Priming immunity via herbal components and their nanomedicines for the treatment of cancer

Acupuncture and Herbal Medicine ›› 2024, Vol. 4 ›› Issue (4) : 436-462.

PDF(5519 KB)
PDF(5519 KB)
Acupuncture and Herbal Medicine ›› 2024, Vol. 4 ›› Issue (4) : 436-462. DOI: 10.1097/HM9.0000000000000135
research-article

作者信息 +

Priming immunity via herbal components and their nanomedicines for the treatment of cancer

Author information +
History +

Abstract

Recently, immunotherapy has redefined cancer treatment by promoting the rapid killing of tumor cells through the immune system. Herbal medicines have been increasingly used as adjunct therapies to complement cancer treatment along with chemotherapy and radiotherapy to delay tumor development, reduce pain, and prolong patient survival. However, the potential immunotherapeutic effects of these herbal derivatives are limited by their structural instability, poor membrane permeability, and low bioavailability. To address this issue, nanotechnology has been used to enhance the activity of active compounds. Therefore, this review focuses on the effectiveness of the active ingredients of herbal medicines in suppressing tumor progression by modulating both the innate and adaptive immune systems, challenges in their delivery, and the application of nanocarriers for the effective delivery of these herbal components.

Keywords

Anti-tumor / Herbal components / Immune system / Nanodrug delivery systems

引用本文

导出引用
. . Acupuncture and Herbal Medicine. 2024, 4(4): 436-462 https://doi.org/10.1097/HM9.0000000000000135

参考文献

[[1]]
Lu M, Zhan X.The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 2018;9(1):77-102.
[[2]]
Qian S, Golubnitschaja O, Zhan X.Chronic inflammation: key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J. 2019;10(4):365-381.
[[3]]
Schultz M, Parzinger H, Posdnjakov DV, et al.Oldest known case of metastasizing prostate carcinoma diagnosed in the skeleton of a 2,700-year-old Scythian king from Arzhan (Siberia, Russia). Int J Cancer. 2007;121(12):2591-2595.
[[4]]
Zhang J, Li X, Huang L. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Adv Drug Deliv Rev.2020;154-155:245-273.
[[5]]
Faguet GB. A brief history of cancer: Age-old milestones underlying our current knowledge database. Int [J] Cancer. 2015;136(9):2022-2036.
[[6]]
Xue HF.The treatment of tumor by ancestral medicine. J Nanjing Coll Tradit Chin Med. 1985(4):13-15.
[[7]]
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer [J] Clin. 2023;73(1):17-48.
[[8]]
Wu C, Li M, Meng H, et al. Analysis of status and countermeasures of cancer incidence and mortality in China. Sci China Life Sci. 2019;62(5):640-647.
[[9]]
Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014-1022.
[[10]]
Candeias SM, Gaipl US. The immune system in cancer prevention, development and therapy. Anticancer Agents Med Chem. 2016;16(1):101-107.
[[11]]
Zhang Y, Ho SH, Li B, et al. Modulating the tumor microenvironment with new therapeutic nanoparticles: a promising paradigm for tumor treatment. Med Res Rev. 2020;40(3):1084-1102.
[[12]]
Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013;342(6165):1432-1433.
[[13]]
Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer [J] Clin. 2020;70(2):86-104.
[[14]]
Chen XS, Moon JJ, Cheon J.New opportunities in cancer immunotherapy and theranostics. Acc Chem Res. 2764(2020):2763.
[[15]]
So TH, Chan SK, Lee VH, et al. Chinese medicine in cancer treatment—how is it practised in the East and the West? Clin Oncol (R Coll Radiol). 2019;31(8):578-588.
[[16]]
Zhang J, Hu K, Di L, et al. Traditional herbal medicine and nanomedicine: converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev. 2021;178:113964.
[[17]]
Sauter ER. Cancer prevention and treatment using combination therapy with natural compounds. Expert Rev Clin Pharmacol. 2020;13(3):265-285.
[[18]]
Loo WT, Jin LJ, Chow LW, et al. Rhodiola algida improves chemotherapy-induced oral mucositis in breast cancer patients. Expert Opin Investig Drugs. 2010;19(Suppl 1):S91-S100.
[[19]]
Sharma N, Mishra KP, Ganju L. Salidroside exhibits anti-dengue virus activity by upregulating host innate immune factors. Arch Virol. 2016;161(12):3331-3344.
[[20]]
Sun L, Chen B, Jiang R, et al. Resveratrol inhibits lung cancer growth by suppressing M2-like polarization of tumor associated macrophages. Cell Immunol. 2017;311:86-93.
[[21]]
Yan Y, Zhou C, Li J, et al. Resveratrol inhibits hepatocellular carcinoma progression driven by hepatic stellate cells by targeting Gli-1. Mol Cell Biochem. 2017;434(1-2):17-24.
[[22]]
Lee Y, Shin H, Kim J. In vivo anti-cancer effects of resveratrol mediated by NK cell activation. [J] Innate Immun. 2021;13(2):94-106.
[[23]]
Noh KT, Cho J, Chun SH, et al. Resveratrol regulates naïve CD 8+ T-cell proliferation by upregulating IFN-γ-induced tryptophanyl-tRNA synthetase expression. BMB Rep. 2015;48(5):283-288.
[[24]]
Shu G, Yang T, Wang C, et al. Gastrodin stimulates anticancer immune response and represses transplanted H22 hepatic ascitic tumor cell growth: involvement of NF-κB signaling activation in CD4+ T cells. Toxicol Appl Pharmacol. 2013;269(3):270-279.
[[25]]
Jia J, Shi X, Jing X, et al. BCL6 mediates the effects of Gastrodin on promoting M2-like macrophage polarization and protecting against oxidative stress-induced apoptosis and cell death in macrophages. Biochem Biophys Res Commun. 2017;486(2):458-464.
[[26]]
Gupta A, Singh AK, Loka M, et al. Ferulic acid-mediated modulation of apoptotic signaling pathways in cancer. Adv Protein Chem Struct Biol. 2021;125:215-257.
[[27]]
Shih KC, Chan HW, Wu CY, et al. Curcumin enhances the abscopal effect in mice with colorectal cancer by acting as an immunomodulator. Pharmaceutics. 2023;15(5):1519.
[[28]]
Fiala M. Curcumin and omega-3 fatty acids enhance NK cell-induced apoptosis of pancreatic cancer cells but curcumin inhibits interferon-γ production: benefits of omega-3 with curcumin against cancer. Molecules. 2015;20(2):3020-3026.
[[29]]
Chai YS, Chen YQ, Lin SH, et al. Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomed Pharmacother. 2020;125:109946.
[[30]]
Brousseau M, Miller SC. Enhancement of natural killer cells and increased survival of aging mice fed daily Echinacea root extract from youth. Biogerontology. 2005;6(3):157-163.
[[31]]
Currier NL, Miller SC. Echinacea purpurea and melatonin augment natural-killer cells in leukemic mice and prolong life span. [J] Altern Complement Med. 2001;7(3):241-251.
[[32]]
Park SJ, Lee M, Kim D, et al.Echinacea purpurea extract enhances natural killer cell activity in vivo by upregulating MHC II and Th1-type CD4(+) T cell responses. J Med Food. 2021;24(10):1039-1049.
[[33]]
Guo C, Guo D, Fang L, et al. Ganoderma lucidum polysaccharide modulates gut microbiota and immune cell function to inhibit inflammation and tumorigenesis in colon. Carbohydr Polym. 2021;267:118231.
[[34]]
Wang Y, Fan X, Wu X. Ganoderma lucidum polysaccharide (GLP) enhances antitumor immune response by regulating differentiation and inhibition of MDSCs via a CARD9-NF-κB-IDO pathway. Biosci Rep.2020;40(6):BSR20201170.
[[35]]
Wang N, Yang J, Lu J, et al. A polysaccharide from Salvia miltiorrhiza Bunge improves immune function in gastric cancer rats. Carbohydr Polym. 2014;111:47-55.
[[36]]
Xue N, Zhou Q, Ji M, et al. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype. Sci Rep. 2017;7:39011.
[[37]]
Li W, Song K, Wang S, et al. Anti-tumor potential of astragalus polysaccharides on breast cancer cell line mediated by macrophage activation. Mater Sci Eng C Mater Biol Appl. 2019;98:685-695.
[[38]]
He X, Li X, Liu B, et al. Down-regulation of Treg cells and up-regulation of TH1/TH2 cytokine ratio were induced by polysaccharide from Radix Glycyrrhizae in H22 hepatocarcinoma bearing mice. Molecules. 2011;16(10):8343-8352.
[[39]]
Xu F, Cui WQ, Wei Y, et al. Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling. [J] Exp Clin Cancer Res. 2018;37(1):207.
[[40]]
Yang L, Han X, Yuan J, et al. Early astragaloside IV administration attenuates experimental autoimmune encephalomyelitis in mice by suppressing the maturation and function of dendritic cells. Life Sci. 2020;249:117448.
[[41]]
Li Y, Yu P, Fu W, et al. Ginseng-Astragalus-oxymatrine injection ameliorates cyclophosphamide-induced immunosuppression in mice and enhances the immune activity of RAW264.7 cells. [J] Ethnopharmacol. 2021;279:114387.
[[42]]
Qiu T, Li D, Liu Y, et al. Astragaloside IV inhibits the proliferation of human uterine leiomyomas by targeting IDO1. Cancers (Basel). 2022;14(18):4424.
[[43]]
Yin L, Fan Z, Liu P, et al. Anemoside A3 activates TLR4-dependent M1-phenotype macrophage polarization to represses breast tumor growth and angiogenesis. Toxicol Appl Pharmacol. 2021;432:115755.
[[44]]
Ip FCF, Ng YP, Or TCT, et al. Anemoside A3 ameliorates experimental autoimmune encephalomyelitis by modulating T helper 17 cell response. PLoS One. 2017;12(7):e0182069.
[[45]]
Li X, Zhou X, Liu J, et al. Liposomal co-delivery of PD-L1 siRNA/Anemoside B4 for enhanced combinational immunotherapeutic effect. ACS Appl Mater Interfaces. 2022;14(25):28439-28454.
[[46]]
Zhang J, Shen L, Li X, et al. Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer. ACS Nano. 2019;13(11):12511-12524.
[[47]]
Huang M, Lu JJ, Ding J. Natural products in cancer therapy: past, present and future. Nat Prod Bioprospect. 2021;11:5-13.
[[48]]
Sun K, Wu L, Wang S, et al. Antitumor effects of Chinese herbal medicine compounds and their nano-formulations on regulating the immune system microenvironment. Front Oncol. 2022;12:949332.
[[49]]
Jing Z, Du Q, Zhang X, et al.Nanomedicines and nanomaterials for cancer therapy: progress, challenge and perspectives. Chem Eng J. 2022;446:137147.
[[50]]
Xue S, Zhou Y, Zhang J, et al. Anemoside B4 exerts anti-cancer effect by inducing apoptosis and autophagy through inhibition of PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Am [J] Transl Res. 2019;11(4):2580-2589.
[[51]]
Son MK, Jung KH, Lee HS, et al. SB365, Pulsatilla saponin D suppresses proliferation and induces apoptosis of pancreatic cancer cells. Oncol Rep. 2013;30(2):801-808.
[[52]]
Kwon HJ, Lee H, Choi GE, et al. Ginsenoside F1 promotes cytotoxic activity of NK cells via insulin-like growth factor-1-dependent mechanism. Front Immunol. 2018;9:2785.
[[53]]
Li X, Liu W, Geng C, et al. Ginsenoside Rg3 suppresses epithelial-mesenchymal transition via downregulating notch-hes1 signaling in colon cancer cells. Am [J] Chin Med. 2021;49(1):217-235.
[[54]]
Son KJ, Choi KR, Lee SJ, et al. Immunogenic cell death induced by ginsenoside Rg3: significance in dendritic cell-based anti-tumor immunotherapy. Immune Netw. 2016;16(1):75-84.
[[55]]
Guo M, Xiao J, Sheng X, et al. Ginsenoside Rg3 mitigates atherosclerosis progression in diabetic apoE-/- mice by skewing macrophages to the M2 phenotype. Front Pharmacol. 2018;9:464.
[[56]]
Zhu Y, Liang J, Gao C, et al. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. [J] Control Release. 2021;330:641-657.
[[57]]
Peng K, Luo T, Li J, et al. Ginsenoside Rh2 inhibits breast cancer cell growth via ERβ-TNFα pathway. Acta Biochim Biophys Sin (Shanghai). 2022;54(5):647-656.
[[58]]
Li Q, He J, Li S, et al. The combination of gemcitabine and ginsenoside Rh2 enhances the immune function of dendritic cells against pancreatic cancer via the CARD9-BCL10-MALT1/NF-κB pathway. Clin Immunol. 2023;248:109217.
[[59]]
Zhang B, Zhou WJ, Gu CJ, et al. The ginsenoside PPD exerts anti-endometriosis effects by suppressing estrogen receptor-mediated inhibition of endometrial stromal cell autophagy and NK cell cytotoxicity. Cell Death Dis. 2018;9(5):574.
[[60]]
Li H, Huang N, Zhu W, et al. Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2. BMC Cancer. 2018;18(1):579.
[[61]]
Chang WT, Lai TH, Chyan YJ, et al. Specific medicinal plant polysaccharides effectively enhance the potency of a DC-based vaccine against mouse mammary tumor metastasis. PLoS One. 2015;10(3):e0122374.
[[62]]
Yuan R, Zhao W, Wang QQ, et al. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis. Pharmacol Res. 2021;170:105748.
[[63]]
Zhang H, Zhao B, Wei H, et al. Cucurbitacin B controls M2 macrophage polarization to suppresses metastasis via targeting JAK-2/STAT3 signalling pathway in colorectal cancer. [J] Ethnopharmacol. 2022;287:114915.
[[64]]
Lu P, Yu B, Xu J. Cucurbitacin B regulates immature myeloid cell differentiation and enhances antitumor immunity in patients with lung cancer. Cancer Biother Radiopharm. 2012;27(8):495-503.
[[65]]
Zhou ZD, Xia DJ. Effect of Achyranthes bidentata polysaccharides stimulated dendritic cells co-cultured with cytokine induced killer cells against SW480 cells. Zhongguo Zhong Yao Za Zhi. 2013;38(7):1056-1060.
[[66]]
Ou N, Sun Y, Zhou S, et al. Evaluation of optimum conditions for Achyranthes bidentata polysaccharides encapsulated in cubosomes and immunological activity in vitro. Int [J] Biol Macromol. 2018;109:748-760.
[[67]]
Jiang Y, Hong D, Lou Z, et al. Retraction note to: Lupeol inhibits migration and invasion of colorectal cancer cells by suppressing RhoA-ROCK1 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(9):1985.
[[68]]
Wu XT, Liu JQ, Lu XT, et al. The enhanced effect of lupeol on the destruction of gastric cancer cells by NK cells. Int Immunopharmacol. 2013;16(2):332-340.
[[69]]
Zhao X, Liu J, Ge S, et al. Saikosaponin a inhibits breast cancer by regulating Th1/Th2 balance. Front Pharmacol. 2019;10:624.
[[70]]
Dan L, Wang JH. Research progress of anti-tumor mechanism of saikosaponin. Drugs Clin. 2018;33(1):203-208.
[[71]]
Shuixiang HZZ, Xinlan L, Gang Z, et al. Effects of saikosaponin d on expression of VEGF and Ang-2 in hepatocellular carcinoma cells. [J] Army Med Univ. 2011;33(12):4.
[[72]]
Guo J, Chen T, Ma Z, et al. Oridonin inhibits 4T1 tumor growth by suppressing Treg differentiation via TGF-β receptor. Int Immunopharmacol. 2020;88:106831.
[[73]]
Wang L, Zhao X, Ding J, et al.Oridonin attenuates the progression of atherosclerosis by inhibiting NLRP3 and activating Nrf2 in apolipoprotein E-deficient mice. Inflammopharmacology. 2023;31(4):1993-2005.
[[74]]
Zhou L, Sun L, Wu H, et al.Oridonin ameliorates lupus-like symptoms of MRL(lpr/lpr) mice by inhibition of B-cell activating factor (BAFF). Eur J Pharmacol. 2013;715(1-3):230-237.
[[75]]
Hwang TL, Chang CH. Oridonin enhances cytotoxic activity of natural killer cells against lung cancer. Int Immunopharmacol. 2023;122:110669.
[[76]]
Hu AP, Du JM, Li JY, et al. Oridonin promotes CD4+/CD25+ Treg differentiation, modulates Th1/Th2 balance and induces HO-1 in rat splenic lymphocytes. Inflamm Res. 2008;57(4):163-170.
[[77]]
Mao Q, Min J, Zeng R, et al. Self-assembled traditional Chinese nanomedicine modulating tumor immunosuppressive microenvironment for colorectal cancer immunotherapy. Theranostics. 2022;12(14):6088-6105.
[[78]]
Baek SY, Lee J, Lee DG, et al. Ursolic acid ameliorates autoimmune arthritis via suppression of Th17 and B cell differentiation. Acta Pharmacol Sin. 2014;35(9):1177-1187.
[[79]]
Lian GY, Wang QM, Tang PM, et al. Combination of asiatic acid and naringenin modulates NK cell anti-cancer immunity by rebalancing Smad3/Smad7 signaling. Mol Ther. 2018;26(9):2255-2266.
[[80]]
Zhu Z, Cui L, Yang J, et al. Anticancer effects of asiatic acid against doxorubicin-resistant breast cancer cells via an AMPK-dependent pathway in vitro. Phytomedicine. 2021;92:153737.
[[81]]
Lau TS, Chan LKY, Man GCW, et al. Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE-dependent exocytosis. Cancer Immunol Res. 2020;8(8):1099-1111.
[[82]]
de Goeje PL, Poncin M, Bezemer K, et al. Induction of peripheral effector CD8 T-cell proliferation by combination of paclitaxel, carboplatin, and bevacizumab in non-small cell lung cancer patients. Clin Cancer Res. 2019;25(7):2219-2227.
[[83]]
Wanderley CW, Colón DF, Luiz JPM, et al. Paclitaxel reduces tumor growth by reprogramming tumor-associated macrophages to an M1 profile in a TLR4-dependent manner. Cancer Res. 2018;78(20):5891-5900.
[[84]]
Zhu Y, Wang A, Zhang S, et al. Paclitaxel-loaded ginsenoside Rg3 liposomes for drug-resistant cancer therapy by dual targeting of the tumor microenvironment and cancer cells. [J] Adv Res. 2023;49:159-173.
[[85]]
Zhang J, Zhang P, Zou Q, et al. Co-delivery of gemcitabine and paclitaxel in cRGD-modified long circulating nanoparticles with asymmetric lipid layers for breast cancer treatment. Molecules. 2018;23(11):2906.
[[86]]
Vicari AP, Luu R, Zhang N, et al. Paclitaxel reduces regulatory T cell numbers and inhibitory function and enhances the anti-tumor effects of the TLR9 agonist PF-3512676 in the mouse. Cancer Immunol Immunother. 2009;58(4):615-628.
[[87]]
Jiang X, Cao G, Gao G, et al. Triptolide decreases tumor-associated macrophages infiltration and M2 polarization to remodel colon cancer immune microenvironment via inhibiting tumor-derived CXCL12. [J] Cell Physiol. 2021;236(1):193-204.
[[88]]
Zhu KJ, Shen QY, Cheng H, et al. Triptolide affects the differentiation, maturation and function of human dendritic cells. Int Immunopharmacol. 2005;5(9):1415-1426.
[[89]]
Hu H, Huang G, Wang H, et al. Inhibition effect of triptolide on human epithelial ovarian cancer via adjusting cellular immunity and angiogenesis. Oncol Rep. 2018;39(3):1191-1196.
[[90]]
Zhang L, Yu JS. Triptolide reverses helper T cell inhibition and down-regulates IFN-γ induced PD-L1 expression in glioma cell lines. [J] Neurooncol. 2019;143(3):429-436.
[[91]]
Yan YH, Shang PZ, Lu QJ, et al.Triptolide regulates T cell-mediated immunity via induction of CD11c(low) dendritic cell differentiation. Food Chem Toxicol. 2012;50(7):2560-2564.
[[92]]
Chen R, Lu X, Li Z, et al. Dihydroartemisinin prevents progression and metastasis of head and neck squamous cell carcinoma by inhibiting polarization of macrophages in tumor microenvironment. Onco Targets Ther. 2020;13:3375-3387.
[[93]]
Zhang H, Zhuo Y, Li D, et al. Dihydroartemisinin inhibits the growth of pancreatic cells by inducing ferroptosis and activating antitumor immunity. Eur [J] Pharmacol. 2022;926:175028.
[[94]]
Bai B, Wu F, Ying K, et al. Therapeutic effects of dihydroartemisinin in multiple stages of colitis-associated colorectal cancer. Theranostics. 2021;11(13):6225-6239.
[[95]]
Zheng X, Guo Y, Wang L, et al. Recovery profiles of T-Cell subsets following low-dose total body irradiation and improvement with cinnamon. Int [J] Radiat Oncol Biol Phys. 2015;93(5):1118-1126.
[[96]]
Liu W, Fan T, Li M, et al. Andrographolide potentiates PD-1 blockade immunotherapy by inhibiting COX2-mediated PGE2 release. Int Immunopharmacol. 2020;81:106206.
[[97]]
Peng Y, Wang Y, Tang N, et al. Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway. [J] Exp Clin Cancer Res. 2018;37(1):248.
[[98]]
Li L, Yang LL, Yang SL, et al. Andrographolide suppresses breast cancer progression by modulating tumor-associated macrophage polarization through the Wnt/β-catenin pathway. Phytother Res. 2022;36(12):4587-4603.
[[99]]
Liang Y, Li S, Zheng G, et al. β-elemene suppresses the malignant behavior of esophageal cancer cells by regulating the phosphorylation of AKT. Acta Histochem. 2020;122(4):151538.
[[100]]
Chen W, Li Y, Liu C, et al.In situ engineering of tumor-associated macrophages via a nanodrug-delivering-drug(β-Elemene@Stanene) strategy for enhanced cancer chemo-immunotherapy. Angew Chem Int Ed Engl. 2023;62:e202308413.
[[101]]
Li Y, Li T, Ji W, et al. Inhibitory effects of pseudolaric acid B on inflammatory response and M1 phenotype polarization in RAW264.7 macrophages induced by lipopolysaccharide. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2016;32(5):625-629.
[[102]]
Leung KN, Leung PY, Kong LP, et al.Immunomodulatory effects of esculetin (6,7-dihydroxycoumarin) on murine lymphocytes and peritoneal macrophages. Cell Mol Immunol. 2005;2(3):181-188.
[[103]]
Kimura Y, Sumiyoshi M.Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of M2 macrophage differentiation in tumor-associated macrophages and/or G1 arrest in tumor cells. Eur J Pharmacol. 2015;746:115-125.
[[104]]
Xu S, Zhang H, Wang A, et al. Silibinin suppresses epithelial-mesenchymal transition in human non-small cell lung cancer cells by restraining RHBDD1. Cell Mol Biol Lett. 2020;25:36.
[[105]]
Ting H, Deep G, Kumar S, et al. Beneficial effects of the naturally occurring flavonoid silibinin on the prostate cancer microenvironment: role of monocyte chemotactic protein-1 and immune cell recruitment. Carcinogenesis. 2016;37(6):589-599.
[[106]]
Zeng A, Liang X, Zhu S, et al. Chlorogenic acid induces apoptosis, inhibits metastasis and improves antitumor immunity in breast cancer via the NF-κB signaling pathway. Oncol Rep. 2021;45(2):717-727.
[[107]]
Chen YQ, Song HY, Zhou ZY, et al. Osthole inhibits the migration and invasion of highly metastatic breast cancer cells by suppressing ITGα3/ITGβ5 signaling. Acta Pharmacol Sin. 2022;43(6):1544-1555.
[[108]]
Zhang L, Jiang G, Yao F, et al. Osthole promotes anti-tumor immune responses in tumor-bearing mice with hepatocellular carcinoma. Immunopharmacol Immunotoxicol. 2015;37(3):301-307.
[[109]]
Wang F, Yang P, Wan T, et al. Osthole inhibits M1 macrophage polarization and attenuates osteolysis in a mouse skull model. Oxid Med Cell Longev. 2023;2023:2975193.
[[110]]
Shi W, Men L, Pi X, et al. Shikonin suppresses colon cancer cell growth and exerts synergistic effects by regulating ADAM17 and the IL-6/STAT3 signaling pathway. Int [J] Oncol. 2021;59(6):99.
[[111]]
Long L, Xiong W, Lin F, et al. Regulating lactate-related immunometabolism and EMT reversal for colorectal cancer liver metastases using shikonin targeted delivery. [J] Exp Clin Cancer Res. 2023;42(1):117.
[[112]]
Lee HJ, Lee HJ, Magesh V, et al. Shikonin, acetylshikonin, and isobutyroylshikonin inhibit VEGF-induced angiogenesis and suppress tumor growth in Lewis lung carcinoma-bearing mice. Yakugaku Zasshi. 2008;128(11):1681-1688.
[[113]]
Jia X, Yu F, Wang J, et al. Emodin suppresses pulmonary metastasis of breast cancer accompanied with decreased macrophage recruitment and M2 polarization in the lungs. Breast Cancer Res Treat. 2014;148(2):291-302.
[[114]]
Kim HR, Kim K, Lee KH, et al. Inhibition of casein kinase 2 enhances the death ligand- and natural killer cell-induced hepatocellular carcinoma cell death. Clin Exp Immunol. 2008;152(2):336-344.
[[115]]
Li L, You W, Wang X, et al. Delicaflavone reactivates anti-tumor immune responses by abrogating monocytic myeloid cell-mediated immunosuppression. Phytomedicine. 2023;108:154508.
[[116]]
Lin Y, Shi R, Wang X, et al. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets. 2008;8(7):634-646.
[[117]]
Maatouk M, Mustapha N, Mokdad-Bzeouich I, et al. Thermal treatment of luteolin-7-O-β-glucoside improves its immunomodulatory and antioxidant potencies. Cell Stress Chaperones. 2017;22(6):775-785.
[[118]]
Fasoulakis Z, Koutras A, Syllaios A, et al. Breast cancer apoptosis and the therapeutic role of luteolin. Chirurgia (Bucur). 2021;116(2):170-177.
[[119]]
Zhao H, Zhang X, Chen X, et al. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE2 and IL-6. Toxicol Appl Pharmacol. 2014;279(3):311-321.
[[120]]
Guo A, He D, Xu HB, et al. Promotion of regulatory T cell induction by immunomodulatory herbal medicine licorice and its two constituents. Sci Rep. 2015;5:14046.
[[121]]
Zhang Z, Chen WQ, Zhang SQ, et al. Isoliquiritigenin inhibits pancreatic cancer progression through blockade of p38 MAPK-regulated autophagy. Phytomedicine. 2022;106:154406.
[[122]]
Yushan R, Ying Y, Yujun T, et al. Isoliquiritigenin inhibits mouse S180 tumors with a new mechanism that regulates autophagy by GSK-3β/TNF-α pathway. Eur [J] Pharmacol. 2018;838:11-22.
[[123]]
Kim B, Park B. Baohuoside I suppresses invasion of cervical and breast cancer cells through the downregulation of CXCR4 chemokine receptor expression. Biochemistry. 2014;53(48):7562-7569.
[[124]]
Wang S, Wang N, Huang X, et al. Baohuoside i suppresses breast cancer metastasis by downregulating the tumor-associated macrophages/C-X-C motif chemokine ligand 1 pathway. Phytomedicine. 2020;78:153331.
[[125]]
Khorsandi L, Orazizadeh M, Niazvand F, et al. Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells. Bratisl Lek Listy. 2017;118(2):123-128.
[[126]]
Jing L, Lin J, Yang Y, et al. Quercetin inhibiting the PD-1/PD-L1 interaction for immune-enhancing cancer chemopreventive agent. Phytother Res. 2021;35(11):6441-6451.
[[127]]
Nickel T, Hanssen H, Sisic Z, et al. Immunoregulatory effects of the flavonol quercetin in vitro and in vivo. Eur [J] Nutr. 2011;50(3):163-172.
[[128]]
Shi X, Lan X, Chen X, et al. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition. Sci Rep. 2015;5:9694.
[[129]]
Gu H, You Q, Liu W, et al. Gambogic acid induced tumor cell apoptosis by T lymphocyte activation in H22 transplanted mice. Int Immunopharmacol. 2008;8(11):1493-1502.
[[130]]
Ma J, Huang K, Ma Y, et al. Gambogic acid inhibits LPS-induced macrophage pro-inflammatory cytokine production mainly through suppression of the p38 pathway. Iran [J] Basic Med Sci. 2018;21(7):717-723.
[[131]]
Jiang ZB, Wang WJ, Xu C, et al. Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer. Cancer Lett. 2021;515:36-48.
[[132]]
Jia L, Hu Y, Yang G, et al. Puerarin suppresses cell growth and migration in HPV-positive cervical cancer cells by inhibiting the PI3K/mTOR signaling pathway. Exp Ther Med. 2019;18(1):543-549.
[[133]]
Luo KW, Xia J, Cheng BH, et al. Tea polyphenol EGCG inhibited colorectal-cancer-cell proliferation and migration via downregulation of STAT3. Gastroenterol Rep (Oxf). 2021;9(1):59-70.
[[134]]
Almatroodi SA, Almatroudi A, Khan AA, et al.Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules. 2020;25(14):3146.
[[135]]
Almatroodi SA, Almatroudi A, Alsahli MA, et al.Epigallocatechin-3-gallate (EGCG), an active compound of green tea attenuates acute lung injury regulating macrophage polarization and Krüpple-like-factor 4 (KLF4) expression. Molecules. 2020;25(12):2853.
[[136]]
Ge W, Yin Q, Xian H. Wogonin induced mitochondrial dysfunction and endoplasmic reticulum stress in human malignant neuroblastoma cells via IRE1α-dependent pathway. [J] Mol Neurosci. 2015;56(3):652-662.
[[137]]
Wang J, Li K, Li Y, et al. Mediating macrophage immunity with wogonin in mice with vascular inflammation. Mol Med Rep. 2017;16(6):8434-8440.
[[138]]
Xiao W, Yin M, Wu K, et al. High-dose wogonin exacerbates DSS-induced colitis by up-regulating effector T cell function and inhibiting Treg cell. [J] Cell Mol Med. 2017;21(2):286-298.
[[139]]
Xiao W, Wu K, Yin M, et al. Wogonin Inhibits Tumor-derived regulatory molecules by suppressing STAT3 signaling to promote tumor immunity. [J] Immunother. 2015;38(5):167-184.
[[140]]
Huang J, Chen X, Chang Z, et al. Boosting anti-tumour immunity using adjuvant apigenin. Anticancer Agents Med Chem. 2023;23(3):266-277.
[[141]]
Bauer D, Redmon N, Mazzio E, et al. Apigenin inhibits TNFα/IL-1α-induced CCL2 release through IKBK-epsilon signaling in MDA-MB-231 human breast cancer cells. PLoS One. 2017;12(4):e0175558.
[[142]]
Feng YB, Chen L, Chen FX, et al. Immunopotentiation effects of apigenin on NK cell proliferation and killing pancreatic cancer cells. Int [J] Immunopathol Pharmacol. 2023;37:3946320231161174.
[[143]]
Chen S, Li R, Chen Y, et al.Scutellarin enhances anti-tumor immune responses by reducing TNFR2-expressing CD4(+)Foxp3 2022;151:113187.
[[144]]
Zhang J, Shan BE, Li QM, et al. Immunoregulatory effects of periplocin from Cortex Periplocae in tumor-bearing mice. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2009;25(10):887-890.
[[145]]
Lin JP, Huang MH, Sun ZT, et al. Periplocin inhibits hepatocellular carcinoma progression and reduces the recruitment of MDSCs through AKT/NF-κB pathway. Life Sci. 2023;324:121715.
[[146]]
Aghvami M, Ebrahimi F, Zarei MH, et al. Matrine induction of ROS mediated apoptosis in human ALL B-lymphocytes via mitochondrial targeting. Asian Pac [J] Cancer Prev. 2018;19(2):555-560.
[[147]]
Zhang L, Zhang H, Zhu Z, et al. Matrine regulates immune functions to inhibit the proliferation of leukemic cells. Int [J] Clin Exp Med. 2015;8(4):5591-5600.
[[148]]
Zhao B, Hui X, Wang J, et al. Matrine suppresses lung cancer metastasis via targeting M2-like tumour-associated-macrophages polarization. Am [J] Cancer Res. 2021;11(9):4308-4328.
[[149]]
Zheng X, Zhao Y, Jia Y, et al. Biomimetic co-assembled nanodrug of doxorubicin and berberine suppresses chemotherapy-exacerbated breast cancer metastasis. Biomaterials. 2021;271:120716.
[[150]]
Cui H, Cai Y, Wang L, et al. Berberine regulates Treg/Th17 balance to treat ulcerative colitis through modulating the gut microbiota in the colon. Front Pharmacol. 2018;9:571.
[[151]]
Shah D, Challagundla N, Dave V, et al. Berberine mediates tumor cell death by skewing tumor-associated immunosuppressive macrophages to inflammatory macrophages. Phytomedicine. 2021;99:153904.
[[152]]
Ren S, Cai Y, Hu S, et al. Berberine exerts anti-tumor activity in diffuse large B-cell lymphoma by modulating c-myc/CD47 axis. Biochem Pharmacol. 2021;188:114576.
[[153]]
Wang X, Lin Y, Zheng Y. Antitumor effects of aconitine in A2780 cells via estrogen receptor β-mediated apoptosis, DNA damage and migration. Mol Med Rep. 2020;22(3):2318-2328.
[[154]]
Zeng XZ, He LG, Wang S, et al. Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-κB and NFATc1 activation and DC-STAMP expression. Acta Pharmacol Sin. 2016;37(2):255-263.
[[155]]
Yao F, Jiang GR, Liang GQ, et al. The antitumor effect of the combination of aconitine and crude monkshood polysaccharide on hepatocellular carcinoma. Pak [J] Pharm Sci. 2021;34(3):971-979.
[[156]]
Cho O, Lee JW, Kim HS, et al. Chelerythrine, a novel small molecule targeting IL-2, inhibits melanoma progression by blocking the interaction between IL-2 and its receptor. Life Sci. 2023;320:121559.
[[157]]
Zhang Y, Liang Y, He C. Anticancer activities and mechanisms of heat-clearing and detoxicating traditional Chinese herbal medicine. Chin Med. 2017;12(1):20.
[[158]]
Knorr DA, Bachanova V, Verneris MR, et al. Clinical utility of natural killer cells in cancer therapy and transplantation. Semin Immunol. 2014;26(2):161-172.
[[159]]
Guillerey C, Smyth MJ. NK cells and cancer immunoediting. Curr Top Microbiol Immunol. 2016;395:115-145.
[[160]]
Fang F, Xiao W, Tian Z. NK cell-based immunotherapy for cancer. Semin Immunol. 2017;31:37-54.
[[161]]
Jewett A, Kos J, Fong Y, et al. NK cells shape pancreatic and oral tumor microenvironments; role in inhibition of tumor growth and metastasis. Semin Cancer Biol. 2018;53:178-188.
[[162]]
Li B, Jiang Y, Li G, et al. Natural killer cell and stroma abundance are independently prognostic and predict gastric cancer chemotherapy benefit. JCI Insight. 2020;5(9).
[[163]]
Gil M, Kim KE.Interleukin-18 is a prognostic biomarker correlated with CD8(+) T cell and natural killer cell infiltration in skin cutaneous melanoma. J Clin Med. 2019;8(11):1993.
[[164]]
Schroder K, Hertzog PJ, Ravasi T, et al. Interferon-gamma: an overview of signals, mechanisms and functions. [J] Leukoc Biol. 2004;75(2):163-189.
[[165]]
Carnaud C, Lee D, Donnars O, et al. Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. [J] Immunol. 1999;163(9):4647-4650.
[[166]]
Choi JS, Chun KS, Kundu J, et al.Biochemical basis of cancer chemoprevention and/or chemotherapy with ginsenosides (review). Int J Mol Med. 2013;32(6):1227-1238.
[[167]]
Kang S, Min H. Ginseng, the ‘immunity boost’: the effects of Panax ginseng on immune system. [J] Ginseng Res. 2012;36(4):354-368.
[[168]]
Liu J, Zhang X, Cheng Y, et al. Dendritic cell migration in inflammation and immunity. Cell Mol Immunol. 2021;18(11):2461-2471.
[[169]]
Marciscano AE, Anandasabapathy N. The role of dendritic cells in cancer and anti-tumor immunity. Semin Immunol. 2021;52:101481.
[[170]]
Wang Y, Xiang Y, Xin VW, et al. Dendritic cell biology and its role in tumor immunotherapy. [J] Hematol Oncol. 2020;13(1):107.
[[171]]
Liu QY, Yao YM, Zhang SW, et al.Astragalus polysaccharides regulate T cell-mediated immunity via CD11c(high)CD45RB(low) DCs in vitro. J Ethnopharmacol. 2011;136(3):457-464.
[[172]]
Hira SK, Mondal I, Manna PP.Combined immunotherapy with whole tumor lysate-pulsed interleukin-15-activated dendritic cells and cucurbitacin I promotes strong CD8(+) T-cell responses and cures highly aggressive lymphoma. Cytotherapy. 2015;17(5):647-664.
[[173]]
Huang HF, Zeng Z, Chen MQ.Roles of Kupffer cells in liver transplantation. Hepatogastroenterology. 2012;59(116):1251-1257.
[[174]]
Youn JI, Nagaraj S, Collazo M, et al. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. [J] Immunol. 2008;181(8):5791-5802.
[[175]]
Kusmartsev S, Nagaraj S, Gabrilovich DI. Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. [J] Immunol. 2005;175(7):4583-4592.
[[176]]
Chen J, Ye Y, Liu P, et al. Suppression of T cells by myeloid-derived suppressor cells in cancer. Hum Immunol. 2017;78(2):113-119.
[[177]]
Chesney JA, Mitchell RA, Yaddanapudi K. Myeloid-derived suppressor cells-a new therapeutic target to overcome resistance to cancer immunotherapy. [J] Leukoc Biol. 2017;102(3):727-740.
[[178]]
Brouet I, Ohshima H. Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun. 1995;206(2):533-540.
[[179]]
Dikshit M, Rastogi L, Shukla R, et al. Prevention of ischaemia-induced biochemical changes by curcumin & quinidine in the cat heart. Indian [J] Med Res. 1995;101:31-35.
[[180]]
Heger M, van Golen RF, Broekgaarden M, et al. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev. 2014;66(1):222-307.
[[181]]
Tian S, Liao L, Zhou Q, et al. Curcumin inhibits the growth of liver cancer by impairing myeloid-derived suppressor cells in murine tumor tissues. Oncol Lett. 2021;21(4):286.
[[182]]
Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer [J] Clin. 2014;64(2):104-117.
[[183]]
Fu LQ, Du WL, Cai MH, et al. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol. 2020;353:104119.
[[184]]
Nielsen SR, Schmid MC. Macrophages as key drivers of cancer progression and metastasis. Mediators Inflamm. 2017;2017:9624760.
[[185]]
Mantovani A, Allavena P. The interaction of anticancer therapies with tumor-associated macrophages. [J] Exp Med. 2015;212(4):435-445.
[[186]]
Yuan R, Li S, Geng H, et al. Reversing the polarization of tumor-associated macrophages inhibits tumor metastasis. Int Immunopharmacol. 2017;49:30-37.
[[187]]
Arlauckas SP, Garren SB, Garris CS, et al. Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages. Theranostics. 2018;8(21):5842-5854.
[[188]]
Bonilla FA, Oettgen HC. Adaptive immunity. [J] Allergy Clin Immunol. 2010;125(2 Suppl 2):S33-S40.
[[189]]
Chapman NM, Chi H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity. 2022;55(1):14-30.
[[190]]
Cao ZY, Chen XZ, Liao LM, et al. Fuzheng Yiliu Granule inhibits the growth of hepatocellular cancer by regulating immune function and inducing apoptosis in vivo and in vitro. Chin [J] Integr Med. 2011;17(9):691-697.
[[191]]
Murakami H, Ogawara H, Hiroshi H. Th1/Th2 cells in patients with multiple myeloma. Hematology. 2004;9(1):41-45.
[[192]]
Tosolini M, Kirilovsky A, Mlecnik B, et al.Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71(4):1263-1271.
[[193]]
Chen L, Musa AE. Boosting immune system against cancer by resveratrol. Phytother Res. 2021;35(10):5514-5526.
[[194]]
He H, Jiang H, Chen Y, et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun. 2018;9(1):2550.
[[195]]
Wang S, Yang H, Yu L, et al. Oridonin attenuates Aβ1-42-induced neuroinflammation and inhibits NF-κB pathway. PLoS One. 2014;9(8):e104745.
[[196]]
Jeon MY, Seo SU, Woo SM, et al. Oridonin enhances TRAIL-induced apoptosis through GALNT14-mediated DR5 glycosylation. Biochimie. 2019;165:108-114.
[[197]]
Takahashi T, Tagami T, Yamazaki S, et al.Immunologic self-tolerance maintained by CD25(+)CD4 2000;192(2):303-310.
[[198]]
Cortés JR, Sánchez-Díaz R, Bovolenta ER, et al. Maintenance of immune tolerance by Foxp3+ regulatory T cells requires CD69 expression. [J] Autoimmun. 2014;55:51-62.
[[199]]
Borst J, Ahrends T, Bąbała N, et al.CD4(+) T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18(10):635-647.
[[200]]
Biswas K, Richmond A, Rayman P, et al. GM2 expression in renal cell carcinoma: potential role in tumor-induced T-cell dysfunction. Cancer Res. 2006;66(13):6816-6825.
[[201]]
Reina-Campos M, Scharping NE, Goldrath AW.CD8(+) T cell metabolism in infection and cancer. Nat Rev Immunol. 2021;21(11):718-738.
[[202]]
Maimela NR, Liu S, Zhang Y.Fates of CD8+ T cells in tumor microenvironment. Comput Struct Biotechnol J. 2019;17:1-13.
[[203]]
Majidpoor J, Mortezaee K. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Clin Immunol. 2021;226:108707.
[[204]]
Chen HY, Xu L, Li LF, et al.Inhibiting the CD8(+) T cell infiltration in the tumor microenvironment after radiotherapy is an important mechanism of radioresistance. Sci Rep. 2018;8(1):11934.
[[205]]
Gimeno L, Serrano-López EM, Campillo JA, et al. KIR+ CD8+ T lymphocytes in cancer immunosurveillance and patient survival: gene expression profiling. Cancers (Basel). 2020;12(10):2991.
[[206]]
Vihervuori H, Autere TA, Repo H, et al.Tumor-infiltrating lymphocytes and CD8(+) T cells predict survival of triple-negative breast cancer. J Cancer Res Clin Oncol. 2019;145(12):3105-3114.
[[207]]
Golden EB, Frances D, Pellicciotta I, et al. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology. 2014;3:e28518.
[[208]]
Huang D, Yang Y, Zhang S, et al. Regulatory T-cell density and cytotoxic T lymphocyte density are associated with complete response to neoadjuvant paclitaxel and carboplatin chemoradiotherapy in gastric cancer. Exp Ther Med. 2018;16(5):3813-3820.
[[209]]
Heeren AM, van Luijk IF, Lakeman J, et al. Neoadjuvant cisplatin and paclitaxel modulate tumor-infiltrating T cells in patients with cervical cancer. Cancer Immunol Immunother. 2019;68(11):1759-1767.
[[210]]
Coleman S, Clayton A, Mason MD, et al. Recovery of CD8+ T-cell function during systemic chemotherapy in advanced ovarian cancer. Cancer Res. 2005;65(15):7000-7006.
[[211]]
Laumont CM, Banville AC, Gilardi M, et al. Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities. Nat Rev Cancer. 2022;22(7):414-430.
[[212]]
Berntsson J, Nodin B, Eberhard J, et al. Prognostic impact of tumour-infiltrating B cells and plasma cells in colorectal cancer. Int [J] Cancer. 2016;139(5):1129-1139.
[[213]]
Cillo AR, Kürten CHL, Tabib T, et al. Immune landscape of viral- and carcinogen-driven head and neck cancer. Immunity.2020;52(1):183-199.e9.
[[214]]
Garaud S, Buisseret L, Solinas C, et al. Tumor infiltrating B-cells signal functional humoral immune responses in breast cancer. JCI Insight. 2019;5(18):e129641.
[[215]]
Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577(7791):549-555.
[[216]]
Shi JY, Gao Q, Wang ZC, et al.Margin-infiltrating CD20(+) B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma. Clin Cancer Res. 2013;19(21):5994-6005.
[[217]]
Wei X, Jin Y, Tian Y, et al. Regulatory B cells contribute to the impaired antitumor immunity in ovarian cancer patients. Tumour Biol. 2016;37(5):6581-6588.
[[218]]
Zhou X, Su YX, Lao XM, et al.CD19(+)IL-10 2016;53:27-35.
[[219]]
Hu X, Zhang J, Wang J, et al. Publisher correction: landscape of B cell immunity and related immune evasion in human cancers. Nat Genet. 2019;51(6):1068.
[[220]]
Zhang HZ, Drewe J, Tseng B, et al. Discovery and SAR of indole-2-carboxylic acid benzylidene-hydrazides as a new series of potent apoptosis inducers using a cell-based HTS assay. Bioorg Med Chem. 2004;12(13):3649-3655.
[[221]]
Xue J, Jin X, Wan X, et al. Effects and mechanism of tanshinone II A in proliferation, apoptosis, and migration of human colon cancer cells. Med Sci Monit. 2019;25:4793-4800.
[[222]]
Li X, Li Z, Li X, et al. Mechanisms of tanshinone II a inhibits malignant melanoma development through blocking autophagy signal transduction in A375 cell. BMC Cancer. 2017;17(1):357.
[[223]]
Au Yeung CL, Co NN, Tsuruga T, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 2016;7:11150.
[[224]]
Hu Y, Wang S, Wu X, et al. Chinese herbal medicine-derived compounds for cancer therapy: a focus on hepatocellular carcinoma. [J] Ethnopharmacol. 2013;149(3):601-612.
[[225]]
Zhou J, Jiang YY, Wang XX, et al. Tanshinone IIA suppresses ovarian cancer growth through inhibiting malignant properties and angiogenesis. Ann Transl Med. 2020;8(20):1295.
[[226]]
Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol. 2003;4(4):337-342.
[[227]]
Miyara M, Sakaguchi S.Human FoxP3(+)CD4 2011;89(3):346-351.
[[228]]
Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330-336.
[[229]]
Salama P, Phillips M, Grieu F, et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. [J] Clin Oncol. 2009;27(2):186-192.
[[230]]
Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: can Treg cells be a new therapeutic target? Cancer Sci. 2019;110(7):2080-2089.
[[231]]
Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27(1):109-118.
[[232]]
Zheng Y, Ren W, Zhang L, et al. A review of the pharmacological action of Astragalus polysaccharide. Front Pharmacol. 2020;11:349.
[[233]]
Li Q, Bao JM, Li XL, et al. Inhibiting effect of Astragalus polysaccharides on the functions of CD4+CD25 high Treg cells in the tumor microenvironment of human hepatocellular carcinoma. Chin Med J (Engl). 2012;125(5):786-793.
[[234]]
Li W, Hu X, Wang S, et al. Detection and evaluation of anti-cancer efficiency of Astragalus polysaccharide via a tissue engineered tumor model. Macromol Biosci. 2018;18(11):e1800223.
[[235]]
Li CX, Liu Y, Zhang YZ, et al. Astragalus polysaccharide: a review of its immunomodulatory effect. Arch Pharm Res. 2022;45(6):367-389.
[[236]]
Majidzadeh H, Araj-Khodaei M, Ghaffari M, et al. Nano-based delivery systems for berberine: a modern anti-cancer herbal medicine. Colloids Surf B Biointerfaces. 2020;194:111188.
[[237]]
Gadekar V, Borade Y, Kannaujia S, et al. Nanomedicines accessible in the market for clinical interventions. [J] Control Release. 2021;330:372-397.
[[238]]
Creek C, Xiangfu G, Qiang Z. Research progress in nano formulations. Basic Sci China. 2022;24(2):9-19.
[[239]]
Bahloul B, Castillo-Henríquez L, Jenhani L, et al. Nanomedicine-based potential phyto-drug delivery systems for diabetes. [J] Drug Delivery Sci Technol. 2023;82:104377.
[[240]]
Li Y, Wu J, Lu Q, et al. GA&HA-modified liposomes for co-delivery of aprepitant and curcumin to inhibit drug-resistance and metastasis of hepatocellular carcinoma. Int [J] Nanomedicine. 2022;17:2559-2575.
[[241]]
Xu H, Hu M, Liu M, et al. Nano-puerarin regulates tumor microenvironment and facilitates chemo-and immunotherapy in murine triple negative breast cancer model. Biomaterials. 2020;235:119769.
[[242]]
Kumar S, Kesharwani SS, Kuppast B, et al.Pathogen-mimicking vaccine delivery system designed with a bioactive polymer (inulin acetate) for robust humoral and cellular immune responses. J Control Release. 2017;261:263-274.
[[243]]
Mosely S, Prime J, Sainson R, et al. Rational selection of syngeneic preclinical tumor models for immunotherapeutic drug discovery. Cancer Immunol Res. 2017;5(1):29-41.
[[244]]
Duan X, Chan C, Han W, et al. Immunostimulatory nanomedicines synergize with checkpoint blockade immunotherapy to eradicate colorectal tumors. Nat Commun. 2019;10(1):1899.
[[245]]
Sulaiman GM, Waheeb HM, Jabir MS, et al. Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Sci Rep. 2020;10(1):9362.
[[246]]
AbouAitah K, Hassan HA, Swiderska-Sroda A, et al. Targeted nano-drug delivery of colchicine against colon cancer cells by means of mesoporous silica nanoparticles. Cancers. 2020;12(1):144.
[[247]]
Ren Z, Chen X, Hong L, et al. Nanoparticle conjugation of ginsenoside Rg3 inhibits hepatocellular carcinoma development and metastasis. Small. 2020;16(2):e1905233.
[[248]]
You L, Cha S, Kim MY, et al. Ginsenosides are active ingredients in Panax ginseng with immunomodulatory properties from cellular to organismal levels. [J] Ginseng Res. 2022;46(6):711-721.
[[249]]
Wang M-Z, He X, Yu Z, et al. A nano drug delivery system based on Angelica sinensis polysaccharide for combination of chemotherapy and immunotherapy. Molecules. 2020;25(13):3096.
[[250]]
Cai X, Yang Q, Weng Q, et al. pH sensitive doxorubicin-loaded nanoparticle based on Radix pseudostellariae protein-polysaccharide conjugate and its improvement on HepG2 cellular uptake of doxorubicin. Food Chem Toxicol. 2020;136:111099.
[[251]]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. [J] Nanobiotechnol. 2018;16(1):71.
[[252]]
Tagde P, Najda A, Nagpal K, et al. Nanomedicine-based delivery strategies for breast cancer treatment and management. Int [J] Mol Sci. 2022;23(5):2856.
[[253]]
Liu Z, Xing J, Zheng S, et al. Ganoderma lucidum polysaccharides encapsulated in liposome as an adjuvant to promote Th1-bias immune response. Carbohydr Polym. 2016;142:141-148.
[[254]]
Sesarman A, Tefas L, Sylvester B, et al. Anti-angiogenic and anti-inflammatory effects of long-circulating liposomes co-encapsulating curcumin and doxorubicin on C26 murine colon cancer cells. Pharmacol Rep. 2018;70(2):331-339.
[[255]]
Cao M, Yan H, Han X, et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. [J] ImmunoTher Cancer. 2019;7:1-18.
[[256]]
Duong V-A, Nguyen T-T-L, Maeng H-J. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method. Molecules. 2020;25(20):4781.
[[257]]
Zhu J, Huang Y, Zhang J, et al. Formulation, preparation and evaluation of nanostructured lipid carrier containing naringin and coix seed oil for anti-tumor application based on “unification of medicines and excipients.”. Drug Des Devel Ther. 2020;1481:1491.
[[258]]
Gao Q, Feng J, Liu W, et al. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv Drug Deliv Rev. 2022;188:114445.
[[259]]
Yu Z, Guo J, Hu M, et al. Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano. 2020;14(4):4816-4828.
[[260]]
Han S, Bi S, Guo T, et al. Nano co-delivery of Plumbagin and Dihydrotanshinone I reverses immunosuppressive TME of liver cancer. [J] Control Release. 2022;348:250-263.
[[261]]
Xiao Z, Su Z, Han S, et al. Dual pH-sensitive nanodrug blocks PD-1 immune checkpoint and uses T cells to deliver NF-κB inhibitor for antitumor immunotherapy. Sci Adv.2020;6(6):eaay7785.
[[262]]
Xu JJ, Zhang WC, Guo YW, et al. Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Deliv. 2022;29(1):664-678.
[[263]]
Păduraru DN, Ion D, Niculescu AG, et al. Recent developments in metallic nanomaterials for cancer therapy, diagnosing and imaging applications. Pharmaceutics. 2022;14(2):435.
[[264]]
Wang X, Zhang H, Chen X, et al. Overcoming tumor microenvironment obstacles: current approaches for boosting nanodrug delivery. Acta Biomater. 2023;166:42-68.
[[265]]
Amanlou N, Parsa M, Rostamizadeh K, et al. Enhanced cytotoxic activity of curcumin on cancer cell lines by incorporating into gold/chitosan nanogels. Mater Chem Phys. 2019;226:151-157.
[[266]]
Dadfar SM, Roemhild K, Drude NI, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019;138:302-325.
[[267]]
Fan M, Shan M, Lan X, et al. Anti-cancer effect and potential microRNAs targets of ginsenosides against breast cancer. Front Pharmacol. 2022;13:1033017.
[[268]]
Narayan R, Nayak UY, Raichur AM, et al. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10(3):118.
[[269]]
Zhang B, Liu Q, Liu M, et al. Biodegradable hybrid mesoporous silica nanoparticles for gene/chemo-synergetic therapy of breast cancer. [J] Biomater Appl. 2019;33(10):1382-1393.
[[270]]
Qiu N, Liu Y, Liu Q, et al. Celastrol nanoemulsion induces immunogenicity and downregulates PD-L1 to boost abscopal effect in melanoma therapy. Biomaterials. 2021;269:120604.
[[271]]
Fang L, Lin H, Wu Z, et al. In vitro/vivo evaluation of novel mitochondrial targeting charge-reversal polysaccharide-based antitumor nanoparticle. Carbohydr Polym. 2020;234:115930.
[[272]]
Kim J, Zhu Y, Chen S, et al. Anti-glioma effect of ginseng-derived exosomes-like nanoparticles by active blood-brain-barrier penetration and tumor microenvironment modulation. [J] Nanobiotechnol. 2023;21(1):1-19.
[[273]]
Zheng D, Zhao J, Tao Y, et al.pH and glutathione dual responsive nanoparticles based on Ganoderma lucidum polysaccharide for potential programmable release of three drugs. Chem Eng J. 2020;389:124418.
[[274]]
Meng X, Lei Y, Zhang X, et al. Cancer immunotherapy: classification, therapeutic mechanisms, and nanomaterial-based synergistic therapy. Appl Mater Today. 2021;24:101149.

版权

2024 Acupuncture and Herbal Medicine
PDF(5519 KB)

Accesses

Citation

Detail

段落导航
相关文章

/