
Genome sequencing provides potential strategies for drug discovery and synthesis
Acupuncture and Herbal Medicine ›› 2023, Vol. 3 ›› Issue (4) : 244-255.
Genome sequencing provides potential strategies for drug discovery and synthesis
Medicinal plants are renowned for their abundant production of secondary metabolites, which exhibit notable pharmacological activities and great potential for drug development. The biosynthesis of secondary metabolites is highly intricate and influenced by various intrinsic and extrinsic factors, resulting in substantial species diversity and content variation. Consequently, precise regulation of secondary metabolite synthesis is of utmost importance. In recent years, genome sequencing has emerged as a valuable tool for investigating the synthesis and regulation of secondary metabolites in medicinal plants, facilitated by the widespread use of high-throughput sequencing technologies. This review highlights the latest advancements in genome sequencing within this field and presents several strategies for studying secondary metabolites. Specifically, the article elucidates how genome sequencing can unravel the pathways for secondary metabolite synthesis in medicinal plants, offering insights into the functions and regulatory mechanisms of participating enzymes. Comparative analyses of plant genomes allow identification of shared pathways of metabolite synthesis among species, thereby providing novel avenues for obtaining cost-effective biosynthetic intermediates. By examining individual genomic variations, genes or gene clusters associated with the synthesis of specific compounds can be discovered, indicating potential targets and directions for drug development and the exploration of alternative compound sources. Moreover, the advent of gene-editing technology has enabled the precise modifications of medicinal plant genomes. Optimization of specific secondary metabolite synthesis pathways becomes thus feasible, enabling the precise editing of target genes to regulate secondary metabolite production within cells. These findings serve as valuable references and lessons for future drug development endeavors, conservation of rare resources, and the exploration of new resources.
Biosynthetic pathways / Gene editing / Genome sequencing / Medicinal plants / Secondary metabolites
Biosynthetic pathways / Gene editing / Genome sequencing / Medicinal plants / Secondary metabolites
[[1]] |
Dorado G, Gálvez S, Rosales TE, et al.Analyzing modern biomolecules: the revolution of nucleic-acid sequencing —review. Biomolecules. 2021;11(8):1111.
|
[[2]] |
Searle B, Müller M, Carell T, et al.Third-generation sequencing of epigenetic DNA. Angew Chem Int Ed Engl. 2023;62(14):e202215704.
|
[[3]] |
Payne AC, Chiang ZD, Reginato PL, et al. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science.2021;371(6532):eaay3446.
|
[[4]] |
Sun Y, Shang L, Zhu QH, et al.Twenty years of plant genome sequencing: achievements and challenges. Trends Plant Sci. 2022;27(4):391-401.
|
[[5]] |
van Dijk EL, Auger H, Jaszczyszyn Y, et al. Ten years of next-generation sequencing technology. Trends Genet. 2014;30(9):418-426.
|
[[6]] |
Jayakodi M, Choi BS, Lee SC, et al.Ginseng Genome Database: an open-access platform for genomics of Panax ginseng. BMC Plant Biol. 2018;18(1):62.
|
[[7]] |
Yu X, Wang W, Yang H, et al.Transcriptome and comparative chloroplast genome analysis of Vincetoxicum versicolor: insights into molecular evolution and phylogenetic implication. Front Genet. 2021;12:602528.
|
[[8]] |
Xu Z, Peters RJ, Weirather J, et al.Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J. 2015;82(6):951-961.
|
[[9]] |
Reuscher S, Akiyama M, Yasuda T, et al.The sugar transporter inventory of tomato: genome-wide identification and expression analysis. Plant Cell Physiol. 2014;55(6):1123-1141.
|
[[10]] |
Li Z, Schulz MH, Look T, et al.Identification of transcription factor binding sites using ATAC-seq. Genome Biol. 2019;20(1):45.
|
[[11]] |
Ma Y, Zhang L, Huang X.Genome modification by CRISPR/Cas9. FEBS J. 2014;281(23):5186-5193.
|
[[12]] |
Yang Z, Wang Z, Wang W, et al.ggComp enables dissection of germplasm resources and construction of a multiscale germplasm network in wheat. Plant Physiol. 2022;188(4):1950-1965.
|
[[13]] |
Alami MM, Ouyang Z, Zhang Y, et al.The current developments in medicinal plant genomics enabled the diversification of secondary metabolites' biosynthesis. Int J Mol Sci. 2022;23(24):15932.
|
[[14]] |
Xiong X, Gou J, Liao Q, et al.The Taxus genome provides insights into paclitaxel biosynthesis. Nat Plants. 2021;7(8):1026-1036.
|
[[15]] |
Guo C, Luo Y, Gao L-M, et al.Phylogenomics and the flowering plant tree of life. J Integr Plant Biol. 2023;65:299-323.
|
[[16]] |
Kumondai M, Hishinuma E, Gutiérrez Rico EM, et al.Heterologous expression of high-activity cytochrome P450 in mammalian cells. Sci Rep. 2020;10(1):14193.
|
[[17]] |
Shang T, Fang CM, Ong CE, et al.Heterologous expression of recombinant human cytochrome P450 (CYP) in Escherichia coli: N-terminal modification, expression, isolation, purification, and reconstitution. BioTech (Basel). 2023;12(1):17.
|
[[18]] |
Caniard A, Zerbe P, Legrand S, et al.Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea (L.) and their relevance for perfume manufacture. BMC Plant Biol. 2012;12:119.
|
[[19]] |
da Silva PL, Cardoso G, Kremer FS, et al. Heterologous expression and characterization of a new galactose-binding lectin from Bauhinia forficata with antiproliferative activity. Int J Biol Macromol. 2019;128:877-884.
|
[[20]] |
Levy SE, Boone BE.Next-Generation sequencing strategies. Cold Spring Harb Perspect Med. 2019;9(7):a025791.
|
[[21]] |
Bergman ME, Davis B, Phillips MA.Medically useful plant terpenoids: biosynthesis, occurrence, and mechanism of action. Molecules. 2019;24(21):3961.
|
[[22]] |
Chang WC, Song H, Liu HW, et al.Current development in isoprenoid precursor biosynthesis and regulation. Curr Opin Chem Biol. 2013;17(4):571-579.
|
[[23]] |
Rather GA, Sharma A, Jeelani SM, et al.Metabolic and transcriptional analyses in response to potent inhibitors establish MEP pathway as major route for camptothecin biosynthesis in Nothapodytes nimmoniana (Graham) Mabb. BMC Plant Biol. 2019;19(1):301.
|
[[24]] |
Sharma A, Verma P, Mathur A, et al.Overexpression of tryptophan decarboxylase and strictosidine synthase enhanced terpenoid indole alkaloid pathway activity and antineoplastic vinblastine biosynthesis in Catharanthus roseus. Protoplasma. 2018;255(5):1281-1294.
|
[[25]] |
Ma J, Zhang X, Tian Y, et al.Molecular cloning and heterologous of putative strictosidine synthases from Arabidopsis thaliana. Chin J Appl Environ Biol. 2013;19(2):224-230.
|
[[26]] |
Wang X, Liang L, Li B, et al.Analysis on STR sequence structure and expression pattern of strictosidine synthetase gene in Dendrobium officinale. Biotic Resources. 2020;42(4):404-413.
|
[[27]] |
Xu R, Cao F, Peng J, et al.Cloning and anaiysis of strictosidine synthase in Rauvolfia yunnanensis. J Cent South Univ Forestry Technol. 2012;32(6):128-131.
|
[[28]] |
Zhou Q, Li Y, Guo W, et al.Cloning and expression analysis of CsSTR1 gene in tea plant. Southwest China J Agricultural Sci. 2022;35(10):2296-2302.
|
[[29]] |
Wang M, Zhou Y, Wang M, et al.Cloning and sequence analysis of strictosidine synthase cDNA in Brassica napus. J Sichuan Univ. 2008;185(5):1277-1280.
|
[[30]] |
Li Y.Single-cell RNA sequencing reveals spatial distribution of biosynthetic pathway of monoterpene indole alkaloid in Catharanthus roseus leaves. Beijing: Peking Union Medical College; 2021.
|
[[31]] |
Miettinen K, Dong L, Navrot N, et al.The seco-iridoid pathway from Catharanthus roseus [published correction appears in Nat Commun 2014;5:4175]. Nat Commun. 2014;5:3606.
|
[[32]] |
Okada K, Saito T, Nakagawa T, et al.Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments inArabidopsis. Plant Physiol. 2000;122(4):1045-1056.
|
[[33]] |
Iijima Y, Gang DR, Fridman E, et al.Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol. 2004;134(1):370-379.
|
[[34]] |
Collu G, Unver N, Peltenburg-Looman AM, et al.Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett. 2001;508(2):215-220.
|
[[35]] |
Asada K, Salim V, Masada-Atsumi S, et al.A 7-deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in Madagascar periwinkle. Plant Cell. 2013;25(10):4123-4134.
|
[[36]] |
Irmler S, Schröder G, St-Pierre B, et al.Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J. 2000;24(6):797-804.
|
[[37]] |
Murata J, Roepke J, Gordon H, et al.The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell. 2008;20(3):524-542.
|
[[38]] |
Noé W, Mollenschott C, Berlin J.Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures: purification, molecular and kinetic data of the homogenous protein. Plant Mol Biol. 1984;3(5):281-288.
|
[[39]] |
Kutchan TM, Hampp N, Lottspeich F, et al.The cDNA clone for strictosidine synthase from Rauvolfia serpentina. DNA sequence determination and expression in Escherichia coli. FEBS Lett. 1988;237(1-2):40-44.
|
[[40]] |
de Waal A, Meijer AH, Verpoorte R. Strictosidine synthase from Catharanthus roseus: purification and characterization of multiple forms. Biochem J. 1995;306(Pt 2):571-580.
|
[[41]] |
Sadre R, Magallanes-Lundback M, Pradhan S, et al.Metabolite diversity in alkaloid biosynthesis: a multilane (Diastereomer) highway for camptothecin synthesis in camptotheca acuminata. Plant Cell. 2016;28(8):1926-1944.
|
[[42]] |
Salim V, Jones AD, DellaPenna D. Camptotheca acuminata 10-hydroxycamptothecin O-methyltransferase: an alkaloid biosynthetic enzyme co-opted from flavonoid metabolism. Plant J. 2018;95(1):112-125.
|
[[43]] |
Dang TT, Franke J, Carqueijeiro IST, et al.Sarpagan bridge enzyme has substrate-controlled cyclization and aromatization modes. Nat Chem Biol. 2018;14(8):760-763.
|
[[44]] |
Dogru E, Warzecha H, Seibel F, et al.The gene encoding polyneuridine aldehyde esterase of monoterpenoid indole alkaloid biosynthesis in plants is an ortholog of the alpha/betahydrolase super family. Eur J Biochem. 2000;267(5):1397-1406.
|
[[45]] |
Bayer A, Ma X, Stöckigt J.Acetyltransfer in natural product biosynthesis--functional cloning and molecular analysis of vinorine synthase. Bioorg Med Chem. 2004;12(10):2787-2795.
|
[[46]] |
Geissler M, Burghard M, Volk J, et al.A novel cinnamyl alcohol dehydrogenase (CAD)-like reductase contributes to the structural diversity of monoterpenoid indole alkaloids in Rauvolfia. Planta. 2016;243(3):813-824.
|
[[47]] |
Ruppert M, Woll J, Giritch A, et al.Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system. Planta. 2005;222(5):888-898.
|
[[48]] |
Cázares-Flores P, Levac D, De Luca V.Rauvolfia serpentina N-methyltransferases involved in ajmaline and Nβ-methylajmaline biosynthesis belong to a gene family derived from γ-tocopherol C-methyltransferase. Plant J. 2016;87(4):335-342.
|
[[49]] |
Qu Y, Easson MEAM, Simionescu R, et al.Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E-geissoschizine. Proc Natl Acad Sci U S A. 2018;115(12):3180-3185.
|
[[50]] |
Caputi L, Franke J, Farrow SC, et al.Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science. 2018;360(6394):1235-1239.
|
[[51]] |
Tatsis EC, Carqueijeiro I, Dugé de Bernonville T, et al. A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Nat Commun. 2017;8(1):316.
|
[[52]] |
Carqueijeiro I, Dugé de Bernonville T, Lanoue A, et al. A BAHD acyltransferase catalyzing 19-O-acetylation of tabersonine derivatives in roots of Catharanthus roseus enables combinatorial synthesis of monoterpene indole alkaloids. Plant J. 2018;94(3):469-484.
|
[[53]] |
Besseau S, Kellner F, Lanoue A, et al.A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus. Plant Physiol. 2013;163(4):1792-1803.
|
[[54]] |
Liscombe DK, Usera AR, O'Connor SE. Homolog of tocopherol C methyltransferases catalyzes N methylation in anticancer alkaloid biosynthesis. Proc Natl Acad Sci USA. 2010;107(44):18793-18798.
|
[[55]] |
Qu Y, Easson ML, Froese J, et al.Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc Natl Acad Sci USA. 2015;112(19):6224-6229.
|
[[56]] |
Liu J, Liu G.Analysis of secondary metabolites from plant endophytic fungi. Methods Mol Biol. 2018;1848:25-38.
|
[[57]] |
Ancheeva E, Daletos G, Proksch P.Bioactive Secondary Metabolites fromEndophytic Fungi. Curr Med Chem. 2020;27(11):1836-1854.
|
[[58]] |
Fröhlich T, Çapci Karagöz A, Reiter C, et al.Artemisinin-derived dimers: potent antimalarial and anticancer agents. J Med Chem. 2016;59(16):7360-7388.
|
[[59]] |
Tian H.The stimulation biosynthesis, the bioconversion of artemisinin acid and biodegradation of triclosan by an endophytic Penicillium oxalicum B4 from Artemisia annua L. Suzhou: Suzhou University; 2019.
|
[[60]] |
Zhu L, Chen L.Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett. 2019;24:40.
|
[[61]] |
Abu Samaan TM, Samec M, Liskova A, et al.Paclitaxel's mechanistic and clinical effects on breast cancer. Biomolecules. 2019;9(12):789.
|
[[62]] |
Lau TS, Chan LKY, Man GCW, et al.Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE-dependent exocytosis. Cancer Immunol Res. 2020;8(8):1099-1111.
|
[[63]] |
Blair HA, Deeks ED.Albumin-bound paclitaxel: a review in non-small cell lung cancer. Drugs. 2015;75(17):2017-2024.
|
[[64]] |
Zhang D, Yang R, Wang S, et al.new uses for an old drug. Drug Des Devel Ther. 2014;8:279-284.
|
[[65]] |
Service RF.Hazel trees offer new source of cancer drug. Science. 2000;288(5463):27-28.
|
[[66]] |
Zhang L, Gao L, Lin B.Extraction of taxol from the skin of hazel in anshan area.Fujian Anal Test 2003;12(2):29-30, 42.
|
[[67]] |
Zaynab M, Fatima M, Abbas S, et al.Role of secondary metabolites in plant defense against pathogens. Microb Pathog. 2018;124:198-202.
|
[[68]] |
Shen N, Wang T, Gan Q, et al.Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531.
|
[[69]] |
Fiorito S, Epifano F, Taddeo VA, et al.Recent acquisitions on oxyprenylated secondary metabolites as anti-inflammatory agents. Eur J Med Chem. 2018;153:116-122.
|
[[70]] |
Lopes EM, Guimarães-Dias F, Gama TDSS, et al.Artemisia annua L. and photoresponse: from artemisinin accumulation, volatile profile and anatomical modifications to gene expression. Plant Cell Rep. 2020;39(1):101-117.
|
[[71]] |
Dai Y, Chen SR, Chai L, et al.Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit Rev Food Sci Nutr. 2019;59(suppl 1):S17-S29.
|
[[72]] |
Zhang R, Chen Z, Zhang L, et al.Genomic characterization of WRKY transcription factors related to andrographolide biosynthesis in andrographis paniculata. Front Genet. 2021;11:601689.
|
[[73]] |
Gupta D, Bhattacharjee O, Mandal D, et al.CRISPR-Cas9 system: a new-fangled dawn in gene editing. Life Sci. 2019;232:116636.
|
[[74]] |
Kim YJ, Zhang D, Yang DC.Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv. 2015;33(6 Pt 1):717-735.
|
[[75]] |
Choi HS, Koo HB, Jeon SW, et al.Modification of ginsenoside saponin composition via the CRISPR/Cas9-mediated knockout of protopanaxadiol 6-hydroxylase gene in Panax ginseng. J Ginseng Res. 2022;46(4):505-514.
|
[[76]] |
Subedi L, Gaire BP.Tanshinone IIA: a phytochemical as a promising drug candidate for neurodegenerative diseases. Pharmacol Res. 2021;169:105661.
|
[[77]] |
Li Q, Fang X, Zhao Y, et al. The SmMYB36-SmERF6/SmERF115 module regulates the biosynthesis of tanshinones and phenolic acids in salvia miltiorrhiza hairy roots. Hortic Res. 2022;10(1):uhac238.
|
[[78]] |
Yoshinaga Y, Daum C, He G, et al.Genome sequencing. Methods Mol Biol. 2018;1775:37-52.
|
[[79]] |
Singh D, Singh CK, Taunk J, et al.Linking genome wide RNA sequencing with physio-biochemical and cytological responses to catalogue key genes and metabolic pathways for alkalinity stress tolerance in lentil (Lens culinaris Medikus). BMC Plant Biol. 2022;22(1):99.
|
[[80]] |
Hou Y, Guo H, Cao C, et al.Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 2016;26(3):304-319.
|
[[81]] |
Wang S, Li Q.Genome-wide identification of the Salvia miltiorrhiza SmCIPK gene family and revealing the salt resistance characteristic of SmCIPK13. Int J Mol Sci. 2022;23(12):6861.
|
[[82]] |
Zhong F, Ke W, Li Y, et al.Comprehensive analysis of the complete mitochondrial genomes of three Coptis species (C. chinensis, C. deltoidea and C. omeiensis): the important medicinal plants in China. Front Plant Sci. 2023;14:1166420.
|
[[83]] |
Xu J, Chu Y, Liao B, et al.Panax ginseng genome examination for ginsenoside biosynthesis. Giga Science. 2017;6(11):1-15.
|
[[84]] |
Pei L, Wang B, Ye J, et al.Genome and transcriptome of Papaver somniferum Chinese landrace CHM indicates that massive genome expansion contributes to high benzylisoquinoline alkaloid biosynthesis. Hortic Res. 2021;8(1):5.
|
[[85]] |
Chen C, Xing D, Tan L, et al.Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI). Science. 2017;356(6334):189-194.
|
[[86]] |
Yuan J, Zhang X, Li F, et al.Genome sequencing and assembly strategies and a comparative analysis of the genomic characteristics in Penaeid Shrimp species. Front Genet. 2021;12:658619.
|
[[87]] |
Zhang T, Zhou J, Gao W, et al. Complex genome assembly based on long-read sequencing. Brief Bioinform.2022;23(5):bbac305.
|
[[88]] |
Wang Z, Chai C, Wang R, et al.Single-cell transcriptome atlas of human mesenchymal stem cells exploring cellular heterogeneity. Clin Transl Med. 2021;11(12):e650.
|
[[89]] |
Zhang M, Hu S, Min M, et al.Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing. Gut. 2021;70(3):464-475.
|
[[90]] |
Wen L, Tang F.Single-cell sequencing in stem cell biology. Genome Biol. 2016;17:71.
|
[[91]] |
Shan B, Barker CS, Shao M, et al. Multilayered omics reveal sex- and depot-dependent adipose progenitor cell heterogeneity. Cell Metab.2022;34(5):783-799.e7.
|
/
〈 |
|
〉 |