Structurally reconfigurable designer RNA structures for nanomachines

Kai Jiao, Yaya Hao, Fei Wang, Lihua Wang, Chunhai Fan, Jiang Li

Biophysics Reports ›› 2021, Vol. 7 ›› Issue (1) : 21-34.

PDF(22169 KB)
PDF(22169 KB)
Biophysics Reports ›› 2021, Vol. 7 ›› Issue (1) : 21-34. DOI: 10.52601/bpr.2021.200053
REVIEW
REVIEW

Structurally reconfigurable designer RNA structures for nanomachines

Author information +
History +

Abstract

Structurally reconfigurable RNA structures enable dynamic transitions of the functional states in response to diverse molecular stimuli, which are fundamental in genetic and epigenetic regulations. Inspired by nature, rationally designed RNA structures with responsively reconfigurable motifs have been developed to serve as switchable components for building engineered nanomachines, which hold promise in synthetic biological applications. In this review, we summarize recent progress in the design, synthesis, and integration of engineered reconfigurable RNA structures for nanomachines. We highlight recent examples of their targeted applications such as biocomputing and smart theranostics. We also discuss their advantages, challenges as well as possible solutions. We further provide an outlook of their potential in future synthetic biology.

Graphical abstract

Keywords

RNA nanomachine / Structure / Reconfiguration / Biocomputing / Theranostics

Cite this article

Download citation ▾
Kai Jiao, Yaya Hao, Fei Wang, Lihua Wang, Chunhai Fan, Jiang Li. Structurally reconfigurable designer RNA structures for nanomachines. Biophysics Reports, 2021, 7(1): 21‒34 https://doi.org/10.52601/bpr.2021.200053

References

[1]
Abbink TEM , Ooms M , Haasnoot PCJ , Berkhout B . The HIV-1 leader RNA conformational switch regulates RNA dimerization but does not regulate mRNA translation. Biochemistry, 2005, 44( 25): 9058– 9066
CrossRef Google scholar
[2]
Afonin KA , Viard M , Koyfman AY , Martins AN , Kasprzak WK , Panigaj M , Desai R , Santhanam A , Grabow WW , Jaeger L , Heldman E , Reiser J , Chiu W , Freed EO , Shapiro BA . Multifunctional RNA nanoparticles. Nano Lett, 2014, 14( 10): 5662– 5671
CrossRef Google scholar
[3]
Agapakis CM , Silver PA . Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks. Mol Biosyst, 2009, 5( 7): 704– 713
CrossRef Google scholar
[4]
Bailor MH , Sun XY , Al-Hashimi HM . Topology links RNA secondary structure with global conformation, dynamics, and adaptation. Science, 2010, 327( 5962): 202– 206
CrossRef Google scholar
[5]
Batey RT , Gilbert SD , Montange RK . Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature, 2004, 432( 7015): 411– 415
CrossRef Google scholar
[6]
Bayer TS , Smolke CD . Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol, 2005, 23( 3): 337– 343
CrossRef Google scholar
[7]
Beilstein K , Wittmann A , Grez M , Suess B . Conditional control of mammalian gene expression by tetracycline-dependent hammerhead ribozymes. ACS Synth Biol, 2015, 4( 5): 526– 534
CrossRef Google scholar
[8]
Birikh KR , Heaton PA , Eckstein F . The structure, function and application of the hammerhead ribozyme. Eur J Biochem, 1997, 245( 1): 1– 16
CrossRef Google scholar
[9]
Broughton JP , Deng XD , Yu GX , Fasching CL , Servellita V , Singh J , Miao X , Streithorst JA , Granados A , Sotomayor-Gonzalez A , Zorn K , Gopez A , Hsu E , Gu W , Miller S , Pan CY , Guevara H , Wadford DA , Chen JS , Chiu CY . CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol, 2020, 38( 7): 870– U854
CrossRef Google scholar
[10]
Callura JM , Cantor CR , Collins JJ . Genetic switchboard for synthetic biology applications. Proc Natl Acad Sci USA, 2012, 109( 15): 5850– 5855
CrossRef Google scholar
[11]
Chakraborty K , Veetil AT , Jaffrey SR , Krishnan Y . Nucleic acid-based nanodevices in biological imaging. Ann Rev Biochem, 2016, 85( 1): 349– 373
CrossRef Google scholar
[12]
Chakraborty S , Mehtab S , Krishnan Y . The predictive power of synthetic nucleic acid technologies in RNA biology. Acc Chem Res, 2014, 47( 6): 1710– 1719
CrossRef Google scholar
[13]
Chan K , Ng TB . In-vitro nanodiagnostic platform through nanoparticles and DNA–RNA nanotechnology. Appl Microbiol Biotechnol, 2015, 99( 8): 3359– 3374
CrossRef Google scholar
[14]
Chappell J , Takahashi MK , Lucks JB . Creating small transcription activating RNAs. Nat Chem Biol, 2015, 11( 3): 214– U165
CrossRef Google scholar
[15]
Chen JS , Ma EB , Harrington LB , Da Costa M , Tian XR , Palefsky JM , Doudna JA . CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 360( 6387): 436– 439
CrossRef Google scholar
[16]
Daniel R , Rubens JR , Sarpeshkar R , Lu TK . Synthetic analog computation in living cells. Nature, 2013, 497( 7451): 619– 623
CrossRef Google scholar
[17]
Darmostuk M , Rimpelova S , Gbelcova H , Ruml T . Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv, 2015, 33( 6): 1141– 1161
CrossRef Google scholar
[18]
Delebecque CJ , Lindner AB , Silver PA , Aldaye FA . Organization of intracellular reactions with rationally designed RNA assemblies. Science, 2011, 333( 6041): 470– 474
CrossRef Google scholar
[19]
Durbin JK , Miller DK , Niekamp J , Khisamutdinov EF . Modulating immune response with nucleic acid nanoparticles. Molecules, 2019, 24( 20):
[20]
Dwidar M , Seike Y , Kobori S , Whitaker C , Matsuura T , Yokobayashi Y . Programmable artificial cells using histamine-responsive synthetic riboswitch. J Am Chem Soc, 2019, 141( 28): 11103– 11114
CrossRef Google scholar
[21]
Ellington AD , Szostak JW . In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346( 6287): 818– 822
CrossRef Google scholar
[22]
Gasiunas G , Barrangou R , Horvath P , Siksnys V . Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA, 2012, 109( 39): E2579– E2586
CrossRef Google scholar
[23]
Ge ZL , Gu HZ , Li Q , Fan CH . Concept and development of framework nucleic acids. J Am Chem Soc, 2018, 140( 51): 17808– 17819
CrossRef Google scholar
[24]
Geary C , Rothemund PWK , Andersen ES . A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science, 2014, 345( 6198): 799– 804
CrossRef Google scholar
[25]
Gootenberg JS , Abudayyeh OO , Lee JW , Essletzbichler P , Dy AJ , Joung J , Verdine V , Donghia N , Daringer NM , Freije CA , Myhrvold C , Bhattacharyya RP , Livny J , Regev A , Koonin EV , Hung DT , Sabeti PC , Collins JJ , Zhang F . Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356( 6336): 438– 442
CrossRef Google scholar
[26]
Grabow WW , Jaeger L . RNA self-assembly and RNA nanotechnology. Acc Chem Res, 2014, 47( 6): 1871– 1880
CrossRef Google scholar
[27]
Green AA , Kim JM , Ma D , Ilver PAS , Collins JJ , Yin P . Complex cellular logic computation using ribocomputing devices. Nature, 2017, 548( 7665): 117– 121
CrossRef Google scholar
[28]
Green AA , Silver PA , Collins JJ , Yin P . Toehold switches: de-novo-designed regulators of gene expression. Cell, 2014, 159( 4): 925– 939
CrossRef Google scholar
[29]
Greider CW , Blackburn EH . The telomere terminal transferase of tetrahymena is a ribonucleoprotein enzyme with 2 kinds of primer specificity. Cell, 1987, 51( 6): 887– 898
CrossRef Google scholar
[30]
Guo PX . The emerging field of RNA nanotechnology. Nat Nanotech, 2010, 5( 12): 833– 842
CrossRef Google scholar
[31]
Guo S , Vieweger M , Zhang K , Yin H , Wang H , Li X , Li S , Hu S , Sparreboom A , Evers BM , Dong Y , Chiu W , Guo P . Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy. Nat Commun, 2020, 11( 1): 972
CrossRef Google scholar
[32]
Han D , Qi X , Myhrvold C , Wang B , Dai M , Jiang S , Bates M , Liu Y , An B , Zhang F , Yan H , Yin P . Single-stranded DNA and RNA origami. Science, 2017, 358( 6369): eaao2648
CrossRef Google scholar
[33]
Hao CH , Li X , Tian C , Jiang W , Wang GS , Mao CD . Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage. Nat Commun, 2014, 5 : 3890
CrossRef Google scholar
[34]
Hao Y , Li J , Li Q , Zhang L , Shi JY , Zhang X , Aldalbahi A , Wang L , Fan C , Wang F . Programmable live-cell CRISPR imaging with toehold-switch-mediated strand displacement. Angew Chem Int Ed Engl, 2020, 59( 46): 20612– 20618
CrossRef Google scholar
[35]
Hong F , Ma D , Wu K , Mina LA , Luiten RC , Liu Y , Yan H , Green AA . Precise and programmable detection of mutations using ultraspecific riboregulators. Cell, 2020, 180( 5): 1018– 1032 e1016
CrossRef Google scholar
[36]
Hu QQ , Li H , Wang LH , Gu HZ , Fan CH . DNA nanotechnology-enabled drug delivery systems. Chem Rev, 2019, 119( 10): 6459– 6506
[37]
Isaacs FJ , Dwyer DJ , Collins JJ . RNA synthetic biology. Nat Biotechnol, 2006, 24( 5): 545– 554
CrossRef Google scholar
[38]
Ishikawa J , Furuta H , Ikawa Y . RNA tectonics (tectoRNA) for RNA nanostructure design and its application in synthetic biology. Wiley Interdiscip Rev-RNA, 2013, 4( 6): 651– 664
CrossRef Google scholar
[39]
Jang M , Kim JH , Nam HY , Kwon IC , Ahn HJ . Design of a platform technology for systemic delivery of siRNA to tumours using rolling circle transcription. Nat Commun, 2015, 6 : 7930
CrossRef Google scholar
[40]
Jasinski D , Haque F , Binzel DW , Guo PX . Advancement of the emerging field of RNA nanotechnology. Acs Nano, 2017, 11( 2): 1142– 1164
CrossRef Google scholar
[41]
Jepsen MDE , Sparvath SM , Nielsen TB , Langvad AH , Grossi G , Gothelf KV , Andersen ES . Development of a genetically encodable FRET system using fluorescent RNA aptamers. Nat Commun, 2018, 9( 1): 18
CrossRef Google scholar
[42]
Jiao K , Zhu B , Guo L , Zhou H , Wang F , Zhang X , Shi J , Li Q , Wang L , Li J , Fan C . Programming switchable transcription of topologically constrained DNA. J Am Chem Soc, 2020, 142( 24): 10739– 10746
CrossRef Google scholar
[43]
Jin MK , de Loubresse NG , Kim Y , Kim J , Yin P . Programmable CRISPR-Cas repression, activation, and computation with sequence-independent targets and triggers. ACS Synth Biol, 2019, 8( 7): 1583– 1589
CrossRef Google scholar
[44]
Kawazoe N , Teramoto N , Ichinari H , Imanishi Y , Ito Y . In vitro selection of nonnatural ribozyme-catalyzing porphyrin metalation. Biomacromolecules, 2001, 2( 3): 681– 686
CrossRef Google scholar
[45]
Kedde M , van Kouwenhove M , Zwart W , Vrielink JAFO , Elkon R , Agami R . A Pumilio-induced RNA structure switch in p27-3' UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol, 2010, 12( 10): 1014– 1020
CrossRef Google scholar
[46]
Khaled A , Guo SC , Li F , Guo PX . Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano Lett, 2005, 5( 9): 1797– 1808
CrossRef Google scholar
[47]
Khan AU . Ribozyme: a clinical tool. Clin Chim Acta, 2006, 367( 1-2): 20– 27
CrossRef Google scholar
[48]
Khisamutdinov EF , Jasinski DL , Guo P . RNA as a boiling-resistant anionic polymer material to build robust structures with defined shape and stoichiometry. ACS Nano, 2014, 8( 5): 4771– 4781
CrossRef Google scholar
[49]
Kim J , Zhou Y , Carlson PD , Teichmann M , Chaudhary S , Simmel FC , Silver PA , Collins JJ , Lucks JB , Yin P , Green AA . De novo-designed translation-repressing riboregulators for multi-input cellular logic. Nat Chem Biol, 2019, 15( 12): 1173– 1182
CrossRef Google scholar
[50]
Krishnan Y , Bathe M . Designer nucleic acids to probe and program the cell. Trends Cell Biol, 2012, 22( 12): 624– 633
CrossRef Google scholar
[51]
Lau MWL , Ferre-D'Amare AR . In vitro evolution of coenzyme-independent variants from the glmS ribozyme structural scaffold. Methods, 2016, 106 : 76– 81
CrossRef Google scholar
[52]
Lee JB , Hong J , Bonner DK , Poon Z , Hammond PT . Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat Mater, 2012, 11( 4): 316– 322
CrossRef Google scholar
[53]
Li H , Zhang KM , Pi FM , Guo SJ , Shlyakhtenko L , Chiu W , Shu D , Guo PX . Controllable self-assembly of RNA tetrahedrons with precise shape and size for cancer targeting. Adv Mater, 2016, 28( 34): 7501– 7507
CrossRef Google scholar
[54]
Li J , Green AA , Yan H , Fan C . Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat Chem, 2017, 9( 11): 1056– 1067
CrossRef Google scholar
[55]
Li M , Zheng M , Wu S , Tian C , Liu D , Weizmann Y , Jiang W , Wang G , Mao C . In vivo production of RNA nanostructures via programmed folding of single-stranded RNAs. Nat Commun, 2018, 9( 1): 2196
CrossRef Google scholar
[56]
Li YL , Vergne J , Torchet C , Maurel MC . In vitro selection of adenine-dependent ribozyme against Tpl2/Cot oncogene. Febs J, 2009, 276( 1): 303– 314
CrossRef Google scholar
[57]
Liu SR , Hu CG , Zhang JZ . Regulatory effects of cotranscriptional RNA structure formation and transitions. Wiley Interdiscip Rev-RNA, 2016a, 7( 5): 562– 574
CrossRef Google scholar
[58]
Liu XG , Zhang F , Jing XX , Pan MC , Liu P , Li W , Zhu BW , Li J , Chen H , Wang LH , Lin JP , Liu Y , Zhao DY , Yan H , Fan CH . Complex silica composite nanomaterials templated with DNA origami. Nature, 2018, 559( 7715): 593– 598
CrossRef Google scholar
[59]
Liu YC , Zhan YH , Chen ZC , He AB , Li JF , Wu HW , Liu L , Zhuang CL , Lin JH , Guo XQ , Zhang QX , Huang WR , Cai ZM . Directing cellular information flow via CRISPR signal conductors. Nat Meth, 2016b, 13( 11): 938– 944
CrossRef Google scholar
[60]
Ma SY , Tang N , Tian JD . DNA synthesis, assembly and applications in synthetic biology. Curr Opin Chem Biol, 2012, 16( 3-4): 260– 267
CrossRef Google scholar
[61]
Maniatis T , Reed R . The role of small nuclear ribonucleoprotein-particles in pre-messenger-RNA splicing. Nature, 1987, 325( 6106): 673– 678
CrossRef Google scholar
[62]
Meyer S , Chappell J , Sankar S , Chew R , Lucks JB . Improving fold activation of small transcription activating RNAs (STARs) with rational RNA engineering strategies. Biotechnol Bioeng, 2016, 113( 1): 216– 225
CrossRef Google scholar
[63]
Munzar JD , Ng A , Juncker D . Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev, 2019, 48( 5): 1390– 1419
CrossRef Google scholar
[64]
Myhrvold C , Freije CA , Gootenberg JS , Abudayyeh OO , Metsky HC , Durbin AF , Kellner MJ , Tan AL , Paul LM , Parham LA , Garcia KF , Barnes KG , Chak B , Mondini A , Nogueira ML , Isern S , Michael SF , Lorenzana I , Yozwiak NL , MacInnis BL , Bosch I , Gehrke L , Zhang F , Sabeti PC . Field-deployable viral diagnostics using CRISPR-Cas13. Science, 2018, 360( 6387): 444– 448
CrossRef Google scholar
[65]
Neubacher S , Hennig S . RNA structure and cellular applications of fluorescent light-up aptamers. Angew Chem Int Ed Engl, 2019, 58( 5): 1266– 1279
CrossRef Google scholar
[66]
Nudler E , Mironov AS . The riboswitch control of bacterial metabolism. Trends Biochem Sci, 2004, 29( 1): 11– 17
CrossRef Google scholar
[67]
Oesinghaus L , Simme FC . Switching the activity of Cas12a using guide RNA strand displacement circuits. Nat Commun, 2019, 10( 1): 2092
CrossRef Google scholar
[68]
Ogawa A , Maeda M . An artificial aptazyme-based riboswitch and its cascading system in E. coli. Chembiochem, 2008, 9( 2): 206– 209
CrossRef Google scholar
[69]
Ohno H , Kobayashi T , Kabata R , Endo K , Iwasa T , Yoshimura SH , Takeyasu K , Inoue T , Saito H . Synthetic RNA-protein complex shaped like an equilateral triangle. Nat Nanotech, 2011, 6( 2): 115– 119
[70]
Omabegho T , Gurel PS , Cheng CY , Kim LY , Ruijgrok PV , Das R , Alushin GM , Bryant Z . Controllable molecular motors engineered from myosin and RNA. Nat Nanotechnol, 2017, 13( 1): 34– 40
[71]
Osada E , Suzuki Y , Hidaka K , Ohno H , Sugiyama H , Endo M , Saito H . Engineering RNA-protein complexes with different shapes for imaging and therapeutic applications. ACS Nano, 2014, 8( 8): 8130– 8140
CrossRef Google scholar
[72]
Ozer A , Pagano JM , Lis JT . New technologies provide quantum changes in the scale, speed, and success of SELEX methods and aptamer characterization. Mol TherNucleic Acids, 2014, 3( 8): e183
CrossRef Google scholar
[73]
Paige JS , Nguyen-Duc T , Song W , Jaffrey SR . Fluorescence imaging of cellular metabolites with RNA. Science, 2012, 335( 6073): 1194
CrossRef Google scholar
[74]
Pardee K , Green AA , Ferrante T , Cameron DE , DaleyKeyser A , Yin P , Collins JJ . Paper-based synthetic gene networks. Cell, 2014, 159( 4): 940– 954
CrossRef Google scholar
[75]
Pardee K , Green AA , Takahashi MK , Braff D , Lambert G , Lee JW , Ferrante T , Ma D , Donghia N , Fan M , Daringer NM , Bosch I , Dudley DM , O'Connor DH , Gehrke L , Collins JJ . Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell, 2016, 165( 5): 1255– 1266
CrossRef Google scholar
[76]
Pothoulakis G , Ceroni F , Reeve B , Ellis T . The spinach RNA aptamer as a characterization tool for synthetic biology. ACS Synth Biol, 2014, 3( 3): 182– 187
CrossRef Google scholar
[77]
Purnick PEM , Weiss R . The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol, 2009, 10( 6): 410– 422
[78]
Qiu M , Khisamutdinov E , Zhao Z , Pan C , Choi J-W , Leontis NB , Guo P . RNA nanotechnology for computer design and in vivo computation. Philos Trans AMath Phys Eng Sci, 2013, 371( 2000): 20120310
CrossRef Google scholar
[79]
Ray PS , Jia J , Yao P , Majumder M , Hatzoglou M , Fox PL . A stress-responsive RNA switch regulates VEGFA expression. Nature, 2009, 457( 7231): 915– 919
CrossRef Google scholar
[80]
Regev A , Shapiro E . Cellular abstractions: cells as computation. Nature, 2002, 419( 6905): 343– 343
CrossRef Google scholar
[81]
Saper G , Hess H . Synthetic systems powered by biological molecular motors. Chem Rev, 2020, 120( 1): 288– 309
CrossRef Google scholar
[82]
Shapiro BA , Bindewald E , Kasprzak W , Yingling Y . Protocols for the in silico design of RNA nanostructures. Methods Mol Biol, 2008, 474 : 93– 115
[83]
Shi Y-Z , Wu Y-Y , Wang F-H , Tan Z-J . RNA structure prediction: progress and perspective. ChinesePhys B, 2014, 23( 7): 078701
CrossRef Google scholar
[84]
Shibata T , Fujita Y , Ohno H , Suzuki Y , Hayashi K , Komatsu KR , Kawasaki S , Hidaka K , Yonehara S , Sugiyama H , Endo M , Saito H . Protein-driven RNA nanostructured devices that function in vitro and control mammalian cell fate. Nat Commun, 2017, 8( 1): 540
CrossRef Google scholar
[85]
Shu D , Li H , Shu Y , Xiong GF , Carson WE , Haque F , Xu R , Guo PX . Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. Acs Nano, 2015, 9( 10): 9731– 9740
CrossRef Google scholar
[86]
Shu D , Shu Y , Haque F , Abdelmawla S , Guo P . Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat Nano, 2011, 6( 10): 658– 667
CrossRef Google scholar
[87]
Sigel RKO , Pyle AM . Alternative roles for metal ions in enzyme catalysis and the implications for ribozyme chemistry. Chem Rev, 2007, 107( 1): 97– 113
CrossRef Google scholar
[88]
Simmel FC , Yurke B , Singh HR . Principles and applications of nucleic acid strand displacement reactions. Chem Rev, 2019, 119( 10): 6326– 6369
[89]
Slomovic S , Pardee K , Collins JJ . Synthetic biology devices for in vitro and in vivo diagnostics. Proc Natl Acad Sci US A, 2015, 112( 47): 14429– 14435
CrossRef Google scholar
[90]
Song WJ , Strack RL , Svensen N , Jaffrey SR . Plug-and-play fluorophores extend the spectral properties of spinach. J Am Chem Soc, 2014, 136( 4): 1198– 1201
CrossRef Google scholar
[91]
Takahashi MK , Tan X , Dy AJ , Braff D , Akana RT , Furuta Y , Donghia N , Ananthakrishnan A , Collins JJ . A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat Commun, 2018, 9( 1): 3347
CrossRef Google scholar
[92]
Tang WX , Hu JH , Liu DR . Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat Commun, 2017, 8 : 15939
CrossRef Google scholar
[93]
Thavarajah W , Silverman AD , Verosloff MS , Kelley-Loughnane N , Jewett MC , Lucks JB . Point-of-use detection of environmental fluoride via a cell-free riboswitch-based biosensor. Acs Synth Biol, 2020, 9( 1): 10– 18
CrossRef Google scholar
[94]
Ueno K , Sakai Y , Shono C , Sakamoto I , Tsukakoshi K , Hihara Y , Sode K , Ikebukuro K . Applying a riboregulator as a new chromosomal gene regulation tool for higher glycogen production in Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol, 2017, 101( 23-24): 8465– 8474
CrossRef Google scholar
[95]
Ueno K , Tsukakoshi K , Ikebukuro K . Riboregulator elements as tools to engineer gene expression in cyanobacteria. Appl Microbiol Biotechnol, 2018, 102( 18): 7717– 7723
CrossRef Google scholar
[96]
Wang F , Lv H , Li Q , Li J , Zhang XL , Shi JY , Wang LH , Fan CH . Implementing digital computing with DNA-based switching circuits. Nat Commun, 2020, 11( 1): 121
CrossRef Google scholar
[97]
Wang J , Wang H , Yang L , Lv L , Zhang Z , Ren B , Dong L , Li N . A novel riboregulator switch system of gene expression for enhanced microbial production of succinic acid. J Ind Microbiol Biotechnol, 2018a, 45( 4): 253– 269
CrossRef Google scholar
[98]
Wang XW , Hu LF , Hao J , Liao LQ , Chiu YZ , Shi M , Wang YM . A microRNA-inducible CRISPR-Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat Cell Biol, 2019, 21( 4): 522– 530
CrossRef Google scholar
[99]
Wang ZJ , Luo Y , Xie XD , Hu XJ , Song HY , Zhao Y , Shi JY , Wang LH , Glinsky G , Chen N , Lal R , Fan CH . In situ spatial complementation of aptamer-mediated recognition enables live-cell imaging of native RNA transcripts in real time. Angew Chem Int Ed Engl, 2018b, 57( 4): 972– 976
CrossRef Google scholar
[100]
Winkler W , Nahvi A , Breaker RR . Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature, 2002, 419( 6910): 952– 956
CrossRef Google scholar
[101]
Winkler WC , Breaker RR . Regulation of bacterial gene expression by riboswitches. Ann Rev Microbiol, 2005, 59 : 487– 517
CrossRef Google scholar
[102]
Yu JW , Liu ZY , Jiang W , Wang GS , Mao CD . De novo design of an RNA tile that self-assembles into a homo-octameric nanoprism. Nat Commun, 2015, 6 : 5724
CrossRef Google scholar
[103]
Yuan Y , Gu Z , Yao C , Luo D , Yang DY . Nucleic acid-based functional nanomaterials as advanced cancer therapeutics. Small, 2019, 15( 26): e1900172
CrossRef Google scholar
[104]
Zalatan JG , Lee ME , Almeida R , Gilbert LA , Whitehead EH , La Russa M , Tsai JC , Weissman JS , Dueber JE , Qi LS , Lim WA . Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 2015, 160( 1-2): 339– 350
CrossRef Google scholar
[105]
Zhu CS , Liu CY , Qiu XY , Xie SS , Li WY , Zhu LY , Zhu LY . Novel nucleic acid detection strategies based on CRISPR-Cas systems: from construction to application. Biotechnol Bioeng, 2020, 117( 7): 2279– 2294
CrossRef Google scholar

Acknowledgements

This work was supported by the National Key Research and Development Program (2020YFA0908900), the National Natural Science Foundation of China (21775157, 21775104, 11705270, 21834007), the Shanghai Municipal Science and Technology Commission (19JC1410300), the LU JIAXI International team program supported by the K.C. Wong Education Foundation, the National Major Special Project for the Development of Transgenic Organisms (2018ZX08011-04B), the Open Large Infrastructure Research and the Youth Innovation Promotion Association of CAS (2012205, 2016236).

Compliance with ethics guidelines

Conflict of interest Kai Jiao, Yaya Hao, Fei Wang, Lihua Wang, Chunhai Fan and Jiang Li declare that they have no conflict of interest. Human and animal rights and informed consent This article does not contain any studies with human or animal subjects performed by any of the authors. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2021 The Author(s) 2021. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
PDF(22169 KB)

Accesses

Citations

Detail

Sections
Recommended

/