Solution-processed D-A-π-A-D radicals for highly efficient photothermal conversion

Jiaxing Huang, Zejun Wang, Weiya Zhu, Yuan Li

Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 426.

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 426. DOI: 10.1002/agt2.426
RESEARCH ARTICLE

Solution-processed D-A-π-A-D radicals for highly efficient photothermal conversion

Author information +
History +

Abstract

Organic donor-acceptor semiconductors exhibit great potential in photothermal conversion. However, it is still challenging to achieve pure organic materials with broad absorption comparable with inorganic materials such as graphene. Herein, two D-AD type DPA-BT-O4 and NDI-TPA-O4 and three D-A-π-A-D type Th-O4, Th2-O4, and IDT-O4 were readily prepared via two high-yield steps and simple air oxidization. The stability can be attributed to their multiple resonance structures based on the aromatic nitric acid radical mechanism. Compared with the D-A-D radicals, the conjugation extension of the D-A-π-A-D radicals endows them with a narrowed band gap and broad absorption in powder. Interestingly, the IDT-O4 powder with aggregation-induced radical effect exhibits broad absorption between 300 and 2500 nm, which is comparable with graphene and other inorganic materials. Under irradiation of 0.9 W/cm2 (808 nm), the temperature of IDT-O4 powder rises to 250°C within 60 s. The water evaporation conversion efficiency of 94.38% and an evaporation rate of 1.365 kg/m2 h-1 under one sun illumination were achieved. IDT-O4 stands as one of the most efficient photothermal conversion materials among pure organic materials via a rational design strategy.

Keywords

donor-acceptor / near-infrared absorption / open-shell radicals / photothermal conversion / seawater desalination

Cite this article

Download citation ▾
Jiaxing Huang, Zejun Wang, Weiya Zhu, Yuan Li. Solution-processed D-A-π-A-D radicals for highly efficient photothermal conversion. Aggregate, 2024, 5(1): 426 https://doi.org/10.1002/agt2.426

References

[1]
R. M. Jeffrey, M. S. Mauter, Science2023, 380, 242.
CrossRef Google scholar
[2]
Y. Yao, P. Zhang, C. Jiang, R. M. DuChanois, X. Zhang, M. Elimelech, Nat. Sustain.2020, 4, 138.
CrossRef Google scholar
[3]
J. Hou, O. Inganas, R. H. Friend, F. Gao, Nat. Mater.2018, 17, 119.
CrossRef Google scholar
[4]
G. Liu, J. Xu, K. Wang, Nano Energy2017, 41, 269.
CrossRef Google scholar
[5]
S. Linic, U. Aslam, C. Boerigter, M. Morabito, Nat. Mater.2015, 14, 567.
CrossRef Google scholar
[6]
P. Cen, J. Huang, C. Jin, J. Wang, Y. Wei, H. Zhang, M. Tian, Aggregate2023, e352. https://doi.org/10.1002/agt2.352
CrossRef Google scholar
[7]
J. Zhang, W. Liu, Y. Liu, J. Zhang, P. Gao, L. Zheng, F. Xu, G. Jin, B. Z. Tang, Adv. Mater.2023, e2306616.
[8]
C. Chen, H. Ou, R. Liu, D. Ding, Adv. Mater.2020, 32, e1806331.
[9]
J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, B. Z. Tang, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, Chem. Commun.2001, 1740.
[10]
P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, T. Deng, Nat. Energy2018, 3, 1031.
CrossRef Google scholar
[11]
S. C. Singh, M. ElKabbash, Z. Li, X. Li, B. Regmi, M. Madsen, S. A. Jalil, Z. Zhan, J. Zhang, C. Guo, Nat. Sustain.2020, 3, 938.
CrossRef Google scholar
[12]
M. Gao, L. Zhu, C. K. Peh, G. W. Ho, Energy Environ. Sci.2019, 12, 841.
CrossRef Google scholar
[13]
X. Wang, Z. Lin, J. Gao, Z. Xu, X. Li, N. Xu, J. Li, Y. Song, H. Fu, W. Zhao, S. Wang, B. Zhu, R. Wang, J. Zhu, Nat. Water2023, 1, 391.
CrossRef Google scholar
[14]
H. Liu, B. Chen, Y. Chen, M. Zhou, F. Tian, Y. Li, J. Jiang, W. Zhai, Adv. Mater.2023, 35, 2301596.
[15]
K. Bae, G. Kang, S. K. Cho, W. Park, K. Kim, W. J. Padilla, Nat. Commun.2015, 6, 10103.
[16]
H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang, B. Liu, J. Yao, X. Zhang, Adv. Mater.2015, 27, 4752.
CrossRef Google scholar
[17]
Q. Ma, Y. Yu, M. Sindoro, A. G. Fane, R. Wang, H. Zhang, Adv. Mater.2017, 29, 1605361.
[18]
Y. Gao, Z. Tang, X. Chen, J. Yan, Y. Jiang, J. Xu, Z. Tao, L. Wang, Z. Liu, G. Wang, Aggregate2022, 4, e248.
[19]
J. Wu, J. H. Lei, B. He, C. X. Deng, Z. Tang, S. Qu, Aggregate2021, 2, e139.
[20]
X. Zhao, X. Meng, H. Zou, Y. Zhang, Y. Ma, Y. Du, Y. Shao, J. Qi, J. Qiu, Nano Res.2023, 16, 6015.
CrossRef Google scholar
[21]
H. Zou, X. Meng, X. Zhao, J. Qiu, Adv. Mater.2023, 35, e2207262.
[22]
X. Zhao, X. Meng, H. Zou, Z. Wang, Y. Du, Y. Shao, J. Qi, J. Qiu, Adv. Funct. Mater.2022, 33, 2209207.
[23]
Y. Zhang, L. Wang, L. Liu, L. Lin, F. Liu, Z. Xie, H. Tian, X. Chen, ACS Appl. Mater. Interfaces2018, 10, 41035.
CrossRef Google scholar
[24]
Y. Shi, J. Yang, F. Gao, Q. Zhang, ACS Nano2023, 17, 1879.
CrossRef Google scholar
[25]
P. Chen, Y. Ma, Z. Zheng, C. Wu, Y. Wang, G. Liang, Nat. Commun.2019, 10, 1192.
[26]
J. Tian, Z. Liu, W. Jiang, D. Shi, L. Chen, X. Zhang, G. Zhang, C. A. Di, D. Zhang, Angew. Chem. Int. Ed.2020, 59, 13844.
CrossRef Google scholar
[27]
S. Q. Li, Y. Deng, J. Huang, P. Wang, G. Liu, H. L. Xie, Aggregate2023, e371. https://doi.org/10.1002/agt2.371
CrossRef Google scholar
[28]
G. Chen, J. Sun, Q. Peng, Q. Sun, G. Wang, Y. Cai, X. Gu, Z. Shuai, B. Z. Tang, Adv. Mater.2020, 32, 1908537.
[29]
L. Wang, G. Xi, Z. Chen, Q. Wang, J. Liu, R. Zhang, T. Jia, X. Zhao, J. Solid State Chem.2023, 324, 124081.
CrossRef Google scholar
[30]
W. Zhang, C. Yang, Z. Lei, G. Guan, S. A. He, Z. Zhang, R. Zou, H. Shen, J. Hu, ACS Appl. Mater. Interfaces2019, 11, 25691.
CrossRef Google scholar
[31]
V.-D. Dao, N. H. Vu, S. Yun, Nano Energy2020, 68, 104324.
CrossRef Google scholar
[32]
L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Adv. Mater.2015, 27, 4889.
CrossRef Google scholar
[33]
F. Wang, Y. Li, W. Zhu, X. Ge, H. Cui, K. Feng, S. Liu, X. Yang, ACS Appl. Mater. Interfaces2021, 13, 34468.
CrossRef Google scholar
[34]
J. Liu, Y. Cui, Y. Pan, Z. Chen, T. Jia, C. Li, Y. Wang, Angew. Chem. Int. Ed.2022, 61, e202117087.
[35]
J. Sun, E. Zhao, J. Liang, H. Li, S. Zhao, G. Wang, X. Gu, B. Z. Tang, Adv. Mater.2021, 34, 2108048.
[36]
Y. Zhang, H. Yan, X. Wang, Z. Zhang, F. Liu, S. Tu, X. Chen, RSC Adv.2022, 12, 28997.
CrossRef Google scholar
[37]
Z. Chen, Y. Su, X. Tang, X. Zhang, C. Duan, F. Huang, Y. Li, Sol. RRL2021, 5, 2100762.
[38]
X. Han, Z. Wang, M. Shen, J. Liu, Y. Lei, Z. Li, T. Jia, Y. Wang, J. Mater. Chem. A2021, 9, 24452.
CrossRef Google scholar
[39]
R. G. Hicks, Org. Biomol. Chem.2007, 5, 1321.
CrossRef Google scholar
[40]
P. P. Power, Chem. Rev.2003, 103, 789.
CrossRef Google scholar
[41]
J. Zhou, W. Zhu, M. Zeng, Q. Yang, P. Li, L. Lan, J. Peng, Y. Li, F. Huang, Y. Cao, Sci. China Chem.2019, 62, 1656.
CrossRef Google scholar
[42]
Y. Xue, P. Guo, H.-L. Yip, Y. Li, Y. Cao, J. Mater. Chem. A2017, 5, 3780.
CrossRef Google scholar
[43]
Z. Wang, J. Zhou, Y. Zhang, W. Zhu, Y. Li, Angew. Chem. Int. Ed.2022, 61, e202113653.
[44]
B. L. Ryland, S. S. Stahl, Angew. Chem. Int. Ed.2014, 53, 8824.
CrossRef Google scholar
[45]
Z. X. Chen, Y. Li, F. Huang, Chem2021, 7, 288.
CrossRef Google scholar
[46]
S. Ye, N. Meftahi, I. Lyskov, T. Tian, R. Whitfield, S. Kumar, A. J. Christofferson, D. A. Winkler, C.-J. Shih, S. Russo, J.-C. Leroux, Y. Bao, Chem2023, 9, 924.
CrossRef Google scholar
[47]
C. Chen, Q. Liang, Z. Chen, W. Zhu, Z. Wang, Y. Li, X. Wu, X. Xiong, Angew. Chem. Int. Ed.2021, 60, 26718.
CrossRef Google scholar
[48]
M. Mone, S. Tang, Z. Genene, P. Murto, M. Jevric, X. Zou, J. Ràfols-Ribé, B. A. Abdulahi, J. Wang, W. Mammo, M. R. Andersson, L. Edman, E. Wang, Adv. Opt. Mater.2021, 9, 2001701.
[49]
Y. Li, L. Li, Y. Wu, Y. Li, J. Phys. Chem. C2017, 121, 8579.
CrossRef Google scholar
[50]
Z. Chen, W. Li, Y. Zhang, Z. Wang, W. Zhu, M. Zeng, Y. Li, J. Phys. Chem. Lett.2021, 12, 9783.
CrossRef Google scholar
[51]
R. Zhang, A. Ellern, A. H. Winter, Angew. Chem. Int. Ed.2021, 60, 25082.
CrossRef Google scholar
[52]
Z. Y. Wang, Y. Z. Dai, L. Ding, B. W. Dong, S. D. Jiang, J. Y. Wang, J. Pei, Angew. Chem. Int. Ed.2021, 60, 4594.
CrossRef Google scholar
[53]
R. Koole, P. Liljeroth, C. Donega, D. Vanmaekelbergh, A. Meijerink, J. Am. Chem. Soc.2006, 128, 10436.
CrossRef Google scholar
[54]
D. Zhi, T. Yang, J. O’Hagan, S. Zhang, R. F. Donnelly, J. Controlled Release2020, 325, 52.
CrossRef Google scholar
[55]
D. Li, W. He, X. Lin, X. Cui, S. Nagl, A. R. Wu, R. T. K. Kwok, R. Wu, B. Z. Tang, Aggregate2023, e384. https://doi.org/10.1002/agt2.384
CrossRef Google scholar
[56]
M. Kang, Z. Zhang, N. Song, M. Li, P. Sun, X. Chen, D. Wang, B. Z. Tang, Aggregate2020, 1, 80.
CrossRef Google scholar
[57]
H. P. Wang, X. Chen, Y. L. Qi, L. W. Huang, C. X. Wang, D. Ding, X. Xue, Adv. Drug Deliv. Rev.2021, 179, 114028.
CrossRef Google scholar
[58]
Y. Tang, T. Yang, Q. Wang, X. Lv, X. Song, H. Ke, Z. Guo, X. Huang, J. Hu, Z. Li, P. Yang, X. Yang, H. Chen, Biomaterials2018, 154, 248.
CrossRef Google scholar
[59]
S. Wang, K. Li, Y. Chen, H. Chen, M. Ma, J. Feng, Q. Zhao, J. Shi, Biomaterials2015, 39, 206.
CrossRef Google scholar
[60]
Z. Li, Y. Yang, J. Yao, Z. Shao, X. Chen, Mater. Sci. Eng. C2017, 79, 123.
CrossRef Google scholar
[61]
X. Tang, Z. Chen, Q. Xu, Y. Su, H. Xu, S. Horike, H. Zhang, Y. Li, C. Gu, CCS Chem. 2021, 3, 2926.
[62]
L. Ye, S. Jiang, J. Hu, M. Wang, T. Weng, F. Wu, L. Cai, Z. Sun, L. Ma, Adv. Mater.2023, 35, 202301338.
[63]
T. Sun, J. Guo, H. Wen, Q. Pei, Q. Wu, D. Hao, C. Dou, Z. Xie, Aggregate2023, e362. https://doi.org/10.1002/agt2.362
CrossRef Google scholar
[64]
P. Yang, T. Wang, J. Zhang, H. Zhang, W. Bai, G. Duan, W. Zhang, J. Wu, Z. Gu, Y. Li, Sci. China Chem.2023, 66, 1520.
CrossRef Google scholar
[65]
Z. Ma, D. Li, X. Jia, R. Wang, M. Zhu, Chin. J. Polym. Sci.2022, 41, 699.
CrossRef Google scholar
[66]
X. Mu, F. Wu, Y. Tang, R. Wang, Y. Li, K. Li, C. Li, Y. Lu, X. Zhou, Z. Li, Aggregate2022, 3, e170.
[67]
Y. T. Chen, M. P. Zhuo, X. Wen, W. Chen, K. Q. Zhang, M. D. Li, Adv. Sci.2023, 10, e2206830.
[68]
Y. Shi, J. Yang, F. Gao, Q. Zhang, ACS Nano2023, 17, 1879.
CrossRef Google scholar
[69]
Y. Wang, W. Zhu, W. Du, X. Liu, X. Zhang, H. Dong, W. Hu, Angew. Chem. Int. Ed.2018, 57, 3963.
CrossRef Google scholar
[70]
Y. Cui, J. Liu, Z. Li, M. Ji, M. Zhao, M. Shen, X. Han, T. Jia, C. Li, Y. Wang, Adv. Funct. Mater.2021, 31, 2106247.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/