
A quantitative method to assess bacterial adhesion using recombinant bioluminescent Pseudomonas aeruginosa
Lu Wang, Xinhua Qiao, Lei Gao, Chang Chen, Yi Wan
Biophysics Reports ›› 2021, Vol. 7 ›› Issue (1) : 55-70.
A quantitative method to assess bacterial adhesion using recombinant bioluminescent Pseudomonas aeruginosa
Bioluminescence technology has been widely used in the field of medical detection. The bioluminescent lux reporter system provides a non-invasive platform to monitor bacterial growth and expression in real time. This study aimed to establish a method for detecting bacterial adhesion on the surface of materials, including medical devices, by using recombinant bioluminescent Pseudomonas aeruginosa containing a lux reporter. By monitoring the growth and bioluminescent properties of the recombinant PAO1-lux strain, the optimal test conditions for bacterial adhesion detection in vitro were determined to be as follows: an initial inoculation density of 105 to 106 CFU/mL, M9 medium at a pH 6.2, an adhesion time of 6 h, and the collection of adherent bacteria by ultrasonic cleaning. The traditional CFU counting method and the bioluminescence method were compared, and the applicability of the new method was verified by testing the adhesion of bacteria on the surface of various materials. The validated bioluminescent strains could serve as strong candidates to be used as bacterial detection tools in applications such as bacterial adhesion evaluation as well as supplements and alternatives to traditional microbiological testing procedures. In addition, this method has the potential to enable the study of bacterial adhesion on the surface of inanimate objects and living tissues. With the development of this method and its wide applicability, it is expected to become a standard method for the detection of bacterial adhesion and the screening of anti-adhesion materials.
Bacterial adhesion / PAO1-lux / Bioluminescence assay / Medical materials
[1] |
AlLuhaybi KA , Alghaith GY , Moneib NA , Yassien MA . Generation of recombinant bioluminescent Escherichia coli for quantitative determination of bacterial adhesion. Pak J Pharm Sci, 2015, 28
|
[2] |
Anderson DJ , Podgorny K , Berrios-Torres SI , Bratzler DW , Dellinger EP , Greene L , Nyquist AC , Saiman L , Yokoe DS , Maragakis LL , Kaye KS . Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol, 2014, 35
CrossRef
Google scholar
|
[3] |
Arciola CR , Campoccia D , Montanaro L . Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol, 2018, 16
CrossRef
Google scholar
|
[4] |
Arciola CR , Campoccia D , Speziale P , Montanaro L , Costerton JW . Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials, 2012, 33
|
[5] |
Avci P , Karimi M , Sadasivam M , Antunes-Melo WC , Carrasco E , Hamblin MR . In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence, 2017, 9
|
[6] |
Azeredo J , Azevedo NF , Briandet R , Cerca N , Coenye T , Costa AR , Desvaux M , Di Bonaventura G , Hebraud M , Jaglic Z , Kačániová M , Knøchel S , Lourenço A , Mergulhão F , Meyer RL , Nychas G , Simões M , Tresse O , Sternberg C . Critical review on biofilm methods. Crit Rev Microbiol, 2017, 43
CrossRef
Google scholar
|
[7] |
Badia JM , Casey AL , Petrosillo N , Hudson PM , Mitchell SA , Crosby C . Impact of surgical site infection on healthcare costs and patient outcomes: a systematic review in six European countries. J Hosp Infect, 2017, 96
CrossRef
Google scholar
|
[8] |
Beilenhoff U , Biering H , Blum R , Brljak J , Cimbro M , Dumonceau JM , Hassan C , Jung M , Neumann C , Pietsch M , Pineau L , Ponchon T , Rejchrt S , Rey J-F , Schmidt V , Tillett J , van Hooft J . Prevention of multidrug-resistant infections from contaminated duodenoscopes: position statement of the European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastroenterology Nurses and Associates (ESGENA). Endoscopy, 2017, 49
CrossRef
Google scholar
|
[9] |
Bruckbauer ST , Kvitko BH , Karkhoff-Schweizer RR , Schweizer HP . Tn5/7-lux: a versatile tool for the identification and capture of promoters in gram-negative bacteria. BMC Microbiol, 2015, 15
CrossRef
Google scholar
|
[10] |
Bryers JD . Medical biofilms. Biotechnol Bioeng, 2008, 100
CrossRef
Google scholar
|
[11] |
Campoccia D , Visai L , Reno F , Cangini I , Rizzi M , Poggi A , Montanaro L , Rimondini L , Arciola CR . Bacterial adhesion to poly-(D,L)lactic acid blended with vitamin E: toward gentle anti-infective biomaterials. J Biomed Mater Res A, 2015, 103
CrossRef
Google scholar
|
[12] |
Casey A , Karpanen T , Nightingale P , Cook M , Elliott T . Microbiological comparison of a silver-coated and a non-coated needleless intravascular connector in clinical use. J Hosp Infect, 2012, 80
CrossRef
Google scholar
|
[13] |
Catto C , Cappitelli F . Testing anti-biofilm polymeric surfaces: where to start?. Int J Mol Sci, 2019, 20( 15): 3794
CrossRef
Google scholar
|
[14] |
Chen G , Srinivasa Ranga VP , Mao Y , Chen K , Qiao H . Impact of lux gene insertion on bacterial surface properties and transport. Res Microbiol, 2008, 159
CrossRef
Google scholar
|
[15] |
Cho SH , Warit S , Wan B , Hwang CH , Pauli GF , Franzblau SG . Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2007, 51
CrossRef
Google scholar
|
[16] |
Darge A , Kahsay AG , Hailekiros H , Niguse S , Abdulkader M . Bacterial contamination and antimicrobial susceptibility patterns of intensive care units medical equipment and inanimate surfaces at Ayder Comprehensive Specialized Hospital, Mekelle, Northern Ethiopia. BMC Res Notes, 2019, 12
CrossRef
Google scholar
|
[17] |
Desrousseaux C , Sautou V , Descamps S , Traore O . Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J Hosp Infect, 2013, 85
CrossRef
Google scholar
|
[18] |
Donlan RM , Costerton JW . Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev, 2002, 15
CrossRef
Google scholar
|
[19] |
Dostalek P , Branyik T . Prospects for rapid bioluminescent detection methods in the food industry: a review. Czech J Food Sci, 2018, 23
|
[20] |
Flemming CA , Lee H , Trevors JT . Bioluminescent most-probable-number method to enumerate lux-marked Pseudomonas aeruginosa UG2Lr in soil. Appl Environ Microbiol, 1994, 60
CrossRef
Google scholar
|
[21] |
Golding GR , Sparling R , Kelly CA . Effect of pH on intracellular accumulation of trace concentrations of Hg(Ⅱ) in Escherichia coli under anaerobic conditions, as measured using a mer-lux bioreporter. Appl Environ Microbiol, 2008, 74
CrossRef
Google scholar
|
[22] |
Guglielmetti S , Santala V , Mangayil R , Ciranna A , Karp MT . O2-requiring molecular reporters of gene expression for anaerobic microorganisms. Biosens Bioelectron, 2019, 123
CrossRef
Google scholar
|
[23] |
Haney EF , Trimble MJ , Cheng JT , Valle Q , Hancock REW . Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules, 2018, 8( 2): 29
CrossRef
Google scholar
|
[24] |
Harber MJ , Mackenzie R , Asscher AW . A rapid bioluminescence method for quantifying bacterial adhesion to polystyrene. J Gen Microbiol, 1983, 129
|
[25] |
Hoang TT , Kutchma AJ , Becher A , Schweizer HP . Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid, 2000, 43
CrossRef
Google scholar
|
[26] |
Honraet K , Goetghebeur E , Nelis HJ . Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Methods, 2005, 63
CrossRef
Google scholar
|
[27] |
Hook AL , Chang CY , Yang J , Luckett J , Cockayne A , Atkinson S , Mei Y , Bayston R , Irvine DJ , Langer R , Anderson DG , Williams P , Davies MC , Alexander MR . Combinatorial discovery of polymers resistant to bacterial attachment. Nat Biotechnol, 2012, 30
CrossRef
Google scholar
|
[28] |
Hsu LC , Fang J , Borca-Tasciuc DA , Worobo RW , Moraru CI . Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Appl Environ Microbiol, 2013, 79
CrossRef
Google scholar
|
[29] |
Ishikawa M , Shigemori K , Suzuki A , Hori K . Evaluation of adhesiveness of Acinetobacter sp. Tol 5 to abiotic surfaces. J Biosci Bioeng, 2012, 113
|
[30] |
Johnson JR , Kuskowski MA , Wilt TJ . Systematic review: antimicrobial urinary catheters to prevent catheter-associated urinary tract infection in hospitalized patients. Ann Intern Med, 2006, 144
CrossRef
Google scholar
|
[31] |
Kadurugamuwa JL , Sin L , Albert E , Yu J , Francis K , DeBoer M , Rubin M , Bellinger-Kawahara C , Parr TR , J r. , Contag PR . Direct continuous method for monitoring biofilm infection in a mouse model. Infect Immun, 2003, 71
CrossRef
Google scholar
|
[32] |
Kodjikian L , Casoli-Bergeron E , Malet F , Janin-Manificat H , Freney J , Burillon C , Colin J , Steghens JP . Bacterial adhesion to conventional hydrogel and new silicone-hydrogel contact lens materials. Graefes Arch Clin Exp Ophthalmol, 2008, 246
CrossRef
Google scholar
|
[33] |
Meireles A , Gonçalves AL , Gomes IB , Chaves Simões L , Simões M . Methods to study microbial adhesion on abiotic surfaces. AIMS Bioeng, 2015, 2
CrossRef
Google scholar
|
[34] |
Liang H , Li L , Dong Z , Surette MG , Duan K . The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. J Bacteriol, 2008, 190
CrossRef
Google scholar
|
[35] |
Liu J , Li W , Zhu X , Zhao H , Lu Y , Zhang C , Lu Z . Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Appl Microbiol Biotechnol, 2019, 103
CrossRef
Google scholar
|
[36] |
Lo J , Lange D , Chew BH . Ureteral stents and Foley catheters-associated urinary tract infections: the role of coatings and materials in infection prevention. Antibiotics (Basel), 2014, 3
CrossRef
Google scholar
|
[37] |
Martin KL, An YH (2000) Basic equipment and microbiological techniques for studying bacterial adhesion. In: Handbook of bacterial adhesion: principles, methods, and applications. An YH, Friedman RJ (eds.) pp. 103-120. Humana Press: Totowa, NJ
|
[38] |
Mosuela R , Mustafa S , Gould S , Hassanin H , Alany RG , ElShaer A . Adherence of Pseudomonas aeruginosa onto surfactant-laden contact lenses. Colloids Surf B Biointerfaces, 2018, 163
CrossRef
Google scholar
|
[39] |
Muñoz-Bonilla A , Fernández-García M . Polymeric materials with antimicrobial activity. Prog Polym Sci, 2012, 37
CrossRef
Google scholar
|
[40] |
Neu TR . Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev, 1996, 60
CrossRef
Google scholar
|
[41] |
Neubeiser A , Bonsignore M , Tafelski S , Alefelder C , Schwegmann K , Ruden H , Geffers C , Nachtigall I . Mortality attributable to hospital acquired infections with multidrug-resistant bacteria in a large group of German hospitals. J Infect Public Health, 2020, 13
CrossRef
Google scholar
|
[42] |
Nyhan L , Begley M , Johnson N , Callanan M . An evaluation of Lux technology as an alternative methodology to determine growth rates of Listeria in laboratory media and complex food matrices. Int J Food Microbiol, 2020, 317
CrossRef
Google scholar
|
[43] |
Onaizi SA , Leong SS . Tethering antimicrobial peptides: current status and potential challenges. Biotechnol Adv, 2011, 29
CrossRef
Google scholar
|
[44] |
Pantanella F , Berlutti F , Passeri D , Sordi D , Frioni A , Natalizi T , Terranova ML , Rossi M , Valenti P . Quantitative evaluation of bacteria adherent and in biofilm on single-wall carbon nanotube-coated surfaces. Interdiscip Perspect Infect Dis, 2011, 2011
|
[45] |
Park SB , White SB , Steadman CS , Cavinder CA , Willard ST , Ryan PL , Feugang JM . Real-time bioluminescence analysis of Escherichia coli O157:H7 survival on livestock meats stored fresh, cold, or frozen. J Food Prot, 2018, 81
CrossRef
Google scholar
|
[46] |
Phillips-Jones MK . Bioluminescence (lux) expression in the anaerobe Clostridium perfringens. FEMS Microbiol Lett, 1993, 106
CrossRef
Google scholar
|
[47] |
Pribaz JR , Bernthal NM , Billi F , Cho JS , Ramos RI , Guo Y , Cheung AL , Francis KP , Miller LS . Mouse model of chronic post-arthroplasty infection: noninvasive in vivo bioluminescence imaging to monitor bacterial burden for long-term study. J Orthop Res, 2012, 30
CrossRef
Google scholar
|
[48] |
Robrish SA , Kemp CW , Bowen WH . Use of extractable adenosine triphosphate to estimate the viable cell mass in dental plaque samples obtained from monkeys. Appl Environ Microbiol, 1978, 35
CrossRef
Google scholar
|
[49] |
Russotto V , Cortegiani A , Raineri SM , Giarratano A . Bacterial contamination of inanimate surfaces and equipment in the intensive care unit. J Intensive Care, 2015, 3
CrossRef
Google scholar
|
[50] |
Schweizer HP . Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol Microbiol, 1992, 6
CrossRef
Google scholar
|
[51] |
Serrano C , Garcia-Fernandez L , Fernandez-Blazquez JP , Barbeck M , Ghanaati S , Unger R , Kirkpatrick J , Arzt E , Funk L , Turon P , del Campo A . Nanostructured medical sutures with antibacterial properties. Biomaterials, 2015, 52
CrossRef
Google scholar
|
[52] |
Shah N , Naseby DC . Bioluminescence-based measurement of viability of Pseudomonas aeruginosa ATCC 9027 harbouring plasmid-based lux genes under the control of constitutive promoters. J Appl Microbiol, 2014, 117
CrossRef
Google scholar
|
[53] |
Shah N , Naseby DC . Validation of constitutively expressed bioluminescent Pseudomonas aeruginosa as a rapid microbiological quantification tool. Biosens Bioelectron, 2015, 68
CrossRef
Google scholar
|
[54] |
Smith RJ , Moule MG , Sule P , Smith T , Cirillo JD , Grunlan JC . Polyelectrolyte multilayer nanocoating dramatically reduces bacterial adhesion to polyester fabric. ACS Biomater Sci Eng, 2017, 3
CrossRef
Google scholar
|
[55] |
Stepanovic S , Vukovic D , Dakic I , Savic B , Svabic-Vlahovic M . A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods, 2000, 40
CrossRef
Google scholar
|
[56] |
Stickler D . Susceptibility of antibiotic-resistant Gram-negative bacteria to biocides: a perspective from the study of catheter biofilms. J Appl Microbiol, 2002, 92
CrossRef
Google scholar
|
[57] |
Swartjes JJ , Veeregowda DH . Implications for directionality of nanoscale forces in bacterial attachment. Biophys Rep, 2015, 1
CrossRef
Google scholar
|
[58] |
Tacconelli E , Smith G , Hieke K , Lafuma A , Bastide P . Epidemiology, medical outcomes and costs of catheter-related bloodstream infections in intensive care units of four European countries: literature- and registry-based estimates. J Hosp Infect, 2009, 72
CrossRef
Google scholar
|
[59] |
Thorn RM , Nelson SM , Greenman J . Use of a bioluminescent Pseudomonas aeruginosa strain within an in vitro microbiological system, as a model of wound infection, to assess the antimicrobial efficacy of wound dressings by monitoring light production. Antimicrob Agents Chemother, 2007, 51
CrossRef
Google scholar
|
[60] |
Wang L , Chen X , Guo X , Li J , Liu Q , Kang F , Wang X , Hu C , Liu H , Gong W , Zhuang W , Liu X , Wang J . Significant expansion and red-shifting of fluorescent protein chromophore determined through computational design and genetic code expansion. Biophys Rep, 2018a, 4( 5): 273– 285
CrossRef
Google scholar
|
[61] |
Wang X , Chi H , Li Q , Li W , Li J , Li B , Gao W , Zhang D , Sun Y , Yi L , Qu H , Wang Y , Li Z , Xia Z . Influence of antibiotic pressure on five plasmid-based bioluminescent gram-negative bacterial strains. Mol Imaging Biol, 2018b, 20
CrossRef
Google scholar
|
[62] |
Weinstein RA , Darouiche RO . Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis, 2001, 33
CrossRef
Google scholar
|
[63] |
Wilson C, Lukowicz R, Merchant S, Valquier-Flynn H, Caballero J, Sandoval J, Okuom M, Huber C, Brooks TD, Wilson E, Clement B, Wentworth CD, Holmes AE (2017) quantitative and qualitative assessment methods for biofilm growth: a mini-review. Res Rev J Eng Technol 6. http://www.rroij.com/open-access/quantitative-and-qualitative-assessment-methods-for-biofilm-growth-a-minireview-.pdf
|
[64] |
Yousuf B , Ahire JJ , Dicks LM . Understanding the antimicrobial activity behind thin- and thick-rolled copper plates. Appl Microbiol Biotechnol, 2016, 100
CrossRef
Google scholar
|
[65] |
Yu K , Lo JC , Yan M , Yang X , Brooks DE , Hancock RE , Lange D , Kizhakkedathu JN . Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials, 2017, 116
CrossRef
Google scholar
|
[66] |
Zander ZK , Becker ML . Antimicrobial and antifouling strategies for polymeric medical devices. ACS Macro Lett, 2017, 7
|
[67] |
Zhao L , Chu PK , Zhang Y , Wu Z . Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater, 2009, 91
|
/
〈 |
|
〉 |