A quantitative method to assess bacterial adhesion using recombinant bioluminescent Pseudomonas aeruginosa

Lu Wang, Xinhua Qiao, Lei Gao, Chang Chen, Yi Wan

Biophysics Reports ›› 2021, Vol. 7 ›› Issue (1) : 55-70.

PDF(874 KB)
PDF(874 KB)
Biophysics Reports ›› 2021, Vol. 7 ›› Issue (1) : 55-70. DOI: 10.52601/bpr.2021.200043
RESEARCH ARTICLE
RESEARCH ARTICLE

A quantitative method to assess bacterial adhesion using recombinant bioluminescent Pseudomonas aeruginosa

Author information +
History +

Abstract

Bioluminescence technology has been widely used in the field of medical detection. The bioluminescent lux reporter system provides a non-invasive platform to monitor bacterial growth and expression in real time. This study aimed to establish a method for detecting bacterial adhesion on the surface of materials, including medical devices, by using recombinant bioluminescent Pseudomonas aeruginosa containing a lux reporter. By monitoring the growth and bioluminescent properties of the recombinant PAO1-lux strain, the optimal test conditions for bacterial adhesion detection in vitro were determined to be as follows: an initial inoculation density of 105 to 106 CFU/mL, M9 medium at a pH 6.2, an adhesion time of 6 h, and the collection of adherent bacteria by ultrasonic cleaning. The traditional CFU counting method and the bioluminescence method were compared, and the applicability of the new method was verified by testing the adhesion of bacteria on the surface of various materials. The validated bioluminescent strains could serve as strong candidates to be used as bacterial detection tools in applications such as bacterial adhesion evaluation as well as supplements and alternatives to traditional microbiological testing procedures. In addition, this method has the potential to enable the study of bacterial adhesion on the surface of inanimate objects and living tissues. With the development of this method and its wide applicability, it is expected to become a standard method for the detection of bacterial adhesion and the screening of anti-adhesion materials.

Graphical abstract

Keywords

Bacterial adhesion / PAO1-lux / Bioluminescence assay / Medical materials

Cite this article

Download citation ▾
Lu Wang, Xinhua Qiao, Lei Gao, Chang Chen, Yi Wan. A quantitative method to assess bacterial adhesion using recombinant bioluminescent Pseudomonas aeruginosa. Biophysics Reports, 2021, 7(1): 55‒70 https://doi.org/10.52601/bpr.2021.200043

References

[1]
AlLuhaybi KA , Alghaith GY , Moneib NA , Yassien MA . Generation of recombinant bioluminescent Escherichia coli for quantitative determination of bacterial adhesion. Pak J Pharm Sci, 2015, 28 : 1301– 1306
[2]
Anderson DJ , Podgorny K , Berrios-Torres SI , Bratzler DW , Dellinger EP , Greene L , Nyquist AC , Saiman L , Yokoe DS , Maragakis LL , Kaye KS . Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol, 2014, 35 : 605– 627
CrossRef Google scholar
[3]
Arciola CR , Campoccia D , Montanaro L . Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol, 2018, 16 : 397– 409
CrossRef Google scholar
[4]
Arciola CR , Campoccia D , Speziale P , Montanaro L , Costerton JW . Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials, 2012, 33 : 5967– 5982
[5]
Avci P , Karimi M , Sadasivam M , Antunes-Melo WC , Carrasco E , Hamblin MR . In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence, 2017, 9 : 28– 63
[6]
Azeredo J , Azevedo NF , Briandet R , Cerca N , Coenye T , Costa AR , Desvaux M , Di Bonaventura G , Hebraud M , Jaglic Z , Kačániová M , Knøchel S , Lourenço A , Mergulhão F , Meyer RL , Nychas G , Simões M , Tresse O , Sternberg C . Critical review on biofilm methods. Crit Rev Microbiol, 2017, 43 : 313– 351
CrossRef Google scholar
[7]
Badia JM , Casey AL , Petrosillo N , Hudson PM , Mitchell SA , Crosby C . Impact of surgical site infection on healthcare costs and patient outcomes: a systematic review in six European countries. J Hosp Infect, 2017, 96 : 1– 15
CrossRef Google scholar
[8]
Beilenhoff U , Biering H , Blum R , Brljak J , Cimbro M , Dumonceau JM , Hassan C , Jung M , Neumann C , Pietsch M , Pineau L , Ponchon T , Rejchrt S , Rey J-F , Schmidt V , Tillett J , van Hooft J . Prevention of multidrug-resistant infections from contaminated duodenoscopes: position statement of the European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastroenterology Nurses and Associates (ESGENA). Endoscopy, 2017, 49 : 1098– 1106
CrossRef Google scholar
[9]
Bruckbauer ST , Kvitko BH , Karkhoff-Schweizer RR , Schweizer HP . Tn5/7-lux: a versatile tool for the identification and capture of promoters in gram-negative bacteria. BMC Microbiol, 2015, 15 : 17
CrossRef Google scholar
[10]
Bryers JD . Medical biofilms. Biotechnol Bioeng, 2008, 100 : 1– 18
CrossRef Google scholar
[11]
Campoccia D , Visai L , Reno F , Cangini I , Rizzi M , Poggi A , Montanaro L , Rimondini L , Arciola CR . Bacterial adhesion to poly-(D,L)lactic acid blended with vitamin E: toward gentle anti-infective biomaterials. J Biomed Mater Res A, 2015, 103 : 1447– 1458
CrossRef Google scholar
[12]
Casey A , Karpanen T , Nightingale P , Cook M , Elliott T . Microbiological comparison of a silver-coated and a non-coated needleless intravascular connector in clinical use. J Hosp Infect, 2012, 80 : 299– 303
CrossRef Google scholar
[13]
Catto C , Cappitelli F . Testing anti-biofilm polymeric surfaces: where to start?. Int J Mol Sci, 2019, 20( 15): 3794
CrossRef Google scholar
[14]
Chen G , Srinivasa Ranga VP , Mao Y , Chen K , Qiao H . Impact of lux gene insertion on bacterial surface properties and transport. Res Microbiol, 2008, 159 : 145– 151
CrossRef Google scholar
[15]
Cho SH , Warit S , Wan B , Hwang CH , Pauli GF , Franzblau SG . Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2007, 51 : 1380– 1385
CrossRef Google scholar
[16]
Darge A , Kahsay AG , Hailekiros H , Niguse S , Abdulkader M . Bacterial contamination and antimicrobial susceptibility patterns of intensive care units medical equipment and inanimate surfaces at Ayder Comprehensive Specialized Hospital, Mekelle, Northern Ethiopia. BMC Res Notes, 2019, 12 : 621
CrossRef Google scholar
[17]
Desrousseaux C , Sautou V , Descamps S , Traore O . Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J Hosp Infect, 2013, 85 : 87– 93
CrossRef Google scholar
[18]
Donlan RM , Costerton JW . Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev, 2002, 15 : 167– 193
CrossRef Google scholar
[19]
Dostalek P , Branyik T . Prospects for rapid bioluminescent detection methods in the food industry: a review. Czech J Food Sci, 2018, 23 : 85– 92
[20]
Flemming CA , Lee H , Trevors JT . Bioluminescent most-probable-number method to enumerate lux-marked Pseudomonas aeruginosa UG2Lr in soil. Appl Environ Microbiol, 1994, 60 : 3458– 3461
CrossRef Google scholar
[21]
Golding GR , Sparling R , Kelly CA . Effect of pH on intracellular accumulation of trace concentrations of Hg(Ⅱ) in Escherichia coli under anaerobic conditions, as measured using a mer-lux bioreporter. Appl Environ Microbiol, 2008, 74 : 667– 675
CrossRef Google scholar
[22]
Guglielmetti S , Santala V , Mangayil R , Ciranna A , Karp MT . O2-requiring molecular reporters of gene expression for anaerobic microorganisms. Biosens Bioelectron, 2019, 123 : 1– 6
CrossRef Google scholar
[23]
Haney EF , Trimble MJ , Cheng JT , Valle Q , Hancock REW . Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules, 2018, 8( 2): 29
CrossRef Google scholar
[24]
Harber MJ , Mackenzie R , Asscher AW . A rapid bioluminescence method for quantifying bacterial adhesion to polystyrene. J Gen Microbiol, 1983, 129 : 621– 632
[25]
Hoang TT , Kutchma AJ , Becher A , Schweizer HP . Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid, 2000, 43 : 59– 72
CrossRef Google scholar
[26]
Honraet K , Goetghebeur E , Nelis HJ . Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Methods, 2005, 63 : 287– 295
CrossRef Google scholar
[27]
Hook AL , Chang CY , Yang J , Luckett J , Cockayne A , Atkinson S , Mei Y , Bayston R , Irvine DJ , Langer R , Anderson DG , Williams P , Davies MC , Alexander MR . Combinatorial discovery of polymers resistant to bacterial attachment. Nat Biotechnol, 2012, 30 : 868– 875
CrossRef Google scholar
[28]
Hsu LC , Fang J , Borca-Tasciuc DA , Worobo RW , Moraru CI . Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Appl Environ Microbiol, 2013, 79 : 2703– 2712
CrossRef Google scholar
[29]
Ishikawa M , Shigemori K , Suzuki A , Hori K . Evaluation of adhesiveness of Acinetobacter sp. Tol 5 to abiotic surfaces. J Biosci Bioeng, 2012, 113 : 719– 725
[30]
Johnson JR , Kuskowski MA , Wilt TJ . Systematic review: antimicrobial urinary catheters to prevent catheter-associated urinary tract infection in hospitalized patients. Ann Intern Med, 2006, 144 : 116– 126
CrossRef Google scholar
[31]
Kadurugamuwa JL , Sin L , Albert E , Yu J , Francis K , DeBoer M , Rubin M , Bellinger-Kawahara C , Parr TR , J r. , Contag PR . Direct continuous method for monitoring biofilm infection in a mouse model. Infect Immun, 2003, 71 : 882– 890
CrossRef Google scholar
[32]
Kodjikian L , Casoli-Bergeron E , Malet F , Janin-Manificat H , Freney J , Burillon C , Colin J , Steghens JP . Bacterial adhesion to conventional hydrogel and new silicone-hydrogel contact lens materials. Graefes Arch Clin Exp Ophthalmol, 2008, 246 : 267– 273
CrossRef Google scholar
[33]
Meireles A , Gonçalves AL , Gomes IB , Chaves Simões L , Simões M . Methods to study microbial adhesion on abiotic surfaces. AIMS Bioeng, 2015, 2 : 297– 309
CrossRef Google scholar
[34]
Liang H , Li L , Dong Z , Surette MG , Duan K . The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. J Bacteriol, 2008, 190 : 6217– 6227
CrossRef Google scholar
[35]
Liu J , Li W , Zhu X , Zhao H , Lu Y , Zhang C , Lu Z . Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Appl Microbiol Biotechnol, 2019, 103 : 4565– 4574
CrossRef Google scholar
[36]
Lo J , Lange D , Chew BH . Ureteral stents and Foley catheters-associated urinary tract infections: the role of coatings and materials in infection prevention. Antibiotics (Basel), 2014, 3 : 87– 97
CrossRef Google scholar
[37]
Martin KL, An YH (2000) Basic equipment and microbiological techniques for studying bacterial adhesion. In: Handbook of bacterial adhesion: principles, methods, and applications. An YH, Friedman RJ (eds.) pp. 103-120. Humana Press: Totowa, NJ
[38]
Mosuela R , Mustafa S , Gould S , Hassanin H , Alany RG , ElShaer A . Adherence of Pseudomonas aeruginosa onto surfactant-laden contact lenses. Colloids Surf B Biointerfaces, 2018, 163 : 91– 99
CrossRef Google scholar
[39]
Muñoz-Bonilla A , Fernández-García M . Polymeric materials with antimicrobial activity. Prog Polym Sci, 2012, 37 : 281– 339
CrossRef Google scholar
[40]
Neu TR . Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev, 1996, 60 : 151– 166
CrossRef Google scholar
[41]
Neubeiser A , Bonsignore M , Tafelski S , Alefelder C , Schwegmann K , Ruden H , Geffers C , Nachtigall I . Mortality attributable to hospital acquired infections with multidrug-resistant bacteria in a large group of German hospitals. J Infect Public Health, 2020, 13 : 204– 210
CrossRef Google scholar
[42]
Nyhan L , Begley M , Johnson N , Callanan M . An evaluation of Lux technology as an alternative methodology to determine growth rates of Listeria in laboratory media and complex food matrices. Int J Food Microbiol, 2020, 317 : 108442
CrossRef Google scholar
[43]
Onaizi SA , Leong SS . Tethering antimicrobial peptides: current status and potential challenges. Biotechnol Adv, 2011, 29 : 67– 74
CrossRef Google scholar
[44]
Pantanella F , Berlutti F , Passeri D , Sordi D , Frioni A , Natalizi T , Terranova ML , Rossi M , Valenti P . Quantitative evaluation of bacteria adherent and in biofilm on single-wall carbon nanotube-coated surfaces. Interdiscip Perspect Infect Dis, 2011, 2011 : 1– 9
[45]
Park SB , White SB , Steadman CS , Cavinder CA , Willard ST , Ryan PL , Feugang JM . Real-time bioluminescence analysis of Escherichia coli O157:H7 survival on livestock meats stored fresh, cold, or frozen. J Food Prot, 2018, 81 : 1906– 1912
CrossRef Google scholar
[46]
Phillips-Jones MK . Bioluminescence (lux) expression in the anaerobe Clostridium perfringens. FEMS Microbiol Lett, 1993, 106 : 265– 270
CrossRef Google scholar
[47]
Pribaz JR , Bernthal NM , Billi F , Cho JS , Ramos RI , Guo Y , Cheung AL , Francis KP , Miller LS . Mouse model of chronic post-arthroplasty infection: noninvasive in vivo bioluminescence imaging to monitor bacterial burden for long-term study. J Orthop Res, 2012, 30 : 335– 340
CrossRef Google scholar
[48]
Robrish SA , Kemp CW , Bowen WH . Use of extractable adenosine triphosphate to estimate the viable cell mass in dental plaque samples obtained from monkeys. Appl Environ Microbiol, 1978, 35 : 743– 749
CrossRef Google scholar
[49]
Russotto V , Cortegiani A , Raineri SM , Giarratano A . Bacterial contamination of inanimate surfaces and equipment in the intensive care unit. J Intensive Care, 2015, 3 : 54
CrossRef Google scholar
[50]
Schweizer HP . Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol Microbiol, 1992, 6 : 1195– 1204
CrossRef Google scholar
[51]
Serrano C , Garcia-Fernandez L , Fernandez-Blazquez JP , Barbeck M , Ghanaati S , Unger R , Kirkpatrick J , Arzt E , Funk L , Turon P , del Campo A . Nanostructured medical sutures with antibacterial properties. Biomaterials, 2015, 52 : 291– 300
CrossRef Google scholar
[52]
Shah N , Naseby DC . Bioluminescence-based measurement of viability of Pseudomonas aeruginosa ATCC 9027 harbouring plasmid-based lux genes under the control of constitutive promoters. J Appl Microbiol, 2014, 117 : 1373– 1387
CrossRef Google scholar
[53]
Shah N , Naseby DC . Validation of constitutively expressed bioluminescent Pseudomonas aeruginosa as a rapid microbiological quantification tool. Biosens Bioelectron, 2015, 68 : 447– 453
CrossRef Google scholar
[54]
Smith RJ , Moule MG , Sule P , Smith T , Cirillo JD , Grunlan JC . Polyelectrolyte multilayer nanocoating dramatically reduces bacterial adhesion to polyester fabric. ACS Biomater Sci Eng, 2017, 3 : 1845– 1852
CrossRef Google scholar
[55]
Stepanovic S , Vukovic D , Dakic I , Savic B , Svabic-Vlahovic M . A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods, 2000, 40 : 175– 179
CrossRef Google scholar
[56]
Stickler D . Susceptibility of antibiotic-resistant Gram-negative bacteria to biocides: a perspective from the study of catheter biofilms. J Appl Microbiol, 2002, 92 : 163S– 170S
CrossRef Google scholar
[57]
Swartjes JJ , Veeregowda DH . Implications for directionality of nanoscale forces in bacterial attachment. Biophys Rep, 2015, 1 : 120– 126
CrossRef Google scholar
[58]
Tacconelli E , Smith G , Hieke K , Lafuma A , Bastide P . Epidemiology, medical outcomes and costs of catheter-related bloodstream infections in intensive care units of four European countries: literature- and registry-based estimates. J Hosp Infect, 2009, 72 : 97– 103
CrossRef Google scholar
[59]
Thorn RM , Nelson SM , Greenman J . Use of a bioluminescent Pseudomonas aeruginosa strain within an in vitro microbiological system, as a model of wound infection, to assess the antimicrobial efficacy of wound dressings by monitoring light production. Antimicrob Agents Chemother, 2007, 51 : 3217– 3224
CrossRef Google scholar
[60]
Wang L , Chen X , Guo X , Li J , Liu Q , Kang F , Wang X , Hu C , Liu H , Gong W , Zhuang W , Liu X , Wang J . Significant expansion and red-shifting of fluorescent protein chromophore determined through computational design and genetic code expansion. Biophys Rep, 2018a, 4( 5): 273– 285
CrossRef Google scholar
[61]
Wang X , Chi H , Li Q , Li W , Li J , Li B , Gao W , Zhang D , Sun Y , Yi L , Qu H , Wang Y , Li Z , Xia Z . Influence of antibiotic pressure on five plasmid-based bioluminescent gram-negative bacterial strains. Mol Imaging Biol, 2018b, 20 : 21– 26
CrossRef Google scholar
[62]
Weinstein RA , Darouiche RO . Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis, 2001, 33 : 1567– 1572
CrossRef Google scholar
[63]
Wilson C, Lukowicz R, Merchant S, Valquier-Flynn H, Caballero J, Sandoval J, Okuom M, Huber C, Brooks TD, Wilson E, Clement B, Wentworth CD, Holmes AE (2017) quantitative and qualitative assessment methods for biofilm growth: a mini-review. Res Rev J Eng Technol 6. http://www.rroij.com/open-access/quantitative-and-qualitative-assessment-methods-for-biofilm-growth-a-minireview-.pdf
[64]
Yousuf B , Ahire JJ , Dicks LM . Understanding the antimicrobial activity behind thin- and thick-rolled copper plates. Appl Microbiol Biotechnol, 2016, 100 : 5569– 5580
CrossRef Google scholar
[65]
Yu K , Lo JC , Yan M , Yang X , Brooks DE , Hancock RE , Lange D , Kizhakkedathu JN . Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials, 2017, 116 : 69– 81
CrossRef Google scholar
[66]
Zander ZK , Becker ML . Antimicrobial and antifouling strategies for polymeric medical devices. ACS Macro Lett, 2017, 7 : 16– 25
[67]
Zhao L , Chu PK , Zhang Y , Wu Z . Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater, 2009, 91 : 470– 480

Acknowledgements

This work was supported by the Shaanxi Academy of Sciences Project (2020k-26, 2018nk-01), the Foundation of Science and Technology in Shaanxi Province (2020TD-050), and the National Natural Science Foundation of China (31900893).

Compliance with ethics guidelines

Conflict of interest Lu Wang, Xinhua Qiao, Lei Gao, Chang Chen and Yi Wan declare that they have no conflict of interest. Human and animal rights and informed consent This article does not contain any studies with human or animal subjects performed by any of the authors. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2021 The Author(s) 2021. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
PDF(874 KB)

Accesses

Citations

Detail

Sections
Recommended

/