
Nanozymes with bioorthogonal reaction for intelligence nanorobots
Si Sun, Xinzhu Chen, Jing Chen, Junying Wang, Xiao-dong Zhang
Biophysics Reports ›› 2021, Vol. 7 ›› Issue (1) : 8-20.
Nanozymes with bioorthogonal reaction for intelligence nanorobots
Bioorthogonal reactions have attained great interest and achievements in various fields since its first appearance in 2003. Compared to traditional chemical reactions, bioorthogonal chemical reactions mediated by transition metals catalysts can occur under physiological conditions in the living system without interfering with or damaging other biochemical events happening simultaneously. The idea of using nanomachines to perform precise and specific tasks in living systems is regarded as the frontier in nanomedicine. Bioorthogonal chemical reactions and nanozymes have provided new potential and strategies for nanomachines used in biomedical fields such as drug release, imaging, and bioengineering. Nanomachines, also called as intelligence nanorobots, based on nanozymes with bioorthogonal reactions show better biocompatibility and water solubility in living systems and perform controlled and adjustable stimuli-triggered response regarding to different physiological environments. In this review, we review the definition and development of bioorthogonal chemical reactions and describe the basic principle of bioorthogonal nanozymes fabrication. We also review several controlled and adjustable stimuli-triggered intelligence nanorobots and their potential in therapeutic and engineered applications. Furthermore, we summarize the challenges in the use of intelligence nanorobots based on nanozymes with bioorthogonal chemical reactions and propose promising vision in smart nanodevices along this appealing avenue of research.
Nanozymes / Bioorthogonal reaction / Nanorobotics
[1] |
Adam C , Perez-Lopez AM , Hamilton L , Rubio-Ruiz B , Bray TL , Sieger D , Brennan PM , Unciti-Broceta A . Bioorthogonal uncaging of the active metabolite of irinotecan by palladium-functionalized microdevices. Chemistry, 2018, 24( 63): 16783– 16790
CrossRef
Google scholar
|
[2] |
Anhauser L , Huwel S , Zobel T , Rentmeister A . Multiple covalent fluorescence labeling of eukaryotic mRNA at the poly(A) tail enhances translation and can be performed in living cells. Nucleic Acids Res, 2019, 47( 7): e42
CrossRef
Google scholar
|
[3] |
Bertozzi CR . A decade of bioorthogonal chemistry. Acc Chem Res, 2011, 44( 9): 651– 653
CrossRef
Google scholar
|
[4] |
Bildstein L , Dubernet C , Couvreur P . Prodrug-based intracellular delivery of anticancer agents. Adv Drug Deliver Rev, 2011, 63( 1-2): 3– 23
CrossRef
Google scholar
|
[5] |
Boyce M , Bertozzi CR . Bringing chemistry to life. Nat Methods, 2011, 8( 8): 638– 642
CrossRef
Google scholar
|
[6] |
Canaparo R , Foglietta F , Giuntini F , Della Pepa C , Dosio F , Serpe L . Recent developments in antibacterial therapy: focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles. Molecules, 2019, 24( 10): 1991
CrossRef
Google scholar
|
[7] |
Cao-Milán R , Gopalakrishnan S , He LD , Huang R , Wang L-S , Castellanos L , Luther DC , Landis RF , Makabenta JMV , Li C-H , Zhang X , Scaletti F , Vachet RW , Rotello VM . Thermally gated bio-orthogonal nanozymes with supramolecularly confined porphyrin catalysts for antimicrobial uses. Chem, 2020, 6( 5): 1113– 1124
CrossRef
Google scholar
|
[8] |
Carell T , Vrabel M . Bioorthogonal chemistry-introduction and overview. Top Curr Chem, 2016, 374( 1): 9
CrossRef
Google scholar
|
[9] |
Carrico IS , Carlson BL , Bertozzi CR . Introducing genetically encoded aldehydes into proteins. Nat Chem Biol, 2007, 3( 6): 321– 322
CrossRef
Google scholar
|
[10] |
Chatterjee A , Ward TR . Recent advances in the palladium catalyzed Suzuki–Miyaura cross-coupling reaction in water. Catal Lett, 2016, 146( 4): 820– 840
CrossRef
Google scholar
|
[11] |
Chu Y , Oum YH , Carrico IS . Surface modification via strain-promoted click reaction facilitates targeted lentiviral transduction. Virology, 2016, 487
CrossRef
Google scholar
|
[12] |
Clavadetscher J , Hoffmann S , Lilienkampf A , Mackay L , Yusop RM , Rider SA , Mullins JJ , Bradley M . Copper catalysis in living systems and in situ drug synthesis. Angew Chem Int Ed, 2016, 55( 50): 15662– 15666
CrossRef
Google scholar
|
[13] |
Das R , Landis RF , Tonga GY , Cao-Milan R , Luther DC , Rotello VM . Control of intra-versus extracellular bioorthogonal catalysis using surface-engineered nanozymes. ACS Nano, 2019, 13( 1): 229– 235
CrossRef
Google scholar
|
[14] |
Destito P , Sousa-Castillo A , Couceiro JR , López F , Mascareñas JL . Hollow nanoreactors for Pd-catalyzed Suzuki−Miyaura couplings and O-propargyl cleavage reactions in bio-relevant aqueous media. Chem Sci, 2019, 10( 9): 2598– 2603
CrossRef
Google scholar
|
[15] |
Devaraj NK . The future of bioorthogonal chemistry. ACS Cent Sci, 2018, 4( 8): 952– 959
CrossRef
Google scholar
|
[16] |
Dong YS , Tu YL , Wang KW , Xu C , Yuan Y , Wang J . A general strategy for macrotheranostic prodrug activation: synergy between the acidic tumor microenvironment and bioorthogonal chemistry. Angew Chem Int Ed, 2020, 59( 18): 7168– 7172
CrossRef
Google scholar
|
[17] |
Eda S , Nasibullin I , Vong K , Kudo N , Yoshida M , Kurbangalieva A , Tanaka K . Biocompatibility and therapeutic potential of glycosylated albumin artificial metalloenzymes. Nat Catal, 2019, 2( 9): 780– 792
CrossRef
Google scholar
|
[18] |
Ellen M S . From mechanism to mouse: a tale of two bioorthogonal reactions. Acc Chem Res, 2011, 44( 9): 666– 676
CrossRef
Google scholar
|
[19] |
Ghosh A , Fischer P . Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett, 2009, 9( 6): 2243– 2245
CrossRef
Google scholar
|
[20] |
Grammel M , Hang HC . Chemical reporters for biological discovery. Nat Chem Biol, 2013, 9( 8): 475– 484
CrossRef
Google scholar
|
[21] |
Gupta A , Das R , Yesilbag Tonga G , Mizuhara T , Rotello VM . Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections. ACS Nano, 2018, 12( 1): 89– 94
CrossRef
Google scholar
|
[22] |
Hang HC , Yu C , Kato DL , Bertozzi CR . A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. Proc Natl Acad Sci USA, 2003, 100( 25): 14846– 14851
CrossRef
Google scholar
|
[23] |
Hoop M , Ribeiro AS , Rösch D , Weinand P , Mendes N , Mushtaq F , Chen X-Z , Shen Y , Pujante CF , Puigmartí-Luis J , Paredes J , Nelson BJ , Pêgo AP , Pané S . Mobile magnetic nanocatalysts for bioorthogonal targeted cancer therapy. Adv Funct Mater, 2018, 28( 25): 1705920
CrossRef
Google scholar
|
[24] |
Jeschek M , Reuter R , Heinisch T , Trindler C , Klehr J , Panke S , Ward TR . Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature, 2016, 537( 7622): 661– 665
CrossRef
Google scholar
|
[25] |
Ji X , Pan Z , Yu B , De La Cruz LK , Zheng Y , Ke B , Wang B . Click and release: bioorthogonal approaches to "on-demand" activation of prodrugs. Chem Soc Rev, 2019, 48( 4): 1077– 1094
CrossRef
Google scholar
|
[26] |
Jiang X , Wang R . Recent developments in catalytic asymmetric inverse-electron-demand Diels–Alder reaction. Chem Rev, 2013, 113( 7): 5515– 5546
CrossRef
Google scholar
|
[27] |
Kalluri R , LeBleu VS . The biology, function, and biomedical applications of exosomes. Science, 2020, 367( 6478): eaau6977
CrossRef
Google scholar
|
[28] |
Kenry B . Bio-orthogonal click chemistry for in vivo bioimaging. Trends Chem, 2019, 1( 8): 763– 778
CrossRef
Google scholar
|
[29] |
Kim J , Bertozzi CR . A bioorthogonal reaction of N-oxide and boron reagents. Angew Chem Int Ed, 2015, 54( 52): 15777– 15781
CrossRef
Google scholar
|
[30] |
Lang K , Chin JW . Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem Rev, 2014, 114( 9): 4764– 4806
CrossRef
Google scholar
|
[31] |
Laughlin ST , Baskin JM , Amacher SL , Bertozzi CR . In vivo imaging of membrane-associated glycans in developing zebrafish. Science, 2008, 320( 5876): 664– 667
CrossRef
Google scholar
|
[32] |
Li B , Liu P , Wu H , Xie X , Chen Z , Zeng F , Wu S . A bioorthogonal nanosystem for imaging and in vivo tumor inhibition. Biomaterials, 2017, 138
CrossRef
Google scholar
|
[33] |
Li J , Chen PR . Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat Chem Biol, 2016, 12( 3): 129– 137
CrossRef
Google scholar
|
[34] |
Li Z , Shen D , Hu S , Su T , Huang K , Liu F , Hou L , Cheng K . Pretargeting and bioorthogonal click chemistry-mediated endogenous stem cell homing for heart repair. ACS Nano, 2018, 12( 12): 12193– 12200
CrossRef
Google scholar
|
[35] |
Lin YA , Chalker JM , Floyd N , Bernardes GJL , Davis BG . Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. J Am Chem Soc, 2008, 130( 30): 9642– 9643
CrossRef
Google scholar
|
[36] |
Ma Y , Wang M , Li W , Zhang Z , Zhang X , Tan T , Zhang XE , Cui Z . Live cell imaging of single genomic loci with quantum dot-labeled TALEs. Nat Commun, 2017, 8
CrossRef
Google scholar
|
[37] |
Munoz J , Heck AJ . From the human genome to the human proteome. Angew Chem Int Ed, 2014, 53( 41): 10864– 10866
CrossRef
Google scholar
|
[38] |
Nagamune T . Biomolecular engineering for nanobio/bionanotechnology. Nano Converg, 2017, 4( 1): 9
CrossRef
Google scholar
|
[39] |
Ngo AH , Bose S , Do LH . Intracellular chemistry: integrating molecular inorganic catalysts with living systems. Chemistry, 2018, 24( 42): 10584– 10594
CrossRef
Google scholar
|
[40] |
Okamoto Y , Kojima R , Schwizer F , Bartolami E , Heinisch T , Matile S , Fussenegger M , Ward TR . A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell. Nat Commun, 2018, 9( 1): 1943
CrossRef
Google scholar
|
[41] |
Oliveira BL , Guo Z , Bernardes GJL . Inverse electron demand Diels–Alder reactions in chemical biology. Chem Soc Rev, 2017, 46( 16): 4895– 4950
CrossRef
Google scholar
|
[42] |
Perez-Lopez AM , Rubio-Ruiz B , Sebastian V , Hamilton L , Adam C , Bray TL , Irusta S , Brennan PM , Lloyd-Jones GC , Sieger D , Santamaria J , Unciti-Broceta A . Gold-triggered uncaging chemistry in living systems. Angew Chem Int Ed, 2017, 56( 41): 12548– 12552
CrossRef
Google scholar
|
[43] |
Prescher JA , Bertozzi CR . Chemistry in living systems. Nat Chem Biol, 2005, 1( 1): 13– 21
CrossRef
Google scholar
|
[44] |
Prescher JA , Dube DH , Bertozzi CR . Chemical remodelling of cell surfaces in living animals. Nature, 2004, 430( 7002): 873– 877
CrossRef
Google scholar
|
[45] |
Ramil CP , Lin Q . Bioorthogonal chemistry: strategies and recent developments. Chem Commun, 2013, 49( 94): 11007– 11022
CrossRef
Google scholar
|
[46] |
Rebelein JG , Ward TR . In vivo catalyzed new-to-nature reactions. Curr Opin Biotechnol, 2018, 53
CrossRef
Google scholar
|
[47] |
Ritter C , Nett N , Acevedo-Rocha CG , Lonsdale R , Kraling K , Dempwolff F , Hoebenreich S , Graumann PL , Reetz MT , Meggers E . Bioorthogonal enzymatic activation of caged compounds. Angew Chem Int Ed, 2015, 54( 45): 13440– 13443
CrossRef
Google scholar
|
[48] |
Sancho-Albero M , Rubio-Ruiz B , Perez-Lopez AM , Sebastian V , Martin-Duque P , Arruebo M , Santamaria J , Unciti-Broceta A . Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis. Nat Catal, 2019, 2( 10): 864– 872
CrossRef
Google scholar
|
[49] |
Sasmal PK , Streu CN , Meggers E . Metal complex catalysis in living biological systems. Chem Commun, 2013, 49( 16): 1581– 1587
CrossRef
Google scholar
|
[50] |
Saxon E , Bertozzi CR . Cell surface engineering by a modified Staudinger reaction. Science, 2000, 287( 5460): 2007– 2010
CrossRef
Google scholar
|
[51] |
Sletten EM , Bertozzi CR . Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed, 2009, 48( 38): 6974– 6998
CrossRef
Google scholar
|
[52] |
Soto F , Wang J , Ahmed R , Demirci U . Medical micro/nanorobots in precision medicine. Adv Sci, 2020,
CrossRef
Google scholar
|
[53] |
Szponarski M , Schwizer F , Ward TR , Gademann K . On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme. Communs Chem, 2018, 1( 84): 1– 10
|
[54] |
Taran F , Porte K , Renoux B , Peraudeau E , Clarhaut J , Eddhif B , Poinot P , Gravel E , Doris E , Wijkhuisen A . Controlled release of micelle payload via sequential enzymatic and bioorthogonal reactions in living systems. Angew Chem Int Ed, 2019, 58( 19): 6366– 6370
CrossRef
Google scholar
|
[55] |
Tonga GY , Jeong Y , Duncan B , Mizuhara T , Mout R , Das R , Kim ST , Yeh YC , Yan B , Hou S , Rotello VM . Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat Chem, 2015, 7( 7): 597– 603
CrossRef
Google scholar
|
[56] |
Unciti-Broceta A . Rise of the nanobots. Nat Chem, 2015, 7( 7): 538– 539
CrossRef
Google scholar
|
[57] |
Volker T , Meggers E . Transition-metal-mediated uncaging in living human cells — an emerging alternative to photolabile protecting groups. Curr Opin Chem Biol, 2015, 25
CrossRef
Google scholar
|
[58] |
Vong K, Tanaka K (2020) In vivo metal catalysis in living biological systems. In: Tanaka K and Vong K (eds). Handbook of in vivo chemistry in mice: from lab to living system. Wiley-VCH Verlag GmbH & Co. KgaA, pp309-353. https://doi.org/10.1002/9783527344406.ch11
|
[59] |
Wang F , Zhang Y , Du Z , Ren J , Qu X . Designed heterogeneous palladium catalysts for reversible light-controlled bioorthogonal catalysis in living cells. Nat Commun, 2018, 9( 1): 1209
CrossRef
Google scholar
|
[60] |
Wang J , Cheng B , Li J , Zhang Z , Hong W , Chen X , Chen PR . Chemical remodeling of cell-surface sialic acids through a palladium-triggered bioorthogonal elimination reaction. Angew Chem Int Ed, 2015, 54( 18): 5364– 5368
CrossRef
Google scholar
|
[61] |
Wang X , Liu Y , Fan X , Wang J , Ngai WSC , Zhang H , Li J , Zhang G , Lin J , Chen PR . Copper-triggered bioorthogonal cleavage reactions for reversible protein and cell surface modifications. J Am Chem Soc, 2019, 141( 43): 17133– 17141
CrossRef
Google scholar
|
[62] |
Weiss JT , Dawson JC , Fraser C , Rybski W , Torres-Sanchez C , Bradley M , Patton EE , Carragher NO , Unciti-Broceta A . Development and bioorthogonal activation of palladium-labile prodrugs of gemcitabine. J Med Chem, 2014a, 57( 12): 5395– 5404
CrossRef
Google scholar
|
[63] |
Weiss JT , Dawson JC , Macleod KG , Rybski W , Fraser C , Torres-Sanchez C , Patton EE , Bradley M , Carragher NO , Unciti-Broceta A . Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nat Commun, 2014b, 5
CrossRef
Google scholar
|
[64] |
Wu J , Wang X , Wang Q , Lou Z , Li S , Zhu Y , Qin L , Wei H . Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev, 2019, 48( 4): 1004– 1076
CrossRef
Google scholar
|
[65] |
Wu P , Shui W , Carlson BL , Hu N , Rabuka D , Lee J , Bertozzi CR . Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc Natl Acad Sci USA, 2009, 106( 9): 3000– 3005
CrossRef
Google scholar
|
[66] |
Xu L , Raabe M , Zegota MM , Nogueira JCF , Chudasama V , Kuan SL , Weil T . Site-selective protein modification via disulfide rebridging for fast tetrazine/trans-cyclooctene bioconjugation. Org Biomol Chem, 2020, 18( 6): 1140– 1147
CrossRef
Google scholar
|
[67] |
Yan T , Li F , Qi S , Tian J , Tian R , Hou J , Luo Q , Dong Z , Xu J , Liu J . Light-responsive vesicles for enantioselective release of chiral drugs prepared from a supra-amphiphilic M-helix. Chem Commun, 2020, 56( 1): 149– 152
CrossRef
Google scholar
|
[68] |
Yao QX , Lin F , Fan XY , Wang Y , Liu Y , Liu Z , Jiang X , Chen PR , Gao Y . Synergistic enzymatic and bioorthogonal reactions for selective prodrug activation in living systems. Nat Commun, 2018, 9( 1): 5032
CrossRef
Google scholar
|
[69] |
Yarin
CrossRef
Google scholar
|
[70] |
Yusop RM , Unciti-Broceta A , Johansson EM , Sanchez-Martin RM , Bradley M . Palladium-mediated intracellular chemistry. Nat Chem, 2011, 3( 3): 239– 243
CrossRef
Google scholar
|
[71] |
Zhang C , Zhou X , Yao T , Tian Z , Zhou D . Precision fluorescent labeling of an adeno-associated virus vector to monitor the viral infection pathway. Biotechnol J, 2018, 13( 4): e1700374
CrossRef
Google scholar
|
[72] |
Zhang G , Zheng S , Liu H , Chen PR . Illuminating biological processes through site-specific protein labeling. Chem Soc Rev, 2015, 44( 11): 3405– 3417
CrossRef
Google scholar
|
[73] |
Zhang X , Liu Y , Gopalakrishnan S , Castellanos-Garcia L , Li G , Malassine M , Uddin I , Huang R , Luther DC , Vachet RW , Rotello VM . Intracellular activation of bioorthogonal nanozymes through endosomal proteolysis of the protein corona. ACS Nano, 2020, 14( 4): 4767– 4773
CrossRef
Google scholar
|
[74] |
Zheng M , Zheng L , Zhang P , Li J , Zhang Y . Development of bioorthogonal reactions and their applications in bioconjugation. Molecules, 2015, 20( 2): 3190– 3205
CrossRef
Google scholar
|
[75] |
Zheng Y , Ji X , Yu B , Ji K , Gallo D , Csizmadia E , Zhu M , Choudhury MR , De La Cruz LKC , Chittavong V , Pan Z , Yuan Z , Otterbein LE , Wang B . Enrichment-triggered prodrug activation demonstrated through mitochondria-targeted delivery of doxorubicin and carbon monoxide. Nat Chem, 2018, 10( 7): 787– 794
CrossRef
Google scholar
|
/
〈 |
|
〉 |