Tang X.R., Mo Z.W., 907231. https://doi.org/10.3389/fpls.2022.907231.
[7] Dhillon A.K., Sharma N., Dosanjh N.K., Goyal M., Mahajan G., 1946-1956. https://doi.org/10.1080/01904167.2018.1482915.
[8] Fitzgerald M.A., 133-139. https://doi.org/10.1016/j.tplants.2008.12.004.
[9] Fukai S., Wade L.J., 2020. Chapter 2 - Rice. In: Sadras, V.O., Calderini, D.F. (Eds.), Crop Physiology Case Histories for Major Crops. Academic Press, Massachusetts, USA, pp. 44-97.
[10] Gomez K.A., De Datta S.K., 1975. Influence of environment on protein-content of rice. Agron. J. 67, 565-568. https://doi.org/10.2134/agronj1975.00021962006700040029x.
[11] Guo L., Liu M., Tao Y., Zhang Y., Li G., Lin S., Dittert K., 102795. https://doi.org/10.1016/j.agsy.2020.102795.
[12] Huang L.Y., Yang D.S., Li X.X., Peng S.B., Wang F., 49-58. https://doi.org/10.1016/j.fcr.2019.01.005.
[13] Huang M., Chen J., Cao F., Jiang L., Zou Y., Deng G., 725-743. https://doi.org/10.1080/03650340.2015.1082031.
[14] Inthapanya P., Sipaseuth, Sihavong P., Sihathep V., Chanphengsay M., Fukai S., Basnayake J., 2000. Genotype differences in nutrient uptake and utilisation for grain yield production of rainfed lowland rice under fertilised and non-fertilised conditions. Field Crops Res. 65, 57-68. https://doi.org/10.1016/S0378-4290(99)00070-2.
[15] Ishfaq M., Akbar N., Zulfiqar U., Hussain S., Murtza K., Batool Z., Ashraf U., Alyemeni M.N., Ahmad P., 2020. Influence of nitrogen management regimes on milling recovery and grain quality of aromatic rice in different rice production systems. Agronomy 10, 1841. https://doi.org/10.3390/agronomy10111841.
[16] Ishimaru T., Qin J., Sasaki K., Fujita D., Gannaban R.B., Lumanglas P.D., Simon E.V. 89-99. https://doi.org/10.1016/j.fcr.2017.07.006.
[17] Ju C.X., Buresh R.J., Wang Z.Q., Zhang H., Liu L.J., Yang J.C., Zhang J.H., 47-55. https://doi.org/10.1016/j.fcr.2015.02.007.
[18] Kashiwagi T., 108051. https://doi.org/10.1016/j.fcr.2020.108051.
[19] Kaur A., Ghumman A., Singh N., Kaur S., Virdi A.S., Riar G.S., Mahajan G., 2016. Effect of different doses of nitrogen on protein profiling, pasting and quality attributes of rice from different cultivars. J. Food Sci. Technol. 53, 2452-2462. https://doi.org/10.1007/s13197-016-2230-z.
[20] Ladha J.K., Kirk G.J.D., Bennett J., Peng S., Reddy C.K., Reddy P.M., Singh U., 1998. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm. Field Crops Res. 56, 41-71. https://doi.org/10.1016/S0378-4290(97)00123-8.
[21] Lamberts L., 1496-1503. https://doi.org/10.1016/j.foodchem.2005.11.042.
[22] Lan Y., Sui X., Wang J., Duan Q., Wu C., Ding C., Li T., 2021. Effects of nitrogen application rate on protein components and yield of low-gluten rice. Agriculture 11, 302.
[23] Liang H.L., Gu B.Y., Wang T.Y., Rong L.Y., Sun W.T., Wu Z.X., 2022. Relationship between protein structure and eating quality of rice under different nitrogen application rate. Cereal Chem. 99, 692-703. https://doi.org/10.1002/cche.10530.
[24] Liu L., Sadras V.O., Xu J., Hu C., Yang X., Zhang S., 2021. Genetic improvement of crop yield, grain protein and nitrogen use efficiency of wheat, rice and maize in China. Adv. Agron. 168, 203-252.
[25] Liu L.J., Xiong Y.W., Bian J.L., Zhang H., Gu J.F., Wang Z.Q., Yang J.C., 2015. Effect of genetic improvement of grain yield and nitrogen efficiency of mid-season indica rice cultivars. J. Plant Nutr. Soil Sci. 178, 297-305. https://doi.org/10.1002/jpln.201400304.
[26] Liu Y.Y., He C.Y., Gai D.S., Geng Y.Q., Guo L.Y., Shao X.W., 2022. Morphological and physiological traits of roots and their relationships with shoot growth and grain yield in direct-seeded rice in northeastern China. Crop Pasture Sci. 73, 1229-1244. https://doi.org/10.1071/CP21720.
[27] Martin M., Fitzgerald M.A., 285-294. https://doi.org/10.1006/jcrs.2001.0465.
[28] Meng T.Y., Zhang X.B., Chen X., Ge J.L., Zhou G.S., Wei H.H., Dai Q.G., 2022. Trends in grain quality and responses to nitrogen application of japonica inbred rice released after the 1980s in east China. Cereal Chem. 99, 503-519. https://doi.org/10.1002/cche.10512.
[29] Ning H.F., Liu Z.G., Wang Q.S., Lin Z.M., Chen S.J., Li G.H., Wang S.H., Ding Y.F., 49-55. https://doi.org/10.1016/j.jcs.2009.02.005.
[30] Peng S.B., Buresh R.J., Huang J.L., Yang J.C., Zou Y.B., Zhong X.H., Wang G.H., Zhang F.S., 37-47. https://doi.org/10.1016/j.fcr.2005.05.004.
[31] Perez C.M., Juliano B.O., Liboon S.P., Alcantara J.M., Cassman K.G., 1996. Effects of late nitrogen fertilizer application on head rice yield, protein content, and grain quality of rice. Cereal Chem. 73, 556-560.
[32] Prasertsak A., Fukai S., 1997. Nitrogen availability and water stress interaction on rice growth and yield. Field Crops Res. 52, 249-260. https://doi.org/10.1016/S0378-4290(97)00016-6.
[33] Proud C., Fukai S., Dunn B., Dunn T., Mitchell J., 37-45. https://doi.org/10.1016/j.crope.2023.02.004.
[34] Puig M.L., Rodríguez A.A., Vidal A.A., Bezus R., Maiale S.J., 457-464. https://doi.org/10.1016/j.plaphy.2021.10.034.
[35] Rakotoson T., Dusserre J., Letourmy P., Ramonta I.R., Cao T.V., Ramanantsoanirina A., Roumet P., Ahmadi N., Raboin L.M., 194-203. https://doi.org/10.1016/j.fcr.2017.07.023.
[36] Samonte S.O.P., Wilson L.T., Medley J.C., Pinson S.R.M., McClung A.M., Lales J.S., 2006. Nitrogen utilization efficiency: relationships with grain yield, grain protein, and yield-related traits in rice. Agron. J. 98, 168-176. https://doi.org/10.2134/agronj2005.0180.
[37] Sandhu R.S., Singh N., Kaler R.S. 231-238. https://doi.org/10.1016/j.foodchem.2018.03.092.
[38] Sepaskhah A.R., Barzegar M., 38-44. https://doi.org/10.1016/j.agwat.2010.07.013.
[39] Shi W., Zhang X., Yang J., Impa S.M., Wang D., Lai Y., Yang Z., Xu H., Wu J., Zhang J., Jagadish S.V. 904-913. https://doi.org/10.1016/j.cj.2022.09.006.
[40] Sun T., Yang X., Tan X.L., Han K.F., Tang S., Tong W.M., Zhu S.Y., Hu Z.P., Wu L.H., 2020. Comparison of agronomic performance between japonica/indica hybrid and japonica cultivars of rice based on different nitrogen rates. Agronomy 10, 171. https://doi.org/10.3390/agronomy10020171.
[41] Sun T., Yang X., Tang S., Han K.F., He P., Wu L.H., 2021. Genotypic variation in nutrient uptake requirements of rice using the QUEFTS model. Agronomy 11, 26. https://doi.org/10.3390/agronomy11010026.
[42] Tamaki M., Ebata M., Tashiro T., Ishikawa M., 1989. Physico-ecological studies on quality formation of rice kernel: I. Effect of nitrogen top-dressed at full heading time and air temperature during ripening period on quality of rice kernel. Jpn. J. Crop Sci. 58, 653-658. https://doi.org/10.1626/jcs.58.653.
[43] Wei H.H., Meng T.Y., Li X.Y., Dai Q.G., Zhang H.C., Yin X.Y., 23-38. https://doi.org/10.1016/j.fcr.2017.09.029.
[44] Wood R.M., Dunn B.W., Balindong J.L., Waters D.L.E., Blanchard C.L., Mawson A.J., Oli P., 2021a. Effect of agronomic management on rice grain quality Part II: Nitrogen rate and timing. Cereal Chem. 98, 234-248. https://doi.org/10.1002/cche.10372.
[45] Wood R.M., Waters D.L.E., Mawson A.J., Blanchard C.L., Dunn B.W., Oli P., 2021b. Effect of agronomic management on rice grain quality Part I: A review of Australian practices. Cereal Chem. 98, 222-233. https://doi.org/10.1002/cche.10343.
[46] Xu L., Yuan S., Wang X.Y., Yu X., Peng S.B., 2021. High yields of hybrid rice do not require more nitrogen fertilizer than inbred rice: A meta-analysis. Food Energy Secur. 10, 341-350. https://doi.org/10.1002/fes3.276.
[47] Yan F.J., Sun Y.J., Xu H., Yin Y.Z., Wang H.Y., Wang C.Y., Guo C.C., Yang Z.Y., Sun Y.Y., Ma J., 2018. Effects of wheat straw mulch application and nitrogen management on rice root growth, dry matter accumulation and rice quality in soils of different fertility. Paddy Water Environ. 16, 507-518. https://doi.org/10.1007/s10333-018-0643-1.
[48] Yang T., Xiong R., Tan X., Huang S., Pan X., Guo L., Zeng Y., Zhang J., Zeng Y., 126551. https://doi.org/10.1016/j.eja.2022.126551.
[49] Yu Y.H., Li G., Fan Y.Y., Zhang K.Q., Min J., Zhu Z.W., Zhuang J.Y., 121-125. https://doi.org/10.1016/j.jcs.2009.03.008.
[50] Zhang J., Zhang Y.Y., Song N.Y., Chen Q.L., Sun H.Z., Peng T., Huang S., Zhao Q.Z., 2021. Response of grain-filling rate and grain quality of mid-season indica rice to nitrogen application. J. Integr. Agric. 20, 1465-1473. https://doi.org/10.1016/S2095-3119(20)63311-1.
[51] Zhang W., Zhou Y., Li C., Zhu K., Xu Y., Wang W., Liu L., Zhang H., Gu J., Wang Z., Zhang J., Yang J., 108692. https://doi.org/10.1016/j.fcr.2022.108692.
[52] Zhao C., Liu G.M., Chen Y., Jiang Y., Shi Y., Zhao L.T., Liao P.Q., Wang W.L., Xu K., Dai Q.G., Huo Z.Y., 2022. Excessive nitrogen application leads to lower rice yield and grain quality by inhibiting the grain filling of inferior grains. Agriculture 12, 962. https://doi.org/10.3390/agriculture12070962.
[53] Zhao K., Tung C.W., Eizenga G.C., Wright M.H., Ali M.L., Price A.H., Norton G.J., Islam M.R., Reynolds A., Mezey J., McClung A.M., Bustamante C.D., McCouch S.R., 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2, 467. https://doi.org/10.1038/ncomms1467.
[54] Zhou C.C., Huang Y.C., Jia B.Y., Wang Y., Wang Y., Xu Q., Li R.F., Wang S., Dou F.G., 2018. Effects of cultivar, nitrogen rate, and planting density on rice-grain quality. Agronomy 8, 246. https://doi.org/10.3390/agronomy8110246.
[55] Zhu D.W., Zhang H.C., Guo B.W., Xu K., Dai Q.G., Wei H.Y., Gao H., Hu Y.J., Cui P.Y., Huo Z.Y., 2017. Effects of nitrogen level on yield and quality of japonica soft super rice. J. Integr. Agric. 16, 1018-1027. https://doi.org/10.1016/S2095-3119(16)61577-0.
[56] Zhu K.Y., Zhou Q., Shen Y., Yan J.Q., Xu Y.J., Wang Z.Q., Yang J.C., 2020. Agronomic and physiological performance of an indica-japonica rice variety with a high yield and high nitrogen use efficiency. Crop Sci. 60, 1556-1568. https://doi.org/10.1002/csc2.20150.
Funding
* E-mail address: Jaquie.mitchell@uq.edu.au (J. Mitchell).
PDF

Accesses

Citations

Detail

Sections
Recommended

/