Multi-layered effects of Codonopsis Radix on the immune system

Acupuncture and Herbal Medicine ›› 2024, Vol. 4 ›› Issue (3) : 405-419.

PDF(1049 KB)
PDF(1049 KB)
Acupuncture and Herbal Medicine ›› 2024, Vol. 4 ›› Issue (3) : 405-419. DOI: 10.1097/HM9.0000000000000130
research-article

作者信息 +

Multi-layered effects of Codonopsis Radix on the immune system

Author information +
History +

Abstract

Recent research has highlighted the potential of Codonopsis Radix to modulate the immune system, making it a promising candidate for treating chronic inflammatory and cardiovascular diseases, tumors, and aging. However, because of the complex immune activities of its various components, a comprehensive understanding of Codonopsis Radix immune-regulating properties is still lacking. This knowledge gap hinders its widespread utilization in clinical practice. Therefore, this review aimed to assess the impact of Codonopsis Radix on the immune system and elucidate its underlying mechanisms. Additionally, we compared the immunomodulatory effects of different active ingredients derived from Codonopsis Radix to provide a theoretical basis for future investigations on immunomodulation.

Keywords

Active ingredients / Codonopsis Radix / Immune system / Immunomodulation herbal medicine / Traditional Chinese medicine

引用本文

导出引用
. . Acupuncture and Herbal Medicine. 2024, 4(3): 405-419 https://doi.org/10.1097/HM9.0000000000000130

参考文献

[[1]]
Gao SM, Liu JS, Wang M, et al. Traditional uses, phytochemistry, pharmacology and toxicology of Codonopsis: a review. J Ethnopharmacol 2018;219:50-70.
[[2]]
He JY, Ma N, Zhu S, et al. The genus Codonopsis (Campanulaceae): a review of phytochemistry, bioactivity and quality control. J Nat Med 2015;69(1):1-21.
[[3]]
Gao S, Liu J, Wang M, et al. Exploring on the bioactive markers of Codonopsis radix by correlation analysis between chemical constituents and pharmacological effects. J Ethnopharmacol 2019;236:31-41.
[[4]]
Wu GL, Li TY, Fan YS, et al. Effect of Chinese herbal medicine for nourishing yin, supplementing qi, and activating blood on the Th1/Th2 immune balance in peripheral blood in patients with primary Sjogren’s syndrome. Chin J Integr Med 2013;19(9):696-700.
[[5]]
Wu GL, Wu NY, Li TY, et al. Effect of Chinese herbal medicines for nourishing yin, supplementing qi, and activating blood on reproductive endocrine activity and immune functions in patients with primary Sjogren’s syndrome. Chin J Integr Med 2015;21(10):778-783.
[[6]]
Sun QL, Li YX, Cui YS, et al. Structural characterization of three polysaccharides from the roots of Codonopsis pilosula and their immunomodulatory effects on RAW264.7 macrophages. Int J Biol Macromol 2019;130:556-563.
[[7]]
Dar AA, Abrol V, Singh N, et al. Recent bioanalytical methods for the isolation of bioactive natural products from genus Codonopsis. Phytochem Anal 2023;34(5):491-506.
[[8]]
Joh EH, Jeong JJ, Kim DH. Inhibitory effect of echinocystic acid on 12-O-tetradecanoylphorbol-13-acetate-induced dermatitis in mice. Arch Pharm Res 2014;37(2):225-231.
[[9]]
Zhang P, Hu L, Bai R, et al. Structural characterization of a pectic polysaccharide from Codonopsis pilosula and its immunomodulatory activities in vivo and in vitro. Int J Biol Macromol 2017;104(Pt A):1359-1369.
[[10]]
Chang WT, Lai TH, Chyan YJ, et al. Specific medicinal plant polysaccharides effectively enhance the potency of a DC-based vaccine against mouse mammary tumor metastasis. PLoS One 2015;10(3):e0122374.
[[11]]
Hu YR, Xing SL, Chen C, et al. Codonopsis pilosula polysaccharides alleviate Aβ (1-40)-induced PC12 cells energy dysmetabolism via CD38/NAD+ signaling pathway. Curr Alzheimer Res 2021;18(3):208-221.
[[12]]
Zheng YS, Wu ZS, Ni HB, et al. Codonopsis pilosula polysaccharide attenuates cecal ligation and puncture sepsis via circuiting regulatory T cells in mice. Shock 2014;41(3):250-255.
[[13]]
Wang D, Liu Y, Zhao W. The adjuvant effects on vaccine and the immunomodulatory mechanisms of polysaccharides from traditional Chinese medicine. Front Mol Biosci 2021;8:655570.
[[14]]
Yongxu S, Jicheng L. Structural characterization of a water-soluble polysaccharide from the roots of Codonopsis pilosula and its immunity activity. Int J Biol Macromol 2008;43(3):279-282.
[[15]]
Bai R, Li W, Li Y, et al. Cytotoxicity of two water-soluble polysaccharides from Codonopsis pilosula Nannf. var. modesta (Nannf.) L.T.Shen against human hepatocellular carcinoma HepG2 cells and its mechanism. Int J Biol Macromol 2018;120(Pt B):1544-1550.
[[16]]
Liu W, Lv X, Huang W, et al. Characterization and hypoglycemic effect of a neutral polysaccharide extracted from the residue of Codonopsis Pilosula. Carbohydr Polym 2018;197:215-226.
[[17]]
Zou YF, Zhang YY, Fu YP, et al. A polysaccharide isolated from codonopsis pilosula with immunomodulation effects both in vitro and in vivo. Molecules 2019;24(20):3632.
[[18]]
Yang C, Gou Y, Chen J, et al. Structural characterization and antitumor activity of a pectic polysaccharide from Codonopsis pilosula. Carbohydr Polym 2013;98(1):886-895.
[[19]]
Li ZT, Zhu LB, Zhang H, et al. Protective effect of a polysaccharide from stem of against renal ischemia/reperfusion injury in rats. Carbohydr Polym 2012;90(4):1739-1743.
[[20]]
Zou YF, Zhang YY, Zhu ZK, et al. Characterization of inulin-type fructans from two species of Radix Codonopsis and their oxidative defense activation and prebiotic activities. J Sci Food Agric 2021;101(6):2491-2499.
[[21]]
Wu QN, Luo M, Yao XD, et al. Purification, structural characterization, and antioxidant activity of the COP-W1 polysaccharide from Oliv. Carbohydr Polym 2020;236:116020.
[[22]]
Bai RB, Zhang YJ, Jia XS, et al. Isolation, characterization and immunomodulatory activity of oligosaccharides from Codonopsis pilosula. J Funct Foods 2020;72:104070.
[[23]]
Zhang YJ, Zhang LX, Yang JF, et al. Structure analysis of water-soluble polysaccharide CPPS isolated from Codonopsis pilosula. Fitoterapia 2010;81(3):157-161.
[[24]]
Qin T, Ren Z, Lin D, et al. Effects of selenizing Codonopsis pilosula polysaccharide on macrophage modulatory activities. J Microbiol Biotechnol 2016;26(8):1358-1366.
[[25]]
Gao Z, Zhang C, Jing L, et al. The structural characterization and immune modulation activitives comparison of Codonopsis pilosula polysaccharide (CPPS) and selenizing CPPS (sCPPS) on mouse in vitro and vivo. Int J Biol Macromol 2020;160:814-822.
[[26]]
Zhao X, Hu Y, Wang D, et al. The comparison of immune-enhancing activity of sulfated polysaccharidses from Tremella and Condonpsis pilosula. Carbohydr Polym 2013;98(1):438-443.
[[27]]
Peng Y, Song Y, Wang Q, et al. In vitro and in vivo immunomodulatory effects of fucoidan compound agents. Int J Biol Macromol 2019;127:48-56.
[[28]]
Deng Y, Xie J, Luo Z, et al. Synergistic immunomodulatory effect of complex polysaccharides from seven herbs and their major active fractions. Int J Biol Macromol 2020;165:530-541.
[[29]]
Cai D. Advances and goal in the study of chemical constituents of dangshen. China Journal of Chinese Materia Medica 1991;16(6):376-384.
[[30]]
Ichikawa M, Ohta S, Komoto N, et al. Rapid identification of triterpenoid saponins in the roots of Codonopsis lanceolata by liquid chromatography-mass spectrometry. J Nat Med 2008;62(4):423-429.
[[31]]
Li JP, Liang ZM, Yuan Z. Triterpenoid saponins and anti-inflammatory activity of Codonopsis lanceolata. Pharmazie 2007;62(6):463-466.
[[32]]
Cao M, Yu C, Yao Z, et al. Atractylodesin III maintains mitochondrial function and inhibits caspase-3 activity to reverse apoptosis of cardiomyocytes in AMI rats. Int J Clin Exp Pathol 2019;12(1):198-204.
[[33]]
Li CY, Xu HX, Han QB, et al. Quality assessment of Radix Codonopsis by quantitative nuclear magnetic resonance. J Chromatogr A 2009;1216(11):2124-2129.
[[34]]
Alizadeh M, Khodaei H, Mesgari Abbasi M, et al. Assessing the effect of 5-hydroxymethylfurfural on selected components of immune responses in mice immunised with ovalbumin. J Sci Food Agric 2017;97(12):3979-3984.
[[35]]
Zou H, Wu T, Wang Y, et al. 5-Hydroxymethylfurfural enhances the antiviral immune response in macrophages through the modulation of RIG-I-mediated interferon production and the JAK/STAT signaling pathway. ACS Omega 2021;6(42):28019-28030.
[[36]]
Gutierrez B, Gallardo I, Ruiz L, et al. Oleanolic acid ameliorates intestinal alterations associated with EAE. J Neuroinflammation 2020;17(1):363.
[[37]]
Anderson J, Imran S, Frost HR, et al. Immune signature of acute pharyngitis in a human challenge trial. Nat Commun 2022;13(1):769.
[[38]]
Gonyela O, Peter X, Dewar JB, et al. Cycloartanol and Sutherlandioside C peracetate from Sutherlandia frutescens and their immune potentiating effects. Nat Prod Res 2021;35(12):1968-1976.
[[39]]
Shen CY, Lee CF, Chou WT, et al. Liposomal β-sitosterol suppresses metastasis of CT26/luc colon carcinoma via inhibition of MMP-9 and evoke of immune system. Pharmaceutics 2022;14(6):1214.
[[40]]
Chang ZY, Chen CW, Tsai MJ, et al. The elucidation of structure-activity and structure-permeation relationships for the cutaneous delivery of phytosterols to attenuate psoriasiform inflammation. Int Immunopharmacol 2023;119:110202.
[[41]]
Wen S, He L, Zhong Z, et al. Stigmasterol restores the balance of Treg/Th17 cells by activating the butyrate-PPARγ axis in colitis. Front Immunol 2021;12:741934.
[[42]]
Jing YP, Li AP, Liu ZR, et al. Absorption of saponins by coexisting polysaccharides alleviates gut microbial dysbiosis with dextran sulfate sodium-induced colitis in model mice. Biomed Res Int 2018;2018:1781036.
[[43]]
Xu LP, Wang H, Yuan Z. Triterpenoid saponins with anti-inflammatory activity from Codonopsis lanceolata. Planta Med 2008;74(11):1412-1415.
[[44]]
Feng H, Yamaki K, Takano H, et al. Suppression of Th1 and Th2 immune responses in mice by sinomenine, an alkaloid extracted from the Chinese medicinal plant. Planta Med 2006;72(15):1383-1388.
[[45]]
Kim TS, Kang BY, Cho DH, et al. Induction of interleukin-12 production in mouse macrophages by berberine, a benzodioxoloquinolizine alkaloid, deviates CD4+ T cells from a Th2 to a Th1 response. Immunology 2003;109(3):407-414.
[[46]]
Chueh WH, Lin JY. Protective effect of isoquinoline alkaloid berberine on spontaneous inflammation in the spleen, liver and kidney of non-obese diabetic mice through downregulating gene expression ratios of pro-/anti-inflammatory and Th1/Th2 cytokines. Food Chem 2012;131(4):1263-1271.
[[47]]
Xiao WM, Yin M, Wu KY, et al. High-dose wogonin exacerbates DSS-induced colitis by up-regulating effector T cell function and inhibiting Treg cell. J Cell Mol Med 2017;21(2):286-298.
[[48]]
Dong JH, Xu O, Wang JX, et al. Luteolin ameliorates inflammation and Th1/Th2 imbalance via regulating the TLR4/NF-κB pathway in allergic rhinitis rats. Immunopharmacol Immunotoxicol 2021;43(3):319-327.
[[49]]
Coombs MRP, Harrison ME, Hoskin DW. Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells. Cancer Lett 2016;380(2):424-433.
[[50]]
Maurya AK, Vinayak M. Quercetin attenuates cell survival, inflammation, and angiogenesis via modulation of AKT signaling in murine T-cell lymphoma. Nutr Cancer 2017;69(3):470-480.
[[51]]
Ke X, Chen ZQ, Wang XQ, et al. Quercetin improves the imbalance of Th1/Th2 cells and Treg/Th17 cells to attenuate allergic rhinitis. Autoimmunity 2023;56(1):2189133.
[[52]]
Granato M, Gilardini Montani MS, Zompetta C, et al. Quercetin interrupts the positive feedback loop between STAT3 and IL-6, promotes autophagy, and reduces ROS, preventing EBV-driven B cell immortalization. Biomolecules 2019;9(9):482.
[[53]]
Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol 2010;125(2 Suppl 2):S33-S40.
[[54]]
Bai RB, Zhang YJ, Fan JM, et al. Immune-enhancement effects of oligosaccharides from Codonopsis pilosula on cyclophosphamide induced immunosuppression in mice. Food Funct 2020;11(4):3306-3315.
[[55]]
Mittra B, Saha A, Chowdhury AR, et al. Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Mol Med 2000;6(6):527-541.
[[56]]
Sugiyama T, Matsushima M, Ohdachi T, et al. Involvement of heme oxygenase-1 in suppression of T cell activation by quercetin. Immunopharmacol Immunotoxicol 2020;42(4):295-305.
[[57]]
Jing S, Chen H, Liu E, et al. Oral pectin/oligochitosan microspheres for colon-specific controlled release of quercetin to treat inflammatory bowel disease. Carbohydr Polym 2023;316:121025.
[[58]]
Meng X, Kuang H, Wang Q, et al. A polysaccharide from Codonopsis pilosula roots attenuates carbon tetrachloride-induced liver fibrosis via modulation of TLR4/NF-κB and TGF-β1/Smad3 signaling pathway. Int Immunopharmacol 2023;119:110180.
[[59]]
Zhang ZT, Zhang DY, Xie K, et al. Luteolin activates Tregs to promote IL-10 expression and alleviating caspase-11-dependent pyroptosis in sepsis-induced lung injury. Int Immunopharmacol 2021;99:107914.
[[60]]
Wang XL, Chen LJ. Effects of the rich selenium-banqiao-Codonopsis pilosula on the aged rats’ immune functions and its underlying mechanism. Chinese Journal of Applied Physiology 2014;30(5):401-404.
[[61]]
Zhan G, Yang N, Xiao B. Rich selenium-banqiao-Codonopsis Pilosula mixture enhances immune function of aging mice. Chinese Journal of Cellular and Molecular Immunology 2015;31(10):1346-1349.
[[62]]
Seo YS, Kim HS, Lee AY, et al. Codonopsis lanceolata attenuates allergic lung inflammation by inhibiting Th2 cell activation and augmenting mitochondrial ROS dismutase (SOD2) expression. Sci Rep 2019;9(1):2312.
[[63]]
Kaur G, Chauhan K, Kaur S. Immunotherapeutic potential of Codonopsis clematidea and naringenin against visceral leishmaniasis. Biomed Pharmacother 2018;108:1048-1061.
[[64]]
Deng X, Fu Y, Luo S, et al. Polysaccharide from Radix Codonopsis has beneficial effects on the maintenance of T-cell balance in mice. Biomed Pharmacother 2019;112:108682.
[[65]]
Jing Y, Li A, Liu Z, et al. Absorption of Codonopsis pilosula saponins by coexisting polysaccharides alleviates gut microbial dysbiosis with dextran sulfate sodium-induced colitis in model mice. Biomed Res Int 2018;2018:1781036.
[[66]]
Xu C, Liu Y, Yuan G, et al. The contribution of side chains to antitumor activity of a polysaccharide from Codonopsis pilosula. Int J Biol Macromol 2012;50(4):891-894.
[[67]]
Abokor AA, Mcdaniel GH, Golonka RM, et al. Immunoglobulin A, an active liaison for host-microbiota homeostasis. Microorganisms 2021;9(10):2117.
[[68]]
Wang H, Li C, Xiong Z, et al. Luteolin attenuates acute liver allograft rejection in rats by inhibiting T cell proliferation and regulating T cell subsets. Int Immunopharmacol 2023;121:110407.
[[69]]
Yang Y, Wang L, Wang S, et al. Luteolin restored Treg/Th17 balance to ameliorate allergic rhinitis in a mouse model. Immunopharmacol Immunotoxicol 2023;45(4):461-468.
[[70]]
Baumann S, Fas SC, Giaisi M, et al. Wogonin preferentially kills malignant lymphocytes and suppresses T-cell tumor growth by inducing PLCgamma1- and Ca2+-dependent apoptosis. Blood 2008;111(4):2354-2363.
[[71]]
Dandawate S, Williams L, Joshee N, et al. Scutellaria extract and wogonin inhibit tumor-mediated induction of T(reg) cells via inhibition of TGF-β1 activity. Cancer Immunol Immunother 2012;61(5):701-711.
[[72]]
Kim SH, Hong JH, Lee YC. Oleanolic acid suppresses ovalbumin-induced airway inflammation and Th2-mediated allergic asthma by modulating the transcription factors T-bet, GATA-3, RORγt and Foxp3 in asthmatic mice. Int Immunopharmacol 2014;18(2):311-324.
[[73]]
Li X, Wang X, Zhang M, et al. Quercetin potentiates the antitumor activity of rituximab in diffuse large B-cell lymphoma by inhibiting STAT3 pathway. Cell Biochem Biophys 2014;70(2):1357-1362.
[[74]]
Novo MC, Osugui L, Dos Reis VO, et al. Blockage of Wnt/β-catenin signaling by quercetin reduces survival and proliferation of B-1 cells in vitro. Immunobiology 2015;220(1):60-67.
[[75]]
Russo M, Spagnuolo C, Volpe S, et al. ABT-737 resistance in B-cells isolated from chronic lymphocytic leukemia patients and leukemia cell lines is overcome by the pleiotropic kinase inhibitor quercetin through Mcl-1 down-regulation. Biochem Pharmacol 2013;85(7):927-936.
[[76]]
Fan L, Qiu D, Huang G, et al. Wogonin suppresses IL-10 production in B cells via STAT3 and ERK signaling pathway. J Immunol Res 2020;2020:3032425.
[[77]]
Lin CC, Lin JJ, Wu PP, et al. Wogonin, a natural and biologically-active flavonoid, influences a murine WEHI-3 leukemia model in vivo through enhancing populations of T- and B-cells. In Vivo 2013;27(6):733-738.
[[78]]
Zhao S, Peng X, Zhou QY, et al. Bacillus coagulans 13002 and fructo-oligosaccharides improve the immunity of mice with immunosuppression induced by cyclophosphamide through modulating intestinal-derived and fecal microbiota. Food Res Int 2021;140:109793.
[[79]]
Fu YP, Li LX, Zhang BZ, et al. Characterization and prebiotic activity in vitro of inulin-type fructan from Codonopsis pilosula roots. Carbohydr Polym 2018;193:212-220.
[[80]]
Fu YP, Feng B, Zhu ZK, et al. The polysaccharides from Codonopsis pilosula modulates the immunity and intestinal microbiota of cyclophosphamide-treated immunosuppressed mice. Molecules 2018;23(7):1801.
[[81]]
Petty A, Glass LJ, Rothmond DA, et al. Increased levels of a pro-inflammatory IgG receptor in the midbrain of people with schizophrenia. J Neuroinflammation 2022;19(1):188.
[[82]]
Isho B, Florescu A, Wang AA, et al. Fantastic IgA plasma cells and where to find them. Immunol Rev 2021;303(1):119-137.
[[83]]
Lobo PI. Role of natural autoantibodies and natural IgM anti-leucocyte autoantibodies in health and disease. Front Immunol 2016;7:198.
[[84]]
Liu N, Sun S, Wang P, et al. The mechanism of secretion and metabolism of gut-derived 5-hydroxytryptamine. Int J Mol Sci 2021;22(15):7931.
[[85]]
Li P, H J-R A S B-Z. Anti-complementary activity of polysaccharides from Lu Codonopsis pilosula. Life Sci Res 2018;22(2):136-142.
[[86]]
Sun L, Wang X, Saredy J, et al. Innate-adaptive immunity interplay and redox regulation in immune response. Redox Biol 2020;37:101759.
[[87]]
Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity 2018;48(3):434-452.
[[88]]
Li N, Yang C, Xia J, et al. Molecular mechanisms of Codonopsis pilosula in inhibiting hepatocellular carcinoma growth and metastasis. Phytomedicine 2024;128:155338.
[[89]]
Jing L, Lin J, Yang Y, et al. Quercetin inhibiting the PD-1/PD-L1 interaction for immune-enhancing cancer chemopreventive agent. Phytother Res 2021;35(11):6441-6451.
[[90]]
Cao X, Wang B. Targeted PD-L1 PLGA/liposomes-mediated luteolin therapy for effective liver cancer cell treatment. J Biomater Appl 2021;36(5):843-850.
[[91]]
Li W, Kim TI, Kim JH, et al. Immune checkpoint PD-1/PD-L1 CTLA-4/CD80 are blocked by Rhus verniciflua stokes and its active compounds. Molecules 2019;24(22):4062.
[[92]]
Peter Ebokaiwe A, Olachi Obasi D, Kalu WO. Abatement of cyclophosphamide-induced splenic immunosuppressive indoleamine 2, 3-dioxygenase and altered hematological indices in Wister rats by dietary quercetin. Immunobiology 2022;227(3):152218.
[[93]]
Li X, Gui S, Wang H. Effect of Kidney-replenishing herb on the indoleamine 2,3-dioxygenase of human syncytiotrophoblasts cultured in vitro and the balance of helper T-cell cytokines. Gynecol Endocrinol 2007;23(11):653-661.
[[94]]
Wakana D, Kawahara N, Goda Y. Two new pyrrolidine alkaloids, codonopsinol C and codonopiloside A, isolated from Codonopsis pilosula. Chem Pharm Bull (Tokyo) 2013;61(12):1315-1317.
[[95]]
Wang KH, Zhang YT, Yang XW, et al. Chemical constituents from Fukeqianjin formula. China Journal of Chinese Materia Medica 2018;43(11):2300-2312.
[[96]]
Huo J, Qin F, Cai X, et al. Chinese medicine formula “Weikang Keli” induces autophagic cell death on human gastric cancer cell line SGC-7901. Phytomedicine 2013;20(2):159-165.
[[97]]
Bai R, Wang Y, Zhang Y, et al. Analysis and health risk assessment of potentially toxic elements in three Codonopsis Radix varieties in China. Biol Trace Elem Res 2022;200(5):2475-2485.
[[98]]
Xie Q, Tian H, Huan X, et al. Quality evaluation of Codonopsis Radix and processed products based on the analysis of monosaccharides and oligosaccharides by liquid chromatography coupled with charged aerosol detector. Phytochem Anal 2022;33(2):262-271.
[[99]]
Lee KD, Shim SY. Anti-inflammatory food in asthma prepared from combination of Raphanus sativus L., Allium hookeri, Acanthopanax sessiliflorum, and Dendropanax morbiferus extracts via bioassay-guided selection. Foods 2022;11(13):1910.
[[100]]
Singh B, Song H, Liu XD, et al. Dangshen (Codonopsis pilosula) and Bai guo (Gingko biloba) enhance learning and memory. Altern Ther Health Med 2004;10(4):52-56.
[[101]]
Liang W, Sun J, Bai G, et al. Codonopsis radix: a review of resource utilisation, postharvest processing, quality assessment, and its polysaccharide composition. Front Pharmacol 2024;15:1366556.
[[102]]
Chu R, Zhou Y, Ye C, et al. Advancements in the investigation of chemical components and pharmacological properties of Codonopsis: a review. Medicine (Baltim) 2024;103(26):e38632.
[[103]]
Liu F, Geng C, Qu YK, et al. The feeding of dietary Codonopsis pilosula polysaccharide enhances the immune responses, the expression of immune-related genes and the growth performance of red swamp crayfish (Procambarus clarkii). Fish Shellfish Immunol 2020;103:321-331.
[[104]]
Liu C, Chen J, Li E, et al. Solomonseal polysaccharide and sulfated Codonopsis pilosula polysaccharide synergistically resist Newcastle disease virus. PLoS One 2015;10(2):e0117916.
[[105]]
Liu S, Xiao G, Wang Q, et al. Effects of dietary Astragalus membranaceus and Codonopsis pilosula extracts on growth performance, antioxidant capacity, immune status, and intestinal health in broilers. Front Vet Sci 2023;10:1302801.
[[106]]
Xie Z, Zhang J, Ma S, et al. Effect of Chinese herbal medicine treatment on plasma lipid profile and hepatic lipid metabolism in Hetian broiler. Poult Sci 2017;96(6):1918-1924.
[[107]]
Lan RX, Park JW, Lee DW, et al. Effects of Astragalus membranaceus, Codonopsis pilosula and allicin mixture on growth performance, nutrient digestibility, faecal microbial shedding, immune response and meat quality in finishing pigs. J Anim Physiol Anim Nutr (Berl) 2017;101(6):1122-1129.
[[108]]
Luo H, Lin S, Ren F, et al. Antioxidant and antimicrobial capacity of Chinese medicinal herb extracts in raw sheep meat. J Food Prot 2007;70(6):1440-1445.
[[109]]
Zhu N, Meng T, Li S, et al. Improved growth and metabolite accumulation in Codonopsis pilosula (Franch.) Nannf. by inoculation with the endophytic Geobacillu sp. RHBA19 and Pseudomonas fluorescens RHBA17. J Plant Physiol 2022;274:153718.
[[110]]
Gong Z, Zhang S, Gu B, et al. Codonopsis pilosula polysaccharides attenuate Escherichia coli-induced acute lung injury in mice. Food Funct 2022;13(15):7999-8011.
[[111]]
Li J, Sun Y, Yang N, et al. Protective effects of maternal administration of total saponins of Codonopsis pilosula in the mice offspring following diarrhea: role of immune function, antioxidant function, and intestinal inflammatory injury. Environ Sci Pollut Res Int 2023;30(53):113903-113916.
[[112]]
Liu XF, Qiao J, Gao J, et al. Protective effects of total saponins of Codonopsis on ulcerative colitis induced by TNBS in rats and its mechanism. Chinese Journal of Applied Physiology 2021;37(4):397-401.
[[113]]
Meng Y, Xu Y, Chang C, et al. Extraction, characterization and anti-inflammatory activities of an inulin-type fructan from Codonopsis pilosula. Int J Biol Macromol 2020;163:1677-1686.
[[114]]
Joh EH, Kim DH. Lancemaside A inhibits lipopolysaccharide-induced inflammation by targeting LPS/TLR4 complex. J Cell Biochem 2010;111(4):865-871.
[[115]]
Lee YG, Kim JY, Lee JY, et al. Regulatory effects of Codonopsis lanceolata on macrophage-mediated immune responses. J Ethnopharmacol 2007;112(1):180-188.
[[116]]
Kim E, Yang WS, Kim JH, et al. Lancemaside A from Codonopsis lanceolata modulates the inflammatory responses mediated by monocytes and macrophages. Mediators Inflamm 2014;2014:405158.
[[117]]
Liao J, Hao C, Huang W, et al. Network pharmacology study reveals energy metabolism and apoptosis pathways-mediated cardioprotective effects of Shenqi Fuzheng. J Ethnopharmacol 2018;227:155-165.
[[118]]
Wang JN, Kan CD, Lee LT, et al. Herbal extract from Codonopsis pilosula (Franch.) Nannf. enhances cardiogenic differentiation and improves the function of infarcted rat hearts. Life (Basel) 2021;11(5):422.
[[119]]
Tsai KH, Lee NH, Chen GY, et al. Dung-shen (Codonopsis pilosula) attenuated the cardiac-impaired insulin-like growth factor II receptor pathway on myocardial cells. Food Chem 2013;138(2-3):1856-1867.
[[120]]
Chen WX, Gou YQ, Li W, et al. Activation of intrinsic apoptotic signaling pathway in A549 cell by a pectin polysaccharide isolated from Codonopsis pilosula and its selenized derivative. J Carbohydr Chem 2015;34(8):475-489.
[[121]]
Lee KW, Jung HJ, Park HJ, et al. B-D-xylopyranosyl-(1→3)-β-D-glucuronopyranosyl echinocystic acid isolated from the roots of Codonopsis lanceolata induces caspase-dependent apoptosis in human acute promyelocytic leukemia HL-60 cells. Biol Pharm Bull 2005;28(5):854-859.
[[122]]
Liu H, Amakye WK, Ren J. Codonopsis pilosula polysaccharide in synergy with dacarbazine inhibits mouse melanoma by repolarizing M2-like tumor-associated macrophages into M1-like tumor-associated macrophages. Biomed Pharmacother 2021;142:112016.
[[123]]
Fan Y, Long Y, Gong Y, et al. Systemic immunomodulatory effects of Codonopsis pilosula glucofructan on S180 solid-tumor-bearing mice. Int J Mol Sci 2023;24(21):15598.
[[124]]
Hu SK. Effect of the combination of Codonopsis pilosula and cyclophosphamide on the transplantable tumor and tumor-bearing mice. Chinese Journal of Integrated Traditional and Western Medicine 1985;5(10):618-21, 581.
[[125]]
Cheng WL, Wang XY, Jiang ZY, et al. The immunomodulatory effects of sijunzi decoction and its disassembled prescription on D-galactose-induced aging mice. Journal of Chinese Medicinal Materials 2009;32(9):1425-1429.
[[126]]
Wang XW, Kang JC, Li XC, et al. Codonopsis pilosula water extract delays D-galactose-induced aging of the brain in mice by activating autophagy and regulating metabolism. J Ethnopharmacol 2024;327:13.
[[127]]
Lu L, Feng XY, Wang MY, et al. Effect of Ludangshen (Codonopsis pilosula in Changzhi) oral liquid on expression of Fas/FasL in skin tissue of photoaging mice. J Pract Tradit Chin Int Med2020;34(7):36-39, 143-144.
[[128]]
Wang J, Zhang J, Ma A, et al. Effects of the aqueous extract of Codonopsis pilosula on the histolomorph structure and the expression of Bax and VEGF in liver and spleen of aging mouse induced by D-galactose. Hunan TCM J 2017;33(1):141-145.
[[129]]
Jang IK, Zhang J, Gu H. Grb2, a simple adapter with complex roles in lymphocyte development, function, and signaling. Immunol Rev 2009;232(1):150-159.
[[130]]
Lenti MV, Luu S, Carsetti R, et al. Asplenia and spleen hypofunction. Nat Rev Dis Primers 2022;8(1):71.
[[131]]
Wu XN. Current concept of Spleen-Stomach theory and Spleen deficiency syndrome in TCM. World J Gastroenterol 1998;4(1):2-6.
[[132]]
Zhao Y, Lu L, Sun L, et al. Deqi(qi arrival) theory in ancient TCM books. Chinese Acupuncture & Moxibustion 2017;37(1):90-94.
[[133]]
Zhou XM, Lu X, Chen XG, et al. Overview of traditional Chinese medicine of “Xiang Qi” theory of origins. Chinese Journal of Medical History 2018;48(3):153-157.
[[134]]
Chiang HC, Yang ST, Lee KC, et al. From theory to clinic: key components of qi deficiency in traditional Chinese medicine. Altern Ther Health Med. 2012;18(6):28-36.
[[135]]
Wang XM, Li XB, Peng Y. Impact of Qi-invigorating traditional Chinese medicines on intestinal flora: a basis for rational choice of prebiotics. Chin J Nat Med 2017;15(4):241-254.
[[136]]
Liu YY, Wan CC, Xi XY. Measurement properties of the EQ-5D-5L in sub-health: evidence based on primary health care workers in China. Health Qual Life Outcomes 2023;21(1):9.
[[137]]
Liang X, Wang Q, Jiang ZQ, et al. Clinical research linking traditional Chinese medicine constitution types with diseases: a literature review of 1639 observational studies. J Tradit Chin Med 2020;40(4):690-702.
[[138]]
Yao W, Yang HW, Ding GH. Mechanisms of Qi-blood circulation and Qi deficiency syndrome in view of blood and interstitial fluid circulation. J Tradit Chin Med 2013;33(4):538-544.
[[139]]
Huang LQ, Shen W, Qiu T, et al. Establishment of mouse model of Qi-deficiency gastrointestinal failure. J Biol Regul Homeost Agents 2019;33(1):237-244.
[[140]]
Zhang YL, Da CS. Curative effect of Maimendong decoction in treating advanced lung cancer with Qi-Yin deficiency cough. Pak J Pharm Sci 2017;30(1):309-311.
[[141]]
Cao L, Du C, Zhai X, et al. Codonopsis pilosula polysaccharide improved spleen deficiency in mice by modulating gut microbiota and energy related metabolisms. Front Pharmacol 2022;13:862763.
[[142]]
Tang S, Liu W, Zhao Q, et al. Combination of polysaccharides from Astragalus membranaceus and Codonopsis pilosula ameliorated mice colitis and underlying mechanisms. J Ethnopharmacol 2021;264:113280.

版权

2024 Acupuncture and Herbal Medicine
PDF(1049 KB)

Accesses

Citation

Detail

段落导航
相关文章

/