A review on electrocatalytic CO2 conversion via C–C and C–N coupling

Zhuangzhi Zhang, Sijun Li, Zheng Zhang, Zhou Chen, Hua Wang, Xianguang Meng, Wenquan Cui, Xiwei Qi, Jiacheng Wang

Carbon Energy ›› 2024, Vol. 6 ›› Issue (2) : 513.

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (2) : 513. DOI: 10.1002/cey2.513
REVIEW

A review on electrocatalytic CO2 conversion via C–C and C–N coupling

Author information +
History +

Abstract

Electrochemical C–C and C–N coupling reactions with the conversion of abundant and inexpensive small molecules, such as CO2 and nitrogen-containing species, are considered a promising route for increasing the value of CO2 reduction products. The development of high-performance catalysts is the key to the both electrocatalytic reactions. In this review, we present a systematic summary of the reaction systems for electrocatalytic CO2 reduction, along with the coupling mechanisms of C–C and C–N bonds over outstanding electrocatalytic materials recently developed. The key intermediate species and reaction pathways related to the coupling as well as the catalyst-structure relationship will be also discussed, aiming to provide insights and guidance for designing efficient CO2 reduction systems.

Keywords

C–C coupling / C–N coupling / CO2 conversion / electrocatalysis / urea synthesis

Cite this article

Download citation ▾
Zhuangzhi Zhang, Sijun Li, Zheng Zhang, Zhou Chen, Hua Wang, Xianguang Meng, Wenquan Cui, Xiwei Qi, Jiacheng Wang. A review on electrocatalytic CO2 conversion via C–C and C–N coupling. Carbon Energy, 2024, 6(2): 513 https://doi.org/10.1002/cey2.513

References

[1]
Liu S, Wang M, Cheng Q, et al. Turning waste into wealth: sustainable production of high-value-added chemicals from catalytic coupling of carbon dioxide and nitrogenous small molecules. ACS Nano. 2022; 16 (11): 17911- 17930.
[2]
Jiang M, Zhu M, Wang M, et al. Review on electrocatalytic coreduction of carbon dioxide and nitrogenous species for urea synthesis. ACS Nano. 2023; 17 (4): 3209- 3224.
[3]
Peng X, Zeng L, Wang D, et al. Electrochemical C-N coupling of CO2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds. Chem Soc Rev. 2023; 52 (6): 2193- 2237.
[4]
Li R, Xiang K, Liu Z, Peng Z, Zou Y, Wang S. Recent advances in upgrading of low-cost oxidants to value-added products by electrocatalytic reduction reaction. Adv Funct Mater. 2022; 32 (46): 2208212.
[5]
Li L, Li X, Sun Y, Xie Y. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem Soc Rev. 2022; 51 (4): 1234- 1252.
[6]
Ma X, Zhang Y, Fan T, et al. Facet dopant regulation of Cu2O boosts electrocatalytic CO2 reduction to formate. Adv Funct Mater. 2023; 33 (16): 2213145.
[7]
Jiao Y, Zheng Y, Chen P, Jaroniec M, Qiao S-Z. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J Am Chem Soc. 2017; 139 (49): 18093- 18100.
[8]
Li L, Huang Y, Li Y. Carbonaceous materials for electrochemical CO2 reduction. Energy Chem. 2020; 2 (1): 100024.
[9]
Wang ZL, Choi J, Xu M, et al. Optimizing electron densities of Ni-N-C complexes by hybrid coordination for efficient electrocatalytic CO2 reduction. ChemSusChem. 2020; 13 (5): 929- 937.
[10]
Ding X, Zhang J, Li Y. CO electroreduction: what can we learn from its parent reaction, CO2 electroreduction? eScience. 2023; 3 (6): 100137.
[11]
Zhang J, Pan B, Li Y. Modulating electrochemical CO2 reduction at interfaces. Sci Bull. 2022; 67 (18): 1844- 1848.
[12]
Zhang J, Mao X, Pan B, et al. Surface promotion of copper nanoparticles with alumina clusters derived from layered double hydroxide accelerates CO2 reduction to ethylene in membrane electrode assemblies. Nano Res. 2022; 16 (4): 4685- 4690.
[13]
Fang M, Wang M, Wang Z, et al. Hydrophobic, ultrastable Cuδ+ for robust CO2 electroreduction to C2 products at ampere-current levels. J Am Chem Soc. 2023; 145 (20): 11323- 11332.
[14]
Wang G, Chen J, Ding Y, et al. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem Soc Rev. 2021; 50 (8): 4993- 5061.
[15]
Zhang W, Jin Z, Chen Z. Rational-designed principles for electrochemical and photoelectrochemical upgrading of CO2 to value-added chemicals. Adv Sci. 2022; 9 (9): 2105204.
[16]
Harmon NJ, Wang H. Electrochemical CO2 reduction in the presence of impurities: influences and mitigation strategies. Angew Chem Int Ed. 2022; 61 (52): e202213782.
[17]
Feng J, Wu L, Liu S, et al. Improving CO2-to-C2+ product electroreduction efficiency via atomic lanthanide dopant-induced tensile-strained CuOx catalysts. J Am Chem Soc. 2023; 145 (17): 9857- 9866.
[18]
Li J, Zhang Y, Kuruvinashetti K, Kornienko N. Construction of C-N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat Rev Chem. 2022; 6 (5): 303- 319.
[19]
Wang D, Chen C, Wang S. Defect engineering for advanced electrocatalytic conversion of nitrogen-containing molecules. Sci China Chem. 2022; 66 (4): 1052- 1072.
[20]
Li JY, Song QW, Zhang K, Liu P. Catalytic conversion of carbon dioxide through C-N bond formation. Molecules. 2019; 24 (1): 182.
[21]
Seger B, Robert M, Jiao F. Best practices for electrochemical reduction of carbon dioxide. Nat Sustain. 2023; 6 (3): 236- 238.
[22]
Ma S, Sadakiyo M, Luo R, Heima M, Yamauchi M, Kenis PJA. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J Power Sources. 2016; 301: 219- 228.
[23]
Zhang Z, Huang X, Chen Z, et al. Membrane electrode assembly for electrocatalytic CO2 reduction: principle and application. Angew Chem Int Ed. 2023; 62 (28): e202302789.
[24]
Yan C, Li H, Ye Y, et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ Sci. 2018; 11 (5): 1204- 1210.
[25]
Ma W, Xie S, Zhang X-G, et al. Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat Commun. 2019; 10 (1): 892.
[26]
Rangraz Y, Heravi MM. Recent advances in the application of nanocatalysts in C-N coupling reactions. Appl Organomet Chem. 2022; 37 (1): e681.
[27]
Li J, Kuang Y, Meng Y, et al. Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high energy conversion efficiency. J Am Chem Soc. 2020; 142 (16): 7276- 7282.
[28]
Hou J, Chang X, Li J, Xu B, Lu Q. Correlating CO coverage and CO electroreduction on Cu via high-pressure in situ spectroscopic and reactivity investigations. J Am Chem Soc. 2022; 144 (48): 22202- 22211.
[29]
Luo Y, Zhang K, Li Y, Wang Y. Valorizing carbon dioxide via electrochemical reduction on gas-diffusion electrodes. InfoMat. 2021; 3 (12): 1313- 1332.
[30]
Li H, Liu T, Wei P, et al. High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst. Angew Chem Int Ed. 2021; 60 (26): 14329- 14333.
[31]
Xie M, Shen Y, Ma W, et al. Fast screening for copper-based bimetallic electrocatalysts: efficient electrocatalytic reduction of CO2 to C2+ products on magnesium-modified copper. Angew Chem Int Ed. 2022; 61 (51): e202213423.
[32]
Peng C, Luo G, Xu Z, et al. Lithiation-enabled high-density nitrogen vacancies electrocatalyze CO2 to C2 products. Adv Mater. 2021; 33 (40): 2103150.
[33]
Zheng M, Wang P, Zhi X, et al. Electrocatalytic CO2-to-C2+ with ampere-level current on heteroatom-engineered copper via tuning *CO intermediate coverage. J Am Chem Soc. 2022; 144 (32): 14936- 14944.
[34]
Xu A, Hung S-F, Cao A, et al. Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation. Nat Catal. 2022; 5 (12): 1081- 1088.
[35]
García de Arquer FP, Dinh C-T, Ozden A, et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science. 2020; 367 (6478): 661- 666.
[36]
Huang JE, Li F, Ozden A, et al. CO2 electrolysis to multicarbon products in strong acid. Science. 2021; 372 (6546): 1074- 1078.
[37]
Whipple DT, Finke EC, Kenis PJA. Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochem Solid State Lett. 2010; 13 (9): B109- B111.
[38]
Thorson MR, Siil KI, Kenis PJA. Effect of cations on the electrochemical conversion of CO2 to CO. J Electrochem Soc. 2012; 160 (1): F69- F74.
[39]
Pan B, Wang Y, Li Y. Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction. Chem Catal. 2022; 2 (6): 1267- 1276.
[40]
Kormányos A, Endrődi B, Zhang Z, et al. Local hydrophobicity allows high-performance electrochemical carbon monoxide reduction to C2+ products. EES Catal. 2023; 1 (3): 263- 273.
[41]
Zhang J, Luo W, Züttel A. Crossover of liquid products from electrochemical CO2 reduction through gas diffusion electrode and anion exchange membrane. J Catal. 2020; 385: 140- 145.
[42]
Niu Z-Z, Chi L-P, Liu R, Chen Z, Gao M-R. Rigorous assessment of CO2 electroreduction products in a flow cell. Energy Environ Sci. 2021; 14 (8): 4169- 4176.
[43]
Chen C, Khosrowabadi Kotyk JF, Sheehan SW. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem. 2018; 4 (11): 2571- 2586.
[44]
Burdyny T, Smith WA. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ Sci. 2019; 12 (5): 1442- 1453.
[45]
Zhang G, Li L, Zhao Z-J, Wang T, Gong J. Electrochemical approaches to CO2 conversion on copper-based catalysts. Acc Mater Res. 2023; 4 (3): 212- 222.
[46]
Ge L, Rabiee H, Li M, et al. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem. 2022; 8 (3): 663- 692.
[47]
Yang Y, Li P, Zheng X, et al. Anion-exchange membrane water electrolyzers and fuel cells. Chem Soc Rev. 2022; 51 (23): 9620- 9693.
[48]
Carmo M, Fritz DL, Mergel J, Stolten D. A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy. 2013; 38 (12): 4901- 4934.
[49]
Endrődi B, Kecsenovity E, Samu A, et al. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energy Environ Sci. 2020; 13 (11): 4098- 4105.
[50]
Endrődi B, Kecsenovity E, Samu A, et al. Multilayer electrolyzer stack converts carbon dioxide to gas products at high pressure with high efficiency. ACS Energy Lett. 2019; 4 (7): 1770- 1777.
[51]
Wei P, Gao D, Liu T, et al. Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis. Nat Nanotechnol. 2023; 18 (3): 299- 306.
[52]
Ozden A, García de Arquer FP, Huang JE, et al. Carbon-efficient carbon dioxide electrolysers. Nat Sustain. 2022; 5 (7): 563- 573.
[53]
Salvatore DA, Gabardo CM, Reyes A, et al. Designing anion exchange membranes for CO2 electrolysers. Nat Energy. 2021; 6 (4): 339- 348.
[54]
McCallum C, Gabardo CM, O'Brien CP, et al. Reducing the crossover of carbonate and liquid products during carbon dioxide electroreduction. Cell Rep Phys Sci. 2021; 2 (8): 100522.
[55]
Sassenburg M, Kelly M, Subramanian S, Smith WA, Burdyny T. Zero-gap electrochemical CO2 reduction cells: challenges and operational strategies for prevention of salt precipitation. ACS Energy Lett. 2023; 8 (1): 321- 331.
[56]
Hasa B, Cherniack L, Xia R, et al. Benchmarking anion-exchange membranes for electrocatalytic carbon monoxide reduction. Chem Catal. 2023; 3 (1): 100450.
[57]
O'Brien CP, Miao RK, Liu S, et al. Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett. 2021; 6 (8): 2952- 2959.
[58]
Yang K, Li M, Subramanian S, Blommaert MA, Smith WA, Burdyny T. Cation-driven increases of CO2 utilization in a bipolar membrane electrode assembly for CO2 electrolysis. ACS Energy Lett. 2021; 6 (12): 4291- 4298.
[59]
Blommaert MA, Aili D, Tufa RA, Li Q, Smith WA, Vermaas DA. Insights and challenges for applying bipolar membranes in advanced electrochemical energy systems. ACS Energy Lett. 2021; 6 (7): 2539- 2548.
[60]
Zhu P, Wang H. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat Catal. 2021; 4 (11): 943- 951.
[61]
Xia C, Zhu P, Jiang Q, et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat Energy. 2019; 4 (9): 776- 785.
[62]
Fan L, Xia C, Zhu P, Lu Y, Wang H. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat Commun. 2020; 11 (1): 3633.
[63]
Miao RK, Xu Y, Ozden A, et al. Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2. Joule. 2021; 5 (10): 2742- 2753.
[64]
Zheng T, Liu C, Guo C, et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat Nanotechnol. 2021; 16 (12): 1386- 1393.
[65]
Kim JYT, Zhu P, Chen F-Y, Wu ZY, Cullen DA, Wang H. Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nat Catal. 2022; 5 (4): 288- 299.
[66]
Xu Y, Miao RK, Edwards JP, et al. A microchanneled solid electrolyte for carbon-efficient CO2 electrolysis. Joule. 2022; 6 (6): 1333- 1343.
[67]
Todorova TK, Schreiber MW, Fontecave M. Mechanistic understanding of CO2 reduction reaction CO2RR toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal. 2019; 10 (3): 1754- 1768.
[68]
Fan L, Xia C, Yang F, Wang J, Wang H, Lu Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci Adv. 2020; 6 (8): eaay3111.
[69]
Ma W, He X, Wang W, Xie S, Zhang Q, Wang Y. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem Soc Rev. 2021; 50 (23): 12897- 12914.
[70]
Nguyen TN, Guo J, Sachindran A, Li F, Seifitokaldani A, Dinh CT. Electrochemical CO2 reduction to ethanol: from mechanistic understanding to catalyst design. J Mater Chem A. 2021; 9 (21): 12474- 12494.
[71]
Wang Y, Liu J, Zheng G. Designing copper-based catalysts for efficient carbon dioxide electroreduction. Adv Mater. 2021; 33 (46): e2005798.
[72]
Shi Y, Hou M, Li J, Li L, Zhang Z. Cu-based tandem catalysts for electrochemical CO2 reduction. Acta Phys Chim Sin. 2022; 38 (11): 2206020.
[73]
Liu LX, Cai Y, Du H, et al. Enriching the local concentration of CO intermediates on Cu cavities for the electrocatalytic reduction of CO2 to C2+ products. ACS Appl Mater Interfaces. 2023; 15 (13): 16673- 16679.
[74]
Yang Y, Louisia S, Yu S, et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature. 2023; 614 (7947): 262- 269.
[75]
Tan YC, Lee KB, Song H, Oh J. Modulating local CO2 concentration as a general strategy for enhancing C-C coupling in CO2 electroreduction. Joule. 2020; 4 (5): 1104- 1120.
[76]
Yoshio H, Katsuhei K, Akira M, Suzuki S. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem Lett. 1986; 15 (6): 897- 898.
[77]
Zhao K, Quan X. Carbon-based materials for electrochemical reduction of CO2 to C2+ oxygenates: recent progress and remaining challenges. ACS Catal. 2021; 11 (4): 2076- 2097.
[78]
Li L, Su J, Lu J, Shao Q. Recent advances of core-shell Cu-based catalysts for the reduction of CO2 to C2+ products. Chem Asian J. 2023; 18 (5): e202201044.
[79]
Xiang K, Shen F, Fu Y, et al. Boosting CO2 electroreduction towards C2+ products via CO* intermediate manipulation on copper-based catalysts. Environ Sci Nano. 2022; 9 (3): 911- 953.
[80]
Wang H, Matios E, Wang C, et al. Rapid and scalable synthesis of cuprous halide-derived copper nano-architectures for selective electrochemical reduction of carbon dioxide. Nano Lett. 2019; 19 (6): 3925- 3932.
[81]
Yang Y, Tan Z, Wang S, et al. Cu/Cu2O nanocrystals for electrocatalytic carbon dioxide reduction to multi-carbon products. Chem Commun. 2023; 59 (17): 2445- 2448.
[82]
Song P, Zhu P, Su X, Hou M, Zhao D, Zhang J. Microenvironment modulation in carbon-supported single-atom catalysts for efficient electrocatalytic CO2 reduction. Chem Asian J. 2022; 17 (20): e202200716.
[83]
Xie H, Xie R, Zhang Z, et al. Achieving highly selective electrochemical CO2 reduction to C2H4 on Cu nanosheets. J Energy Chem. 2023; 79: 312- 320.
[84]
Fu Y, Xie Q, Wan L, Huang Q, Luo J. Ethanol assisted cyclic voltammetry treatment of copper for electrochemical CO2 reduction to ethylene. Mater Today Energy. 2022; 29: 101105.
[85]
Jiang K, Sandberg RB, Akey AJ, et al. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction. Nat Catal. 2018; 1 (2): 111- 119.
[86]
Zhong D, Zhao ZJ, Zhao Q, et al. Coupling of Cu(100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols. Angew Chem Int Ed. 2021; 60 (9): 4879- 4885.
[87]
Ma W, Xie S, Liu T, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper. Nat Catal. 2020; 3 (6): 478- 487.
[88]
Hu F, Yang L, Jiang Y, et al. Ultrastable Cu catalyst for CO2 electroreduction to multicarbon liquid fuels by tuning C-C coupling with CuTi subsurface. Angew Chem Int Ed. 2021; 60 (50): 26122- 26127.
[89]
Gao J, Bahmanpour A, Kröcher O, Zakeeruddin SM, Ren D, Grätzel M. Electrochemical synthesis of propylene from carbon dioxide on copper nanocrystals. Nat Chem. 2023; 15 (5): 705- 713.
[90]
Qi K, Zhang Y, Onofrio N, et al. Unlocking direct CO2 electrolysis to C3 products via electrolyte supersaturation. Nat Catal. 2023; 6 (4): 319- 331.
[91]
Farooqi SA, Farooqi AS, Sajjad S, Yan C, Victor AB. Electrochemical reduction of carbon dioxide into valuable chemicals: a review. Environ Chem Lett. 2023; 21 (3): 1515- 1553.
[92]
Kanase RS, Lee KB, Arunachalam M, Sivasankaran RP, Oh J, Kang SH. Nanostructure engineering of Cu electrocatalyst for the selective C2+ hydrocarbons in electrochemical CO2 reduction. Appl Surf Sci. 2022; 584: 152518.
[93]
Chang F, Wei J, Liu Y, Wang W, Yang L, Bai Z. Surface/interface reconstruction in-situ on Cu2O catalysts with high exponential facets toward enhanced electrocatalysis CO2 reduction to C2+ products. Appl Surf Sci. 2023; 611: 155773.
[94]
Fu Y, Xie Q, Wu L, Luo J. Crystal facet effect induced by different pretreatment of Cu2O nanowire electrode for enhanced electrochemical CO2 reduction to C2+ products. Chin J Catal. 2022; 43 (4): 1066- 1073.
[95]
Ye W, Guo X, Ma T. A review on electrochemical synthesized copper-based catalysts for electrochemical reduction of CO2 to C2+ products. Chem Eng J. 2021; 414: 128825.
[96]
Ye M, Shao T, Liu J, Li C, Song B, Liu S. Phase engineering of Cu@Cu2O core-shell nanospheres for boosting tandem electrochemical CO2 reduction to C2+ products. Appl Surf Sci. 2023; 622: 156981.
[97]
Wang X, Jiang Y, Mao K, et al. Identifying an interfacial stabilizer for regeneration-free 300 h electrochemical CO2 reduction to C2 products. J Am Chem Soc. 2022; 144 (49): 22759- 22766.
[98]
Pan F, Yang X, O'Carroll T, Li H, Chen KJ, Wu G. Carbon catalysts for electrochemical CO2 reduction toward multicarbon products. Adv Energy Mater. 2022; 12 (24): 2200586.
[99]
Zhao K, Liu Y, Quan X, Chen S, Yu H. CO2 electroreduction at low overpotential on oxide-derived Cu/carbons fabricated from metal organic framework. ACS Appl Mater Interfaces. 2017; 9 (6): 5302- 5311.
[100]
Zhao Y, Zheng L, Jiang D, et al. Nanoengineering metal-organic framework-based materials for use in electrochemical CO2 reduction reactions. Small. 2021; 17 (16): 2006590.
[101]
Zhang L, Merino-Garcia I, Albo J, Sánchez-Sánchez CM. Electrochemical CO2 reduction reaction on cost-effective oxide-derived copper and transition metal-nitrogen-carbon catalysts. Curr Opin Electrochem. 2020; 23: 65- 73.
[102]
Zhu C, Fu S, Shi Q, Du D, Lin Y. Single-atom electrocatalysts. Angew Chem Int Ed. 2017; 56 (45): 13944- 13960.
[103]
Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule. 2018; 2 (7): 1242- 1264.
[104]
Zhang Z, Xiao J, Chen XJ, et al. Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew Chem Int Ed. 2018; 57 (50): 16339- 16342.
[105]
Zhang Z, Ma C, Tu Y, et al. Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Res. 2019; 12 (9): 2313- 2317.
[106]
Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X. Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem Rev. 2018; 119 (3): 1806- 1854.
[107]
Karapinar D, Huan NT, Ranjbar Sahraie N, et al. Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew Chem Int Ed. 2019; 58 (42): 15098- 15103.
[108]
Jiao J, Lin R, Liu S, et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat Chem. 2019; 11 (3): 222- 228.
[109]
Xie H, Wang F, Liu T, et al. Copper-iron dimer for selective C-C coupling in electrochemical CO2 reduction. Electrochim Acta. 2021; 380: 138188.
[110]
Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev. 2019; 119 (12): 7610- 7672.
[111]
Centi G, Perathoner S, Winè G, Gangeri M. Electrocatalytic conversion of CO2 to long carbon-chain hydrocarbons. Green Chem. 2007; 9 (6): 671- 678.
[112]
Cui Y, Yang C, Lin H, et al. Amorphous NxC coating promotes electrochemical CO2 deep reduction to hydrocarbons over Ag nanocatalysts. ACS Catal. 2023; 13 (1): 169- 178.
[113]
Qin J, Wang T, Zhai M, et al. Hydroxypillar[5] arene-confined silver nanocatalyst for selective electrochemical reduction of CO2 to ethanol. Adv Funct Mater. 2023; 33 (29): 2300697.
[114]
Chen P, Zhang P, Kang X, et al. Efficient electrocatalytic reduction of CO2 to ethane over nitrogen-doped Fe2O3. J Am Chem Soc. 2022; 144 (32): 14769- 14777.
[115]
Calvinho KUD, Laursen AB, Yap KMK, et al. Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy Environ Sci. 2018; 11 (9): 2550- 2559.
[116]
Cronin SP, Dulovic S, Lawrence JA, et al. Direct synthesis of 1-butanol with high Faradaic efficiency from CO2 utilizing cascade catalysis at a Ni-enhanced (Cr2O3)3Ga2O3 electrocatalyst. J Am Chem Soc. 2023; 145 (12): 6762- 6772.
[117]
Du J, Cheng B, Yuan H, et al. Molecular nickel thiolate complexes for electrochemical reduction of CO2 to C1-3 hydrocarbons. Angew Chem Int Ed. 2023; 62 (9): e202211804.
[118]
Zhou Y, Martín AJ, Dattila F, et al. Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts. Nat Catal. 2022; 5 (6): 545- 554.
[119]
Paris AR, Bocarsly AB. Ni-Al films on glassy carbon electrodes generate an array of oxygenated organics from CO2. ACS Catal. 2017; 7 (10): 6815- 6820.
[120]
Kim C, Jeon HS, Eom T, et al. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J Am Chem Soc. 2015; 137 (43): 13844- 13850.
[121]
Liu S, Tao H, Zeng L, et al. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J Am Chem Soc. 2017; 139 (6): 2160- 2163.
[122]
Endrődi B, Samu A, Kecsenovity E, Halmágyi T, Sebők D, Janáky C. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers. Nat Energy. 2021; 6 (4): 439- 448.
[123]
Samu AA, Kormányos A, Kecsenovity E, Szilágyi N, Endrődi B, Janáky C. Intermittent operation of CO2 electrolyzers at industrially relevant current densities. ACS Energy Lett. 2022; 7 (5): 1859- 1861.
[124]
Du J, Li S, Liu S, et al. Selective electrochemical reduction of carbon dioxide to ethanol via a relay catalytic platform. Chem Sci. 2020; 11 (19): 5098- 5104.
[125]
Ait Ahsaine H, Zbair M, BaQais A, Arab M. CO2 electroreduction over metallic oxide, carbon-based, and molecular catalysts: a mini-review of the current advances. Catalysts. 2022; 12 (5): 450.
[126]
Xue D, Xia H, Yan W, Zhang J, Mu S. Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano Lett. 2020; 13 (1): 5.
[127]
Zhang Z, Yu L, Tu Y, et al. Unveiling the active site of metal-free nitrogen-doped carbon for electrocatalytic carbon dioxide reduction. Cell Rep Phys Sci. 2020; 1 (8): 100145.
[128]
Wu J, Ma S, Sun J, et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat Commun. 2016; 7 (1): 13869.
[129]
Yang F, Ma X, Cai WB, Song P, Xu W. Nature of oxygen-containing groups on carbon for high-efficiency electrocatalytic CO2 reduction reaction. J Am Chem Soc. 2019; 141 (51): 20451- 20459.
[130]
Masood ul Hasan I, Peng L, Mao J, et al. Carbon-based metal-free catalysts for electrochemical CO2 reduction: activity, selectivity, and stability. Carbon Energy. 2020; 3 (1): 24- 49.
[131]
Mao X, Guo R, Chen Q, et al. Recent advances in graphitic carbon nitride based electro-catalysts for CO2 reduction reactions. Molecules. 2023; 28 (8): 3292.
[132]
Feng Y, Yang H, Zhang Y, et al. Te-doped Pd nanocrystal for electrochemical urea production by efficiently coupling carbon dioxide reduction with nitrite reduction. Nano Lett. 2020; 20 (11): 8282- 8289.
[133]
Meng N, Huang Y, Liu Y, Yu Y, Zhang B. Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell Rep Phys Sci. 2021; 2 (3): 100378.
[134]
Liu S, Yin S, Wang Z, et al. AuCu nanofibers for electrosynthesis of urea from carbon dioxide and nitrite. Cell Rep Phys Sci. 2022; 3 (5): 100869.
[135]
Cao N, Quan Y, Guan A, et al. Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. J Colloid Interface Sci. 2020; 577: 109- 114.
[136]
Shibata M, Furuya N. Electrochemical synthesis of urea at gas-diffusion electrodes. J Electroanal Chem. 2001; 507 (1-2): 177- 184.
[137]
Saravanakumar D, Song J, Lee S, Hur NH, Shin W. Electrocatalytic conversion of carbon dioxide and nitrate ions to urea by a titania-nafion composite electrode. ChemSusChem. 2017; 10 (20): 3999- 4003.
[138]
Lv C, Zhong L, Liu H, et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat Sustain. 2021; 4 (10): 868- 876.
[139]
Wang H, Jiang Y, Li S, et al. Realizing efficient C-N coupling via electrochemical co-reduction of CO2 and NO3 on AuPd nanoalloy to form urea: key C-N coupling intermediates. Appl Catal B. 2022; 318 (5): 121819.
[140]
White JL, Baruch MF, Pander III JE, et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem Rev. 2015; 115 (23): 12888- 12935.
[141]
Lv C, Lee C, Zhong L, et al. A defect engineered electrocatalyst that promotes high-efficiency urea synthesis under ambient conditions. ACS Nano. 2022; 16 (5): 8213- 8222.
[142]
Liu X, Kumar PV, Chen Q, et al. Carbon nanotubes with fluorine-rich surface as metal-free electrocatalyst for effective synthesis of urea from nitrate and CO2. Appl Catal B. 2022; 316 (5): 121618.
[143]
Leverett J, Tran-Phu T, Yuwono JA, et al. Tuning the coordination structure of Cu-N-C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3 to urea. Adv Energy Mater. 2022; 12 (32): 2201500.
[144]
Wei X, Wen X, Liu Y, et al. Oxygen vacancy-mediated selective C-N coupling toward electrocatalytic urea synthesis. J Am Chem Soc. 2022; 144 (26): 11530- 11535.
[145]
Wei X, Liu Y, Zhu X, et al. Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis. Adv Mater. 2023; 35 (18): 2300020.
[146]
Liu Y, Tu X, Wei X, et al. C-bound or O-bound surface: which one boosts electrocatalytic urea synthesis? Angew Chem Int Ed. 2023; 62 (19): e2023003.
[147]
Meng N, Ma X, Wang C, et al. Oxide-derived core-shell Cu@Zn nanowires for urea electrosynthesis from carbon dioxide and nitrate in water. ACS Nano. 2022; 16 (6): 9095- 9104.
[148]
Chen C, Zhu X, Wen X, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat Chem. 2020; 12 (8): 717- 724.
[149]
Yuan M, Chen J, Zhang H, et al. Host-guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal-organic framework. Energy Environ Sci. 2022; 15 (5): 2084- 2095.
[150]
Yuan M, Chen J, Bai Y, et al. Unveiling electrochemical urea synthesis by co-activation of CO2 and N2 with Mott-Schottky heterostructure catalysts. Angew Chem Int Ed. 2021; 60 (19): 10910- 10918.
[151]
Yuan M, Chen J, Bai Y, et al. Electrochemical C-N coupling with perovskite hybrids toward efficient urea synthesis. Chem Sci. 2021; 12 (17): 6048- 6058.
[152]
Yuan M, Chen J, Xu Y, et al. Highly selective electroreduction of N2 and CO2 to urea over artificial frustrated Lewis pairs. Energy Environ Sci. 2021; 14 (12): 6605- 6615.
[153]
Yuan M, Zhang H, Xu Y, et al. Artificial frustrated Lewis pairs facilitating the electrochemical N2 and CO2 conversion to urea. Chem Catal. 2022; 2 (2): 309- 320.
[154]
Huang Y, Yang R, Wang C, et al. Direct electrosynthesis of urea from carbon dioxide and nitric oxide. ACS Energy Lett. 2021; 7 (1): 284- 291.
[155]
Wu Y, Jiang Z, Lin Z, Liang Y, Wang H. Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat Sustain. 2021; 4 (8): 725- 730.
[156]
Tao Z, Wu Y, Wu Z, Shang B, Rooney C, Wang H. Cascade electrocatalytic reduction of carbon dioxide and nitrate to ethylamine. J Energy Chem. 2022; 65: 367- 370.
[157]
Li J, Kornienko N. Electrochemically driven C-N bond formation from CO2 and ammonia at the triple-phase boundary. Chem Sci. 2022; 13 (14): 3957- 3964.
[158]
Tao Z, Rooney CL, Liang Y, Wang H. Accessing organonitrogen compounds via C-N coupling in electrocatalytic CO2 reduction. J Am Chem Soc. 2021; 143 (47): 19630- 19642.
[159]
Chen C, He N, Wang S. Electrocatalytic C-N coupling for urea synthesis. Small Sci. 2021; 1 (11): 2100070.
[160]
Shibata M, Yoshida K, Furuya N. Electrochemical synthesis of urea on reduction of carbon dioxide with nitrate and nitrite ions using Cu-loaded gas-diffusion electrode. J Electroanal Chem. 1995; 387 (1-2): 143- 145.
[161]
Shibata M, Yoshida K, Furuya N. Electrochemical synthesis of urea at gas-diffusion electrodes V. Simultaneous reduction of carbon dioxide and nitrite ions with various boride catalysts. Denki Kagaku Oyobi Kogyo Butsuri Kagaku. 1998; 66 (6): 584- 589.
[162]
Shibata M, Yoshida K, Furuya N. Electrochemical synthesis of urea at gas-diffusion electrodes: IV. Simultaneous reduction of carbon dioxide and nitrate ions with various metal catalysts. J Electrochem Soc. 1998; 145 (7): 2348- 2353.
[163]
Shibata M, Yoshida K, Furuya N. Electrochemical synthesis of urea at gas-diffusion electrodes. J Electroanal Chem. 1998; 442 (1-2): 67- 72.
[164]
Filippi M, Möller T, Liang L, Strasser P. Understanding the impact of catholyte flow compartment design on the efficiency of CO2 electrolyzers. Energy Environ Sci. 2023; 16 (11): 5265- 5273.
[165]
Jiao Y, Li H, Jiao Y, Qiao S-Z. Activity and selectivity roadmap for C-N electro-coupling on MXenes. J Am Chem Soc. 2023; 145 (28): 15572- 15580.
[166]
Li J, Al-Mahayni H, Chartrand D, Seifitokaldani A, Kornienko N. Electrochemical formation of C-S bonds from CO2 and small-molecule sulfur species. Nat Synth. 2023; 2 (8): 757- 765.

RIGHTS & PERMISSIONS

2024 2024 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/