
Unfolding rates of 1:1 and 2:1 complex of CX-5461 and c-MYC promoter G-quadruplexes revealed by single-molecule force spectroscopy
Hui Peng, Yashuo Zhang, Qun Luo, Xinyu Wang, Huijuan You
Biophysics Reports ›› 2024, Vol. 10 ›› Issue (3) : 180-189.
Unfolding rates of 1:1 and 2:1 complex of CX-5461 and c-MYC promoter G-quadruplexes revealed by single-molecule force spectroscopy
CX-5461, also known as pidnarulex, is a strong G4 stabilizer and has received FDA fast-track designation for BRCA1- and BRCA2- mutated cancers. However, quantitative measurements of the unfolding rates of CX-5461-G4 complexes which are important for the regulation function of G4s, remain lacking. Here, we employ single-molecule magnetic tweezers to measure the unfolding force distributions of c-MYC G4s in the presence of different concentrations of CX-5461. The unfolding force distributions exhibit three discrete levels of unfolding force peaks, corresponding to three binding modes. In combination with a fluorescent quenching assay and molecular docking to previously reported ligand-c-MYC G4 structure, we assigned the ~69 pN peak corresponding to the 1:1 (ligand:G4) complex where CX-5461 binds at the G4’s 5'-end. The ~84 pN peak is attributed to the 2:1 complex where CX-5461 occupies both the 5' and 3'. Furthermore, using the Bell-Arrhenius model to fit the unfolding force distributions, we determined the zero-force unfolding rates of 1:1, and 2:1 complexes to be (2.4 ± 0.9) × 10−8 s−1 and (1.4 ± 1.0) × 10−9 s−1 respectively. These findings provide valuable insights for the development of G4-targeted ligands to combat c-MYC-driven cancers.
Single-molecule / G-quadruplex / Magnetic tweezers / Stoichiometry / Force spectroscopy / Pidnarulex
[1] |
Asamitsu S , Bando T , Sugiyama H . Ligand design to acquire specificity to intended G-quadruplex structures. Chem-Eur J, 2019, 25(2): 417–430
CrossRef
Google scholar
|
[2] |
Backer AS , Biebricher AS , King GA , Wuite GJL , Heller I , Peterman EJG . Single-molecule polarization microscopy of DNA intercalators sheds light on the structure of S-DNA. Sci Adv, 2019, 5(3): eaav1083
CrossRef
Google scholar
|
[3] |
Balasubramanian S, Hurley LH, Neidle S (2011) Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 10(4): 261−275
|
[4] |
Bell GI . Models for the specific adhesion of cells to cells. Science, 1978, 200(4342): 618–627
CrossRef
Google scholar
|
[5] |
Bossaert M , Pipier A , Riou JF , Noirot C , Nguyên LT , Serre RF , Bouchez O , Defrancq E , Calsou P , Britton S , Gomez D . Transcription-associated topoisomerase 2α a (TOP2A) activity is a major effector of cytotoxicity induced by G-quadruplex ligands. Elife, 2021, 10: e65184
CrossRef
Google scholar
|
[6] |
Bruno PM , Lu MR , Dennis KA , Inam H , Moore CJ , Sheehe J , Elledge SJ , Hemann MT , Pritchard JR . The primary mechanism of cytotoxicity of the chemotherapeutic agent CX-5461 is topoisomerase II poisoning. Proc Natl Acad Sci USA, 2020, 117(8): 4053–4060
CrossRef
Google scholar
|
[7] |
Chaudhuri R , Bhattacharya S , Dash J , Bhattacharya S . Recent update on targeting G-quadruplexes by small molecules for anticancer therapeutics. J Med Chem, 2021, 64(1): 42–70
CrossRef
Google scholar
|
[8] |
Cheng Y , Zhang Y , Gong Z , Zhang X , Li Y , Shi X , Pei Y , You H . High mechanical stability and slow unfolding rates are prevalent in parallel-stranded DNA G-quadruplexes. J Phys Chem Lett, 2020, 11(19): 7966–7971
CrossRef
Google scholar
|
[9] |
Cheng Y , Zhang Y , You H . Characterization of G-quadruplexes folding/unfolding dynamics and interactions with proteins from single-molecule force spectroscopy. Biomolecules, 2021, 11(11): 1579
CrossRef
Google scholar
|
[10] |
Dickerhoff J , Dai J , Yang D . Structural recognition of the MYC promoter G-quadruplex by a quinoline derivative: insights into molecular targeting of parallel G-quadruplexes. Nucleic Acids Res, 2021a, 49(10): 5905–5915
CrossRef
Google scholar
|
[11] |
Dickerhoff J , Warnecke KR , Wang KB , Deng NJ , Yang DZ . Evaluating molecular docking software for small molecule binding to G-quadruplex DNA. Int J Mol Sci, 2021b, 22(19): 10801
CrossRef
Google scholar
|
[12] |
Evans E , Ritchie K . Dynamic strength of molecular adhesion bonds. Biophys J, 1997, 72(4): 1541–1555
CrossRef
Google scholar
|
[13] |
Gray RD , Trent JO , Arumugam S , Chaires JB . Folding landscape of a parallel G-quadruplex. J Phys Chem Lett, 2019, 10(5): 1146–1151
CrossRef
Google scholar
|
[14] |
Hänsel-Hertsch R , Beraldi D , Lensing SV , Marsico G , Zyner K , Parry A , Di Antonio M , Pike J , Kimura H , Narita M , Tannahill D , Balasubramanian S . G-quadruplex structures mark human regulatory chromatin. Nat Genet, 2016, 48(10): 1267–1272
CrossRef
Google scholar
|
[15] |
Hilton J, Gelmon K, Bedard PL, Tu D, Xu H, Tinker AV, Goodwin R, Laurie SA, Jonker D, Hansen AR, Veitch ZW, Renouf DJ, Hagerman L, Lui H, Chen B, Kellar D, Li I, Lee SE, Kono T, Cheng BYC, Yap D, Lai D, Beatty S, Soong J, Pritchard KI, Soria-Bretones I, Chen E, Feilotter H, Rushton M, Seymour L, Aparicio S, Cescon DW (2022) Results of the phase I CCTG IND. 231 trial of CX-5461 in patients with advanced solid tumors enriched for DNA-repair deficiencies. Nat Commun 13(1): 3607.
|
[16] |
Ivani I , Dans PD , Noy A , Perez A , Faustino I , Hospital A , Walther J , Andrio P , Goni R , Balaceanu A , Portella G , Battistini F , Gelpi JL , Gonzalez C , Vendruscolo M , Laughton CA , Harris SA , Case DA , Orozco M . Parmbsc1: a refined force field for DNA simulations. Nat Methods, 2016, 13(1): 55–58
CrossRef
Google scholar
|
[17] |
Khot A , Brajanovski N , Cameron DP , Hein N , Maclachlan KH , Sanij E , Lim J , Soong J , Link E , Blombery P , Thompson ER , Fellowes A , Sheppard KE , McArthur GA , Pearson RB , Hannan RD , Poortinga G , Harrison SJ . First-in-human RNA polymerase I transcription inhibitor CX-5461 in patients with advanced hematologic cancers: results of a phase I dose-escalation study. Cancer Discov, 2019, 9(8): 1036–1049
CrossRef
Google scholar
|
[18] |
Koh GCC , Boushaki S , Zhao SJ , Pregnall AM , Sadiyah F , Badja C , Memari Y , Georgakopoulos-Soares I , Nik-Zainal S . The chemotherapeutic drug CX-5461 is a potent mutagen in cultured human cells. Nat Genet, 2024, 56(1): 23–26
CrossRef
Google scholar
|
[19] |
Lago S , Nadai M , Cernilogar FM , Kazerani M , Moreno HD , Schotta G , Richter SN . Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nat Commun, 2021, 12(1): 3885
CrossRef
Google scholar
|
[20] |
Li ML , Yuan JM , Yuan H , Wu BH , Huang SL , Li QJ , Ou TM , Wang HG , Tan JH , Li D , Chen SB , Huang ZS . Design, synthesis, and evaluation of new sugar-substituted imidazole derivatives as selectivetranscription repressors targeting the promoter G-quadruplex. J Med Chem, 2022, 65(19): 12675–12700
CrossRef
Google scholar
|
[21] |
Liu TY , Wu YY , Qin LY , Luo Q , Li WZ , Cheng YL , Tu YS , You HJ . Nonselective intercalation of G-quadruplex-targeting ligands into double-stranded DNA quantified by single-molecule stretching. J Phys Chem B, 2023, 127(26): 5859–5868
CrossRef
Google scholar
|
[22] |
Liu W , Lin C , Wu G , Dai J , Chang TC , Yang D . Structures of 1:1 and 2:1 complexes of BMVC and MYC promoter G-quadruplex reveal a mechanism of ligand conformation adjustment for G4-recognition. Nucleic Acids Res, 2019, 47(22): 11931–11942
|
[23] |
Marchand A , Rosu F , Zenobi R , Gabelica V . Thermal denaturation of DNA G-quadruplexes and their complexes with ligands: thermodynamic analysis of the multiple states revealed by mass spectrometry. J Am Chem Soc, 2018, 140(39): 12553–12565
CrossRef
Google scholar
|
[24] |
Moore MJB, Schultes CM, Cuesta J, Cuenca F, Gunaratnam M, Tanious FA, Wilson WD, Neidle S (2006) Trisubstituted acridines as G-quadruplex telomere targeting agents. Effects of extensions of the 3, 6-and 9-side chains on quadruplex binding, telomerase activity, and cell proliferation. J Med Chem 49(2): 582−599
|
[25] |
Neidle S . Quadruplex nucleic acids as targets for anticancer therapeutics. Nat Rev Chem, 2017, 1(5): 0041
CrossRef
Google scholar
|
[26] |
Pan M , Wright WC , Chapple RH , Zubair A , Sandhu M , Batchelder JE , Huddle BC , Low J , Blankenship KB , Wang YZ , Gordon B , Archer P , Brady SW , Natarajan S , Posgai MJ , Schuetz J , Miller D , Kalathur R , Chen SQ , Connelly JP , Babu MM , Dyer MA , Pruett-Miller SM , Freeman BB , Chen TS , Godley LA , Blanchard SC , Stewart E , Easton J , Geeleher P . The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma. Nat Commun, 2021, 12(1): 6468
CrossRef
Google scholar
|
[27] |
Rangan A , Fedoroff OY , Hurley LH . Induction of duplex to G-quadruplex transition in the c-myc promoter region by a small molecule. J Biol Chem, 2001, 276(7): 4640–4646
CrossRef
Google scholar
|
[28] |
Rodriguez R , Müller S , Yeoman JA , Trentesaux C , Riou JF , Balasubramanian S . A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J Am Chem Soc, 2008, 130(47): 15758–15759
CrossRef
Google scholar
|
[29] |
Siddiqui-Jain A , Grand CL , Bearss DJ , Hurley LH . Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA, 2002, 99(18): 11593–11598
CrossRef
Google scholar
|
[30] |
Sun DY , Thompson B , Cathers BE , Salazar M , Kerwin SM , Trent JO , Jenkins TC , Neidle S , Hurley LH . Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem, 1997, 40(14): 2113–2116
CrossRef
Google scholar
|
[31] |
Thordarson P . Determining association constants from titration experiments in supramolecular chemistry. Chem Soc Rev, 2011, 40(3): 1305–1323
CrossRef
Google scholar
|
[32] |
Wang G , Vasquez KM . Dynamic alternative DNA structures in biology and disease. Nat Rev Genet, 2023, 24(4): 211–234
CrossRef
Google scholar
|
[33] |
Wang YH, Yang QF, Lin X, Chen D, Wang ZY, Chen B, Han HY, Chen HD, Cai KC, Li Q, Yang S, Tang YL, Li F (2022) G4LDB 2.2: a database for discovering and studying G-quadruplex and i-Motif ligands. Nucleic Acids Res 50(D1): D150-D160
|
[34] |
You H , Lattmann S , Rhodes D , Yan J . RHAU helicase stabilizes G4 in its nucleotide-free state and destabilizes G4 upon ATP hydrolysis. Nucleic Acids Res, 2017, 45(1): 206–214
CrossRef
Google scholar
|
[35] |
You H , Wu J , Shao F , Yan J . Stability and kinetics of c-MYC promoter G-quadruplexes studied by single-molecule manipulation. J Am Chem Soc, 2015, 137(7): 2424–2427
CrossRef
Google scholar
|
[36] |
Zhang Y , Cheng Y , Luo Q , Wu T , Huo J , Yin M , Peng H , Xiao Y , Tong Q , You H . Distinguishing G-quadruplexes stabilizer and chaperone for c-MYC promoter G-quadruplexes through single-molecule manipulation. J Am Chem Soc, 2024, 146(6): 3689–3699
CrossRef
Google scholar
|
[37] |
Zheng KW , Zhang JY , He YD , Gong JY , Wen CJ , Chen JN , Hao YH , Zhao Y , Tan Z . Detection of genomic G-quadruplexes in living cells using a small artificial protein. Nucleic Acids Res, 2020, 48(20): 11706–11720
CrossRef
Google scholar
|
/
〈 |
|
〉 |