
The mechanism and treatment strategies of GSDMD-mediated pyroptosis in myocardial infarction
Acupuncture and Herbal Medicine ›› 2024, Vol. 4 ›› Issue (3) : 295-305.
The mechanism and treatment strategies of GSDMD-mediated pyroptosis in myocardial infarction
Acute myocardial infarction (MI) is associated with high morbidity and mortality and poses a significant challenge to human health. Despite advances in medicine, effective treatment options for MI are still associated with adverse outcomes, such as heart failure. Consequently, identifying the pathogenesis of MI is a promising avenue for developing practical treatments. The inflammatory response plays a critical role in the pathogenesis of MI. Gasdermin D (GSDMD)-mediated pyroptosis regulates the inflammatory response, which is a pathogenic and potential therapeutic target for MI. Therefore, anti-pyroptosis treatment is emerging as a promising therapeutic approach for MI. Overall, this article reviews the mechanism and treatment strategies for GSDMD-mediated pyroptosis in MI, with the hope of providing insights into pathogenic interventions.
GSDMD inhibitors / Myocardial infarction / Pyroptosis / Traditional Chinese medicine
[[1]] |
Fearon WF, Zimmermann FM, De Bruyne B, et al. Fractional flow reserve-guided PCI as compared with coronary bypass surgery. N Engl J Med 2022;386(2):128-137.
|
[[2]] |
Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res 2016;119(1):91-112.
|
[[3]] |
Zhang Q, Wang L, Wang S, et al. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022;7(1):78.
|
[[4]] |
Jiang K, Tu Z, Chen K, et al. Gasdermin D inhibition confers antineutrophil-mediated cardioprotection in acute myocardial infarction. J Clin Invest 2022;132(1):e151268.
|
[[5]] |
Sreejit G, Nooti SK, Jaggers RM, et al. Retention of the NLRP3 inflammasome-primed neutrophils in the bone marrow is essential for myocardial infarction-induced granulopoiesis. Circulation 2022;145(1):31-44.
|
[[6]] |
Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 2017;42(4):245-254.
|
[[7]] |
Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015;526(7575):660-665.
|
[[8]] |
Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015;526(7575):666-671.
|
[[9]] |
He K, Wan T, Wang D, et al. Gasdermin D licenses MHCII induction to maintain food tolerance in small intestine. Cell2023;186(14):3033-3048.e20.
|
[[10]] |
Schwarzer R, Jiao H, Wachsmuth L, et al. FADD and caspase-8 regulate gut homeostasis and inflammation by controlling MLKL- and GSDMD-mediated death of intestinal epithelial cells. Immunity2020;52(6):978-993.e6.
|
[[11]] |
Zheng Z, Deng W, Bai Y, et al. The lysosomal rag-ragulator complex licenses RIPK1 and caspase-8-mediated pyroptosis by yersinia. Science2021;372(6549):eabg0269.
|
[[12]] |
Chen KW, Monteleone M, Boucher D, et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol2018;3(26):eaar6676.
|
[[13]] |
Burgener SS, Leborgne NGF, Snipas SJ, et al. Cathepsin G inhibition by serpinb1 and serpinb6 prevents programmed necrosis in neutrophils and monocytes and reduces GSDMD-driven inflammation. Cell Rep 2019;27(12):3646-3656.
|
[[14]] |
Kambara H, Liu F, Zhang X, et al. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Rep 2018;22(11):2924-2936.
|
[[15]] |
Shi H, Gao Y, Dong Z, et al. GSDMD-mediated cardiomyocyte pyroptosis promotes myocardial I/R injury. Circ Res 2021;129(3):383-396.
|
[[16]] |
Marchetti C, Swartzwelter B, Gamboni F, et al. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc Natl Acad Sci USA 2018;115(7):E1530-E1539.
|
[[17]] |
Aliaga J, Bonaventura A, Mezzaroma E, et al. Preservation of contractile reserve and diastolic function by inhibiting the NLRP3 inflammasome with OLT1177® (dapansutrile) in a mouse model of severe ischemic cardiomyopathy due to non-reperfused anterior wall myocardial infarction. Molecules 2021;26(12):3534.
|
[[18]] |
Toldo S, Mauro AG, Cutter Z, et al. The NLRP3 inflammasome inhibitor, OLT1177 (dapansutrile), reduces infarct size and preserves contractile function after ischemia reperfusion injury in the mouse. J Cardiovasc Pharmacol 2019;73(4):215-222.
|
[[19]] |
Liu Y, Lian K, Zhang L, et al. TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury. Basic Res Cardiol 2014;109(5):415.
|
[[20]] |
Mastrocola R, Penna C, Tullio F, et al. Pharmacological inhibition of NLRP3 inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways. Oxid Med Cell Longev 2016;2016:5271251.
|
[[21]] |
Nopparat C, Boontor A, Kutpruek S, et al. The role of melatonin in amyloid beta-induced inflammation mediated by inflammasome signaling in neuronal cell lines. Sci Rep 2023;13(1):17841.
|
[[22]] |
Coll RC, Robertson AAB, Chae JJ, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 2015;21(3):248-255.
|
[[23]] |
Coll RC, Hill JR, Day CJ, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol 2019;15(6):556-559.
|
[[24]] |
van Hout GPJ, Bosch L, Ellenbroek GHJM, et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J 2017;38(11):828-836.
|
[[25]] |
Marchetti C, Chojnacki J, Toldo S, et al. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J Cardiovasc Pharmacol 2014;63(4):316-322.
|
[[26]] |
Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity 2019;50(6):1352-1364.
|
[[27]] |
Flores J, Noël A, Foveau B, et al. Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer’s disease mouse model. Nat Commun 2018;9(1):3916.
|
[[28]] |
Liu W, Shen J, Li Y, et al. Pyroptosis inhibition improves the symptom of acute myocardial infarction. Cell Death Dis 2021;12(10):852.
|
[[29]] |
Audia JP, Yang X-M, Crockett ES, et al. Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res Cardiol 2018;113(5):32.
|
[[30]] |
Su X-L, Wang S-H, Komal S, et al. The caspase-1 inhibitor VX765 upregulates connexin 43 expression and improves cell-cell communication after myocardial infarction via suppressing the IL-1β/p38 MAPK pathway. Acta Pharmacol Sin 2022;43(9):2289-2301.
|
[[31]] |
Pomerantz BJ, Reznikov LL, Harken AH, et al. Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1beta. Proc Natl Acad Sci USA 2001;98(5):2871-2876.
|
[[32]] |
Rondeau J-M, Ramage P, Zurini M, et al. The molecular mode of action and species specificity of canakinumab, a human monoclonal antibody neutralizing IL-1β. MAbs 2015;7(6):1151-1160.
|
[[33]] |
Ridker PM, Howard CP, Walter V, et al. Effects of interleukin-1β inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation 2012;126(23):2739-2748.
|
[[34]] |
Everett BM, Cornel JH, Lainscak M, et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 2019;139(10):1289-1299.
|
[[35]] |
Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017;377(12):1119-1131.
|
[[36]] |
Rathkey JK, Zhao J, Liu Z, et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci Immunol2018;3(26):eaat2738.
|
[[37]] |
Suh JJ, Pettinati HM, Kampman KM, et al. The status of disulfiram: a half of a century later. J Clin Psychopharmacol 2006;26(3):290-302.
|
[[38]] |
Li Y, Tu Z, Chen F, et al. Anti-inflammatory effect of Danhong injection through inhibition of GSDMD-mediated pyroptosis. Phytomedicine 2023;113:154743.
|
[[39]] |
Zhong L, Han J, Fan X, et al. Novel GSDMD inhibitor GI-Y1 protects heart against pyroptosis and ischemia/reperfusion injury by blocking pyroptotic pore formation. Basic Res Cardiol 2023;118(1):40.
|
[[40]] |
Cui W, Xin S, Zhu L, et al. Si-Miao-Yong-An decoction maintains the cardiac function and protects cardiomyocytes from myocardial ischemia and reperfusion injury. Evid Based Complement Alternat Med 2021;2021:8968464.
|
[[41]] |
Yan X, Huang Y. Mechanism of total glucosides of paeony in hypoxia/reoxygenation-induced cardiomyocyte pyroptosis. J Bioenerg Biomembr 2021;53(6):643-653.
|
[[42]] |
Peng L, Lei Z, Rao Z, et al. Cardioprotective activity of ethyl acetate extract of Cinnamomi Ramulus against myocardial ischemia/reperfusion injury in rats via inhibiting NLRP3 inflammasome activation and pyroptosis. Phytomedicine 2021;93:153798.
|
[[43]] |
Luan F, Rao Z, Peng L, et al. Cinnamic acid preserves against myocardial ischemia/reperfusion injury via suppression of NLRP3/Caspase-1/GSDMD signaling pathway. Phytomedicine 2022;100:154047.
|
[[44]] |
Xu X-N, Jiang Y, Yan L-Y, et al. Aesculin suppresses the NLRP3 inflammasome-mediated pyroptosis via the Akt/GSK3β/NF-κB pathway to mitigate myocardial ischemia/reperfusion injury. Phytomedicine 2021;92:153687.
|
[[45]] |
Li J, Zhao C, Zhu Q, et al. Sweroside protects against myocardial ischemia-reperfusion injury by inhibiting oxidative stress and pyroptosis partially via modulation of the Keap1/Nrf2 axis. Front Cardiovasc Med 2021;8:650368.
|
[[46]] |
Deng J, Zhang T, Li M, et al. Irisin-pretreated BMMSCs secrete exosomes to alleviate cardiomyocytes pyroptosis and oxidative stress to hypoxia/reoxygenation injury. Curr Stem Cell Res Ther 2023;18(6):843-852.
|
[[47]] |
Zhang X, Qu H, Yang T, et al. Astragaloside IV attenuate MI-induced myocardial fibrosis and cardiac remodeling by inhibiting ROS/caspase-1/GSDMD signaling pathway. Cell Cycle 2022;21(21):2309-2322.
|
[[48]] |
Ye B, Chen X, Dai S, et al. Emodin alleviates myocardial ischemia/reperfusion injury by inhibiting gasdermin D-mediated pyroptosis in cardiomyocytes. Drug Des Devel Ther 2019;13:975-990.
|
[[49]] |
Lin J, Lai X, Fan X, et al. Oridonin protects against myocardial ischemia-reperfusion injury by inhibiting GSDMD-mediated pyroptosis. Genes (Basel) 2022;13(11):2133.
|
[[50]] |
Bian Y, Li X, Pang P, et al. Kanglexin, a novel anthraquinone compound, protects against myocardial ischemic injury in mice by suppressing NLRP3 and pyroptosis. Acta Pharmacol Sin 2020;41(3):319-326.
|
[[51]] |
Li W, Chen L, Xiao Y. Apigenin protects against ischemia-/hypoxia-induced myocardial injury by mediating pyroptosis and apoptosis. In Vitro Cell Dev Biol Anim 2020;56(4):307-312.
|
[[52]] |
Luan F, Lei Z, Peng X, et al. Cardioprotective effect of cinnamaldehyde pretreatment on ischemia/reperfusion injury via inhibiting NLRP3 inflammasome activation and gasdermin D mediated cardiomyocyte pyroptosis. Chem Biol Interact 2022;368:110245.
|
[[53]] |
Li H, Yang DH, Zhang Y, et al. Geniposide suppresses NLRP3 inflammasome-mediated pyroptosis via the AMPK signaling pathway to mitigate myocardial ischemia/reperfusion injury. Chin Med 2022;17(1):73.
|
[[54]] |
Xiao B, Huang X, Wang Q, et al. Beta-asarone alleviates myocardial ischemia-reperfusion injury by inhibiting inflammatory response and NLRP3 inflammasome mediated pyroptosis. Biol Pharm Bull 2020;43(7):1046-1051.
|
[[55]] |
Song W, Dai B, Dai Y. Influence of ginsenoside Rh2 on cardiomyocyte pyroptosis in rats with acute myocardial infarction. Evid Based Complement Alternat Med 2022;2022:5194523.
|
[[56]] |
Li H-L, Li T, Chen Z-Q, et al. Tanshinone IIA reduces pyroptosis in rats with coronary microembolization by inhibiting the TLR4/MyD88/NF-κB/NLRP3 pathway. Korean J Physiol Pharmacol 2022;26(5):335-345.
|
[[57]] |
Martín-Sánchez F, Diamond C, Zeitler M, et al. Inflammasome-dependent IL-1β release depends upon membrane permeabilisation. Cell Death Differ 2016;23(7):1219-1231.
|
[[58]] |
Weindel CG, Martinez EL, Zhao X, et al. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell 2022;185(17):3214-3231.
|
[[59]] |
Pan H, Pan J, Li P, et al. Characterization of PANoptosis patterns predicts survival and immunotherapy response in gastric cancer. Clin Immunol 2022;238:109019.
|
[[60]] |
Luchetti G, Roncaioli JL, Chavez RA, et al. Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host Microbe 2021;29(10):1521-1530.
|
[[61]] |
Li Y, Pu D, Huang J, et al. Protein phosphatase 1 regulates phosphorylation of gasdermin D and pyroptosis. Chem Commun (Camb) 2022;58(85):11965-11968.
|
[[62]] |
Michelucci A, Cordes T, Ghelfi J, et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci USA 2013;110(19):7820-7825.
|
[[63]] |
Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 2016;535(7610):153-158.
|
[[64]] |
Bambouskova M, Potuckova L, Paulenda T, et al. Itaconate confers tolerance to late NLRP3 inflammasome activation. Cell Rep 2021;34(10):108756.
|
[[65]] |
Devant P, Boršić E, Ngwa EM, et al. Gasdermin D pore-forming activity is redox-sensitive. Cell Rep 2023;42(1):112008.
|
[[66]] |
Wang Y, Shi P, Chen Q, et al. Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation. J Mol Cell Biol 2019;11(12):1069-1082.
|
[[67]] |
Aghajanian H, Kimura T, Rurik JG, et al. Targeting cardiac fibrosis with engineered T cells. Nature 2019;573(7774):430-433.
|
[[68]] |
Rettig WJ, Garin-Chesa P, Beresford HR, et al. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells. Proc Natl Acad Sci USA 1988;85(9):3110-3114.
|
[[69]] |
Niedermeyer J, Scanlan MJ, Garin-Chesa P, et al. Mouse fibroblast activation protein: molecular cloning, alternative splicing and expression in the reactive stroma of epithelial cancers. Int J Cancer 1997;71(3):383-389.
|
[[70]] |
Jin K, Gao S, Yang P, et al. Single-cell RNA sequencing reveals the temporal diversity and dynamics of cardiac immunity after myocardial infarction. Small Methods 2022;6(3):e2100752.
|
[[71]] |
Wei Y, Zhu M, Li S, et al. Engineered biomimetic nanoplatform protects the myocardium against ischemia/reperfusion injury by inhibiting pyroptosis. ACS Appl Mater Interfaces 2021;13(29):33756-33766.
|
[[72]] |
Huo S, Zhao P, Shi Z, et al. Mechanochemical bond scission for the activation of drugs. Nat Chem 2021;13(2):131-139.
|
[[73]] |
Chen Y, Luo R, Li J, et al. Intrinsic radical species scavenging activities of tea polyphenols nanoparticles block pyroptosis in endotoxin-induced sepsis. ACS Nano 2022;16(2):2429-2441.
|
/
〈 |
|
〉 |