
Acupuncture-induced gene co-expression networks in postmenopausal women with osteoarthritis and osteoporosis: in-silico analysis
Acupuncture and Herbal Medicine ›› 2024, Vol. 4 ›› Issue (4) : 538-551.
Acupuncture-induced gene co-expression networks in postmenopausal women with osteoarthritis and osteoporosis: in-silico analysis
Objective: Bone is a tissue that is constantly remodeled to adjust the microarchitecture and maintain the mechanical needs of bone through the balance of bone resorption and formation processes. Alterations in these processes can lead to the development of different diseases, such as osteoarthritis and osteoporosis. In recent years, it has been shown that acupuncture is an effective treatment for pain, physical dysfunctions, and the immune system, so the stimulation of acupuncture points could affect genes associated with inflammatory processes and, therefore, osteoarthritis and osteoporosis. To analyze changes in gene expression post-acupuncture in data from a group of individuals with osteoarthritis that also manifests in osteoporosis.
Methods: Through using microarray technology and bioinformatics analysis, potential genes associated with osteoarthritis after acupuncture treatment are identified and compared with genes implicated in osteoporosis. The genes identified in each disease were evaluated through a Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis, where the results allowed the generation of an in-silico model that shows interaction networks between signaling pathways and genes involved in both diseases.
Results: In this interaction, 37 differentially expressed genes were identified in patients with osteoarthritis before and after acupuncture treatment, and 665 differentially expressed genes were involved in osteoporosis. In the osteoarthritis group, 15 signaling pathways involved in this disease were obtained, and for osteoporosis, 13 signaling pathways associated with immunological processes that participate in bone metabolism were obtained osteoarthritis and osteoporosis are two age-associated diseases that are characterized by alterations in the bone remodeling mechanism induced by changes in gene expression profiles.
Conclusions: Treatment with acupuncture can modify various cytokines involved in diseases related to the immune system so that it can have beneficial effects on osteoarthritis and osteoporosis. In addition, bioinformatics analysis allows us to know those signaling pathways through which they could have acupuncture effects.
Acupuncture / Genes / Osteoarthritis / Osteoporosis / Signaling pathway
[[1]] |
Srivastava RK, Sapra L, Mishra PK. Osteometabolism: metabolic alterations in bone pathologies. Cells. 2022;11(23):3943.
|
[[2]] |
Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006;1092:385-396.
|
[[3]] |
Wang L, You X, Zhang L, et al. Mechanical regulation of bone remodeling. Bone Res. 2022;10(1):16.
|
[[4]] |
Judex S, Gupta S, Rubin C. Regulation of mechanical signals in bone. Orthod Craniofac Res. 2009;12(2):94-104.
|
[[5]] |
Hart NH, Newton RU, Tan J, et al. Biological basis of bone strength: anatomy, physiology and measurement. [J] Musculoskelet Neuronal Interact. 2020;20(3):347-371.
|
[[6]] |
Thudium CS, Nielsen SH, Sardar S, et al. Bone phenotypes in rheumatology—there is more to bone than just bone. BMC Musculoskelet Disord. 2020;21(1):789.
|
[[7]] |
Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function, and cartilage-bone crosstalk. Nat Rev Rheumatol. 2016;12:632-644.
|
[[8]] |
Pouresmaeili F, Kamalidehghan B, Kamarehei M, et al. A comprehensive overview of osteoporosis and its risk factors. Ther Clin Risk Manag. 2018;14:2029-2049.
|
[[9]] |
Salman LA, Ahmed G, Dakin SG, et al. Osteoarthritis: a narrative review of molecular approaches to disease management. Arthritis Res Ther. 2023;25(27):1-9.
|
[[10]] |
Hanna FS, Wluka AE, Bell RJ, et al. Osteoarthritis and the postmenopausal woman: epidemiological, magnetic resonance imaging, and radiological findings. Semin Arthritis Rheum. 2004;34(3):631-636.
|
[[11]] |
GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021BD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023;5(9):e508-e522.
|
[[12]] |
Phetfong J, Sanvoranart T, Nartprayut K, et al. Osteoporosis: the current status of mesenchymal stem cell-based therapy. Cell Mol Biol Lett. 2016;21:12.
|
[[13]] |
Shen Y, Huang X, Wu J, et al. The global burden of osteoporosis, low bone mass, and its related fracture in 204 countries and territories, 1990-2019. Front Endocrinol (Lausanne). 2022;13:882241.
|
[[14]] |
Odén A, McCloskey EV, Kanis JA, et al. Burden of high fracture probability worldwide: secular increases 2010-2040. Osteoporos Int. 2015;26(9):2243-2248.
|
[[15]] |
Ramonda R, Sartori L, Ortolan A, et al. The controversial relationship between osteoarthritis and osteoporosis: an update on hand subtypes. Int [J] Rheum Dis. 2016;19(10):954-960.
|
[[16]] |
Dhaon P, Das SK, Srivastava R, et al. Osteoporosis in postmenopausal females with primary knee osteoarthritis in a vitamin D deficient population. [J] Assoc Physicians India. 2017;65(11):26-29.
|
[[17]] |
Roux C, Fechtenbaum J, Briot K, et al. Inverse relationship between vertebral fractures and spine osteoarthritis in postmenopausal women with osteoporosis. Ann Rheum Dis. 2008;67(2):224-228.
|
[[18]] |
Geusens PP, Van Den Bergh JP. Osteoporosis and osteoarthritis: shared mechanisms and epidemiology. Curr Opin Rheumatol. 2016;28(2):97-103.
|
[[19]] |
Rozenberg S, Al-Daghri N, Aubertin-Leheudre M, et al. Is there a role for menopausal hormone therapy in the management of postmenopausal osteoporosis? Osteoporos Int. 2020;31(12):2271-2286.
|
[[20]] |
Bayat A. Science, medicine, and the future: bioinformatics. BMJ. 2002;324(7344):1018-1022.
|
[[21]] |
Lyu M, Cui C, Chen P, et al. Identification of osteoporosis markers through bioinformatic functional analysis of serum proteome. Medicine (Baltim). 2020;99(39):e22172.
|
[[22]] |
National Center for Biotechnology Information. Gene expression omnibus. Available from: https://www.ncbi.nlm.nih.gov/geo/. con número de acceso: GSE59526. Consulted on November 19, 2024.
|
[[23]] |
Jiménez-Ortega RF, Ramírez-Salazar EG, Parra-Torres AY, et al. Identification of microRNAs in human circulating monocytes of postmenopausal osteoporotic Mexican-Mestizo women: a pilot study. Exp Ther Med. 2017;14(6):5464-5472.
|
[[24]] |
Liu YZ, Dvornyk V, Lu Y, et al. A novel pathophysiological mechanism for osteoporosis suggested by an in vivo gene expression study of circulating monocytes. [J] Biol Chem. 2005;280(32):29011-29016.
|
[[25]] |
McCall MN, Bolstad BM, Irizarry RA. Frozen robust multiarray analysis (fRMA). Biostatistics. 2010;11(2):242-253.
|
[[26]] |
Cui X, Churchill GA. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol. 2003;4(4):210.
|
[[27]] |
Barman RK, Mukhopadhyay A, Maulik U, et al. Identification of infectious disease-associated host genes using machine learning techniques. BMC Bioinf. 2019;20(1):736.
|
[[28]] |
Sherman BT, Hao M, Qiu J, et al.DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216-W221.
|
[[29]] |
Stampone E, Caldarelli I, Zullo A, et al. Genetic and epigenetic control of CDKN1C expression: importance in cell commitment and differentiation, tissue homeostasis and human diseases. Int [J] Mol Sci. 2018;19(4):1055.
|
[[30]] |
Zou L, Liao M, Zhen Y, et al.Autophagy and beyond: unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharm Sin B. 2022;12(10):3743-3782.
|
[[31]] |
Pasteris NG, Nagata K, Hall A, et al.Isolation, characterization, and mapping of the mouse Fgd3 gene, a new Faciogenital Dysplasia (FGD1; Aarskog Syndrome) gene homologue. Gene. 2000;242(1-2):237-247.
|
[[32]] |
Jeffries MA, Donica M, Baker LW, et al. Genome-wide DNA methylation study identifies significant epigenomic changes in osteoarthritic subchondral bone and similarity to overlying cartilage. Arthritis Rheumatol. 2016;68(6):1403-1414.
|
[[33]] |
Boros FA, Vécsei L. Immunomodulatory effects of genetic alterations affecting the kynurenine pathway. Front Immunol. 2019;10:2570.
|
[[34]] |
Visconti VV, Cariati I, Fittipaldi S, et al. DNA methylation signatures of bone metabolism in osteoporosis and osteoarthritis aging-related diseases: an updated review. Int [J] Mol Sci. 2021;22(8):4244.
|
[[35]] |
Li T, Yuan J, Xu P, et al. PMAIP1, a novel diagnostic and potential therapeutic biomarker in osteoporosis. Aging (Albany NY). 2024;16(4):3694-3715.
|
[[36]] |
Lyu G, Wu R, Wang B, et al. SPTLC2 ameliorates chondrocyte dysfunction and extracellular matrix metabolism disturbance in vitro and in vivo in osteoarthritis. Exp Cell Res. 2023;425(1):113524.
|
[[37]] |
Im GI, Kim MK. The relationship between osteoarthritis and osteoporosis. [J] Bone Miner Metab. 2014;32(2):101-109.
|
[[38]] |
Salari N, Ghasemi H, Mohammadi L, et al. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. [J] Orthop Surg Res. 2021;16(1):609.
|
[[39]] |
Ding C, Cicuttini F, Boon C, et al. Knee, and hip radiographic osteoarthritis predict total hip bone loss in older adults: a prospective study. [J] Bone Miner Res. 2010;25(4):858-865.
|
[[40]] |
Calvo E, Castañeda S, Largo R, et al. Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits. Osteoarthritis Cartilage. 2007;15(1):69-77.
|
[[41]] |
Bellido M, Lugo L, Roman-Blas JA, et al. Subchondral bone microstructural damage by increased remodeling aggravates experimental osteoarthritis preceded by osteoporosis. Arthritis Res Ther. 2010;12(4):R152.
|
[[42]] |
Day JS, Ding M, Van Der Linden JC, et al. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. [J] Orthop Res. 2001;19(5):914-918.
|
[[43]] |
Bai RJ, Li YS, Zhang FJ. Osteopontin is a bridge that links osteoarthritis and osteoporosis. Front Endocrinol (Lausanne). 2022;13:1012508.
|
[[44]] |
Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int [J] Mol Sci. 2019;20(23):6008.
|
[[45]] |
Wang Z, Yang Y, He M, et al. Association between interleukin-6 gene polymorphisms and bone mineral density: a meta-analysis. Genet Test Mol Biomarkers. 2013;17(12):898-909.
|
[[46]] |
Tang BM, Li ZW, Wang ZY. PERK activator CCT020312 prevents inflammation-mediated osteoporosis in ovariectomized rats. Gynecol Endocrinol. 2021;37(4):342-348.
|
[[47]] |
Gao X, Wu Q, Zhang X, et al. Salvianolate ameliorates osteopenia and improves bone quality in prednisone-treated rheumatoid arthritis rats by regulating RANKL/RANK/OPG signaling. Front Pharmacol. 2021;12:710169.
|
[[48]] |
Scanzello CR. Chemokines and inflammation in osteoarthritis: insights from patients and animal models. [J] Orthop Res. 2017;35(4):735-739.
|
[[49]] |
Zhang Y, Liu D, Vithran DTA, et al. CC chemokines and receptors in osteoarthritis: new insights and potential targets. Arthritis Res Ther. 2023;25(1):113.
|
[[50]] |
Qu Y, Chen S, Han M, et al. Osteoporosis and osteoarthritis: a bi-directional Mendelian randomization study. Arthritis Res Ther. 2023;25(1):242.
|
[[51]] |
Ribeiro MSP, Venturini LGR, Speck-Hernandez CA, et al. AMPKα1 negatively regulates osteoclastogenesis and mitigates pathological bone loss. [J] Biol Chem. 2023;299(12):105379.
|
[[52]] |
Wang J, Li J, Song D, et al. AMPK: implications in osteoarthritis and therapeutic targets. Am [J] Transl Res. 2020;12(12):7670-7681.
|
[[53]] |
Kim HS, Lee NK. Gene expression profiling in osteoclast precursors by insulin using microarray analysis. Mol Cells. 2014;37(11):827-832.
|
[[54]] |
Heino TJ, Hentunen TA. Differentiation of osteoblasts and osteocytes from mesenchymal stem cells. Curr Stem Cell Res Ther. 2008;3(2):131-145.
|
[[55]] |
Pierce JL, Roberts RL, Yu K, et al. Kynurenine suppresses osteoblastic cell energetics in vitro and osteoblast numbers in vivo. Exp Gerontol. 2020;130:110818.
|
[[56]] |
Rahman S, Szojka ARA, Liang Y, et al. Inability of low oxygen tension to induce chondrogenesis in human infrapatellar fat pad mesenchymal stem cells. Front Cell Dev Biol. 2021;9:703038.
|
[[57]] |
Thomsen LN, Thomsen PD, Downing A, et al. FOXO1, PXK, PYCARD and SAMD9L are differentially expressed by fibroblast-like cells in equine synovial membrane compared to joint capsule. BMC Vet Res. 2017;13(1):106.
|
[[58]] |
Haseeb A, Haqqi TM. Immunopathogenesis of osteoarthritis. Clin Immunol. 2013;146(3):185-196.
|
[[59]] |
Zhang W, Gao R, Rong X, et al. Immunoporosis: role of immune system in the pathophysiology of different types of osteoporosis. Front Endocrinol (Lausanne). 2022;13:965258.
|
[[60]] |
Torres-Rosas R, Yehia G, Peña G, et al. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat Med. 2014;20(3):291-295.
|
[[61]] |
Oh JE, Kim SN. Anti-inflammatory effects of acupuncture at ST36 point: a literature review in animal studies. Front Immunol. 2022;12:813748.
|
[[62]] |
Yu Y, Xu X, Tan D, et al. A study on the use of acupoint catgut embedding in the treatment of pre-diabetes: a meta-analysis and data mining approach. Front Public Health. 2023;11:1282720.
|
[[63]] |
Hurtado-Lozano DL, Ángel-Macias MA. La acupuntura en el manejo de la osteoartritis. Revista Int Acupuntura. 2012;6(2):64-69.
|
[[64]] |
Zhang Q, Fang J, Chen L, et al. Different kinds of acupuncture treatments for knee osteoarthritis: a multicentre, randomized controlled trial. Trials. 2020;21(264):1-10.
|
[[65]] |
Xie DP, Zhou GB, Chen RL, et al.Effect of electroacupuncture at Zusanli (ST36) on sepsis induced by cecal ligation puncture and its relevance to spleen. Evid Based Complement Alternat Med. 2020;2020(1):1914031.
|
[[66]] |
Xiang X, Wang S, Shao F, et al. Electroacupuncture stimulation alleviates CFA-induced inflammatory pain via suppressing P2X3 expression. Int [J] Mol Sci. 2019;20(13):3248.
|
[[67]] |
Karatay S, Akcay F, Yildirim K, et al.Effects of some acupoints (Du-14, Li-11, St-36, and Sp-6) on serum TNF-α and hsCRP levels in healthy young subjects. J Altern Complement Med. 2011;17(4):347-350.
|
[[68]] |
Li Z, Dai A, Yang M, et al. p38MAPK signaling pathway in osteoarthritis: pathological and therapeutic aspects. [J] Inflamm Res. 2022;15:723-734.
|
[[69]] |
Kotlarz A, Tukaj S, Krzewski K, et al. Human Hsp40 proteins, DNAJA1 and DNAJA2, as potential targets of the immune response triggered by bacterial DnaJ in rheumatoid arthritis. Cell Stress Chaperones. 2013;18(5):653-659.
|
[[70]] |
Laragione T, Harris C, Rice N, et al. The dual specificity phosphatase 6 (DUSP6) regulates arthritis severity and Ll10 production [abstract]. Arthritis Rheumatol.2023;75(suppl 9.
|
[[71]] |
Caba M, Valdez P. Ritmos Circadianos de la Célula al ser humano. Primera edición. México: Universidad Veracruzana; 2015: 247.
|
[[72]] |
Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103(2):239-252.
|
[[73]] |
Loeser RF, Chubinskaya S, Pacione C, et al. Basic fibroblast growth factor inhibits the anabolic activity of insulin-like growth factor 1 and osteogenic protein 1 in adult human articular chondrocytes. Arthritis Rheum. 2005;52(12):3910-3917.
|
[[74]] |
Johnson GL, Nakamura K. The c-jun kinase/stress-activated pathway: regulation, function, and role in human disease. Biochim Biophys Acta. 2007;1773(8):1341-1348.
|
[[75]] |
Han G, Zuo J, Holliday LS. Specialized roles for actin in osteoclasts: unanswered questions and therapeutic opportunities. Biomolecules. 2019;9(1):17.
|
[[76]] |
Rached MT, Kode A, Xu L, et al. FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab. 2010;11(2):147-160.
|
[[77]] |
Chen J, Long F. mTOR signaling in skeletal development and disease. Bone Res. 2018;6:1.
|
/
〈 |
|
〉 |