Extreme examples of reparative chondrogenesis: molecular mechanisms

Airat I. Bilyalov , Nikita S. Filatov , Daria D. Filimoshina , Oleg A. Gusev , Andrey P. Kiassov

Morphology ›› 2024, Vol. 162 ›› Issue (2) : 200 -212.

PDF
Morphology ›› 2024, Vol. 162 ›› Issue (2) : 200 -212. DOI: 10.17816/morph.633418
Reviews
review-article

Extreme examples of reparative chondrogenesis: molecular mechanisms

Author information +
History +
PDF

Abstract

Restoring hyaline cartilage integrity remains a significant challenge in regenerative medicine. When damaged, the defect is replaced by fibrosis connective tissue, resulting in a loss of the biomechanical properties of the cartilage.

This review examines the intricate molecular mechanisms underlying reparative chondrogenesis and presents examples from a variety of animal species. It provides a comprehensive overview of the signaling pathways and cellular responses that promote cartilage repair, showcasing the regenerative abilities of fish and amphibians, including the little skate and axolotl, and surprising cases of chondrogenesis in mammals like the naked mole-rat and the Acomys mouse. Unraveling the dynamic interplay between growth factors, cytokines, and extracellular matrix components will shed light on the complex signaling pathways controlling reparative chondrogenesis.

The comparative analysis presented in this review reveals both conserved and species-specific molecular pathways involved in cartilage regeneration. This provides valuable information for translational studies. By uncovering the genetic and epigenetic determinants governing extreme examples of reparative chondrogenesis, this review provides a comprehensive framework for developing therapeutic strategies to improve cartilage repair in humans.

Keywords

chondrogenesis / cartilage / regeneration

Cite this article

Download citation ▾
Airat I. Bilyalov, Nikita S. Filatov, Daria D. Filimoshina, Oleg A. Gusev, Andrey P. Kiassov. Extreme examples of reparative chondrogenesis: molecular mechanisms. Morphology, 2024, 162(2): 200-212 DOI:10.17816/morph.633418

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Becerra J, Andrades JA, Guerado E, et al. Articular cartilage: structure and regeneration. Tissue Eng Part B Rev. 2010;16(6):617–627. doi: 10.1089/ten.TEB.2010.0191

[2]

Becerra J., Andrades J.A., Guerado E., et al. Articular cartilage: structure and regeneration // Tissue Eng Part B Rev. 2010. Vol. 16, N 6. P. 617–627. doi: 10.1089/ten.TEB.2010.0191

[3]

Becerra J, Andrades JA, Guerado E, et al. Articular cartilage: structure and regeneration. Tissue Eng Part B Rev. 2010;16(6):617–627. doi: 10.1089/ten.TEB.2010.0191

[4]

Chen M, Jiang Z, Zou X, et al. Advancements in tissue engineering for articular cartilage regeneration. Heliyon. 2024;10(3):e25400. doi: 10.1016/j.heliyon.2024.e25400

[5]

Chen M., Jiang Z., Zou X., et al. Advancements in tissue engineering for articular cartilage regeneration // Heliyon. 2024. Vol. 10, N 3. P. e25400. doi: 10.1016/j.heliyon.2024.e25400

[6]

Chen M, Jiang Z, Zou X, et al. Advancements in tissue engineering for articular cartilage regeneration. Heliyon. 2024;10(3):e25400. doi: 10.1016/j.heliyon.2024.e25400

[7]

Kutaish H, Bengtsson L, Matthias Tscholl P, et al. Hyaline cartilage microtissues engineered from adult dedifferentiated chondrocytes: safety and role of WNT signaling. Stem Cells Transl Med. 2022;11(12):1219–1231. doi: 10.1093/stcltm/szac074

[8]

Kutaish H., Bengtsson L., Matthias Tscholl P., et al. Hyaline cartilage microtissues engineered from adult dedifferentiated chondrocytes: safety and role of WNT signaling // Stem Cells Transl Med. 2022. Vol. 11, N 12. P. 1219–1231. doi: 10.1093/stcltm/szac074

[9]

Kutaish H, Bengtsson L, Matthias Tscholl P, et al. Hyaline cartilage microtissues engineered from adult dedifferentiated chondrocytes: safety and role of WNT signaling. Stem Cells Transl Med. 2022;11(12):1219–1231. doi: 10.1093/stcltm/szac074

[10]

Alcaide-Ruggiero L, Molina-Hernández V, Granados MM, Domínguez JM. Main and minor types of collagens in the articular cartilage: the role of collagens in repair tissue evaluation in chondral defects. Int J Mol Sci. 2021;22(24):13329. doi: 10.3390/ijms222413329

[11]

Alcaide-Ruggiero L., Molina-Hernández V., Granados M.M., Domínguez J.M. Main and minor types of collagens in the articular cartilage: the role of collagens in repair tissue evaluation in chondral defects // Int J Mol Sci. 2021. Vol. 22, N 24. P. 13329. doi: 10.3390/ijms222413329

[12]

Alcaide-Ruggiero L, Molina-Hernández V, Granados MM, Domínguez JM. Main and minor types of collagens in the articular cartilage: the role of collagens in repair tissue evaluation in chondral defects. Int J Mol Sci. 2021;22(24):13329. doi: 10.3390/ijms222413329

[13]

Benjamin M, Ralphs JR. Biology of fibrocartilage cells. Int Rev Cytol. 2004;233:1–45. doi: 10.1016/S0074-7696(04)33001-9

[14]

Benjamin M., Ralphs J.R. Biology of fibrocartilage cells // Int Rev Cytol. 2004. Vol. 233. P. 1–45. doi: 10.1016/S0074-7696(04)33001-9

[15]

Benjamin M, Ralphs JR. Biology of fibrocartilage cells. Int Rev Cytol. 2004;233:1–45. doi: 10.1016/S0074-7696(04)33001-9

[16]

Buchanan JL. Types of fibrocartilage. Clin Podiatr Med Surg. 2022;39(3):357–361. doi: 10.1016/j.cpm.2022.02.001

[17]

Buchanan J.L. Types of fibrocartilage // Clin Podiatr Med Surg. 2022. Vol. 39, N 3. P. 357–361. doi: 10.1016/j.cpm.2022.02.001

[18]

Buchanan JL. Types of fibrocartilage. Clin Podiatr Med Surg. 2022;39(3):357–361. doi: 10.1016/j.cpm.2022.02.001

[19]

Benjamin M, Ralphs JR. Fibrocartilage in tendons and ligaments — an adaptation to compressive load. J Anat. 1998;193(Pt 4):481–494. doi: 10.1046/j.1469-7580.1998.19340481.x

[20]

Benjamin M., Ralphs J.R. Fibrocartilage in tendons and ligaments — an adaptation to compressive load // J Anat. 1998. Vol. 193, Pt. 4. P. 481–494. doi: 10.1046/j.1469-7580.1998.19340481.x

[21]

Benjamin M, Ralphs JR. Fibrocartilage in tendons and ligaments — an adaptation to compressive load. J Anat. 1998;193(Pt 4):481–494. doi: 10.1046/j.1469-7580.1998.19340481.x

[22]

Sato K, Kurita S, Hirano M, Kiyokawa K. Distribution of elastic cartilage in the arytenoids and its physiologic significance. Ann Otol Rhinol Laryngol. 1990;99(5 Pt 1):363–368. doi: 10.1177/000348949009900509

[23]

Sato K., Kurita S., Hirano M., Kiyokawa K. Distribution of elastic cartilage in the arytenoids and its physiologic significance // Ann Otol Rhinol Laryngol. 1990. Vol. 99, N 5, Pt 1. P. 363–368. doi: 10.1177/000348949009900509

[24]

Sato K, Kurita S, Hirano M, Kiyokawa K. Distribution of elastic cartilage in the arytenoids and its physiologic significance. Ann Otol Rhinol Laryngol. 1990;99(5 Pt 1):363–368. doi: 10.1177/000348949009900509

[25]

Takebe T, Kobayashi S, Kan H, et al. Human elastic cartilage engineering from cartilage progenitor cells using rotating wall vessel bioreactor. Transplant Proc. 2012;44(4):1158–1161. doi: 10.1016/j.transproceed.2012.03.038

[26]

Takebe T., Kobayashi S., Kan H., et al. Human elastic cartilage engineering from cartilage progenitor cells using rotating wall vessel bioreactor // Transplant Proc. 2012. Vol. 44, N 4. P. 1158–1161. doi: 10.1016/j.transproceed.2012.03.038

[27]

Takebe T, Kobayashi S, Kan H, et al. Human elastic cartilage engineering from cartilage progenitor cells using rotating wall vessel bioreactor. Transplant Proc. 2012;44(4):1158–1161. doi: 10.1016/j.transproceed.2012.03.038

[28]

Pap T, Korb-Pap A. Cartilage damage in osteoarthritis and rheumatoid arthritis — two unequal siblings. Nat Rev Rheumatol. 2015;11(10):606–615. doi: 10.1038/nrrheum.2015.95

[29]

Pap T., Korb-Pap A. Cartilage damage in osteoarthritis and rheumatoid arthritis — two unequal siblings // Nat Rev Rheumatol. 2015. Vol. 11, N 10. P. 606–615. doi: 10.1038/nrrheum.2015.95

[30]

Pap T, Korb-Pap A. Cartilage damage in osteoarthritis and rheumatoid arthritis — two unequal siblings. Nat Rev Rheumatol. 2015;11(10):606–615. doi: 10.1038/nrrheum.2015.95

[31]

Murakami S, Lefebvre V, de Crombrugghe B. Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-alpha. J Biol Chem. 2000;275(5):3687–3692. doi: 10.1074/jbc.275.5.3687

[32]

Murakami S., Lefebvre V., de Crombrugghe B. Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-alpha // J Biol Chem. 2000. Vol. 275, N 5. P. 3687–3692. doi: 10.1074/jbc.275.5.3687

[33]

Murakami S, Lefebvre V, de Crombrugghe B. Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-alpha. J Biol Chem. 2000;275(5):3687–3692. doi: 10.1074/jbc.275.5.3687

[34]

Wehling N, Palmer GD, Pilapil C, et al. Interleukin-1beta and tumor necrosis factor alpha inhibit chondrogenesis by human mesenchymal stem cells through NF-kappaB-dependent pathways. Arthritis Rheum. 2009;60(3):801–812. doi: 10.1002/art.24352

[35]

Wehling N., Palmer G.D., Pilapil C., et al. Interleukin-1beta and tumor necrosis factor alpha inhibit chondrogenesis by human mesenchymal stem cells through NF-kappaB-dependent pathways // Arthritis Rheum. 2009. Vol. 60, N 3. P. 801–812. doi: 10.1002/art.24352

[36]

Wehling N, Palmer GD, Pilapil C, et al. Interleukin-1beta and tumor necrosis factor alpha inhibit chondrogenesis by human mesenchymal stem cells through NF-kappaB-dependent pathways. Arthritis Rheum. 2009;60(3):801–812. doi: 10.1002/art.24352

[37]

Stöve J, Huch K, Günther KP, Scharf HP. Interleukin-1beta induces different gene expression of stromelysin, aggrecan and tumor-necrosis-factor-stimulated gene 6 in human osteoarthritic chondrocytes in vitro. Pathobiology. 2000;68(3):144–149. doi: 10.1159/000055915

[38]

Stöve J., Huch K., Günther K.P., Scharf H.P. Interleukin-1beta induces different gene expression of stromelysin, aggrecan and tumor-necrosis-factor-stimulated gene 6 in human osteoarthritic chondrocytes in vitro // Pathobiology. 2000. Vol. 68, N 3. P. 144–149. doi: 10.1159/000055915

[39]

Stöve J, Huch K, Günther KP, Scharf HP. Interleukin-1beta induces different gene expression of stromelysin, aggrecan and tumor-necrosis-factor-stimulated gene 6 in human osteoarthritic chondrocytes in vitro. Pathobiology. 2000;68(3):144–149. doi: 10.1159/000055915

[40]

Liacini A, Sylvester J, Li WQ, et al. Induction of matrix metalloproteinase-13 gene expression by TNF-alpha is mediated by MAP kinases, AP-1, and NF-kappaB transcription factors in articular chondrocytes. Exp Cell Res. 2003;288(1):208–217. doi: 10.1016/s0014-4827(03)00180-0

[41]

Liacini A., Sylvester J., Li W.Q., et al. Induction of matrix metalloproteinase-13 gene expression by TNF-alpha is mediated by MAP kinases, AP-1, and NF-kappaB transcription factors in articular chondrocytes // Exp Cell Res. 2003. Vol. 288, N 1. P. 208–217. doi: 10.1016/s0014-4827(03)00180-0

[42]

Liacini A, Sylvester J, Li WQ, et al. Induction of matrix metalloproteinase-13 gene expression by TNF-alpha is mediated by MAP kinases, AP-1, and NF-kappaB transcription factors in articular chondrocytes. Exp Cell Res. 2003;288(1):208–217. doi: 10.1016/s0014-4827(03)00180-0

[43]

Rim YA, Ju JH. The role of fibrosis in osteoarthritis progression. Life (Basel). 2020;11(1):3. doi: 10.3390/life11010003

[44]

Rim Y.A., Ju J.H. The role of fibrosis in osteoarthritis progressio // Life (Basel). 2020. Vol. 11, N 1. P. 3. doi: 10.3390/life11010003

[45]

Rim YA, Ju JH. The role of fibrosis in osteoarthritis progression. Life (Basel). 2020;11(1):3. doi: 10.3390/life11010003

[46]

Hu H, Liu W, Sun C, et al. Endogenous repair and regeneration of injured articular cartilage: a challenging but promising therapeutic strategy. Aging Dis. 2021;12(3):886–901. doi: 10.14336/AD.2020.0902

[47]

Hu H., Liu W., Sun C., et al. Endogenous repair and regeneration of injured articular cartilage: a challenging but promising therapeutic strategy // Aging Dis. 2021. Vol. 12, N 3. P. 886–901. doi: 10.14336/AD.2020.0902

[48]

Hu H, Liu W, Sun C, et al. Endogenous repair and regeneration of injured articular cartilage: a challenging but promising therapeutic strategy. Aging Dis. 2021;12(3):886–901. doi: 10.14336/AD.2020.0902

[49]

Presnyakov EV, Rochev ES, Tserceil VV, et al. Chondrogenesis induced in vivo by gene-activated hydrogel based on hyaluronic acid and plasmid DNA encoding VEGF. Genes & Cells. 2021;16(2):47–53. EDN: YUDLRX doi: 10.23868/202107005

[50]

Пресняков Е.В., Рочев Е.С., Церцеил В.В., и др. Индукция хондрогенеза in vivo под влиянием гидрогелевого ген-активированного материала на основе гиалуроновой кислоты и плазмидной ДНК с геном VEGF // Гены и клетки. 2021. Т. 16, № 2. С. 47–53. EDN: YUDLRX doi: 10.23868/202107005

[51]

Presnyakov EV, Rochev ES, Tserceil VV, et al. Chondrogenesis induced in vivo by gene-activated hydrogel based on hyaluronic acid and plasmid DNA encoding VEGF. Genes & Cells. 2021;16(2):47–53. EDN: YUDLRX doi: 10.23868/202107005

[52]

Grol MW, Lee BH. Gene therapy for repair and regeneration of bone and cartilage. Curr Opin Pharmacol. 2018;40:59–66. doi: 10.1016/j.coph.2018.03.005

[53]

Grol M.W., Lee B.H. Gene therapy for repair and regeneration of bone and cartilage // Curr Opin Pharmacol. 2018. Vol. 40. P. 59–66. doi: 10.1016/j.coph.2018.03.005

[54]

Grol MW, Lee BH. Gene therapy for repair and regeneration of bone and cartilage. Curr Opin Pharmacol. 2018;40:59–66. doi: 10.1016/j.coph.2018.03.005

[55]

Wasyłeczko M, Sikorska W, Chwojnowski A. Review of synthetic and hybrid scaffolds in cartilage tissue engineering. Membranes (Basel). 2020;10(11):348. doi: 10.3390/membranes10110348

[56]

Wasyłeczko M., Sikorska W., Chwojnowski A. Review of synthetic and hybrid scaffolds in cartilage tissue engineering // Membranes (Basel). 2020. Vol. 10, N 11. P. 348. doi: 10.3390/membranes10110348

[57]

Wasyłeczko M, Sikorska W, Chwojnowski A. Review of synthetic and hybrid scaffolds in cartilage tissue engineering. Membranes (Basel). 2020;10(11):348. doi: 10.3390/membranes10110348

[58]

Cieri RL, Hatch ST, Capano JG, Brainerd EL. Locomotor rib kinematics in two species of lizards and a new hypothesis for the evolution of aspiration breathing in amniotes. Sci Rep. 2020;10(1):7739. doi: 10.1038/s41598-020-64140-y

[59]

Cieri R.L., Hatch S.T., Capano J.G., Brainerd E.L. Locomotor rib kinematics in two species of lizards and a new hypothesis for the evolution of aspiration breathing in amniotes // Sci Rep. 2020. Vol. 10, N 1. P. 7739. doi: 10.1038/s41598-020-64140-y

[60]

Cieri RL, Hatch ST, Capano JG, Brainerd EL. Locomotor rib kinematics in two species of lizards and a new hypothesis for the evolution of aspiration breathing in amniotes. Sci Rep. 2020;10(1):7739. doi: 10.1038/s41598-020-64140-y

[61]

Zanaty MI, Abdel-Moneim A, Kitani Y, et al. Effect of Omeprazole on osteoblasts and osteoclasts in vivo and in the in vitro model using fish scales. Biochemistry (Mosc). 2021;86(10):1192–1200. doi: 10.1134/S0006297921100035

[62]

Zanaty M.I., Abdel-Moneim A., Kitani Y., et al. Effect of Omeprazole on osteoblasts and osteoclasts in vivo and in the in vitro model using fish scales // // Biochemistry (Mosc). 2021. Vol. 86, N 10. P. 1192–1200. doi: 10.1134/S0006297921100035

[63]

Zanaty MI, Abdel-Moneim A, Kitani Y, et al. Effect of Omeprazole on osteoblasts and osteoclasts in vivo and in the in vitro model using fish scales. Biochemistry (Mosc). 2021;86(10):1192–1200. doi: 10.1134/S0006297921100035

[64]

Misof BY, Wagner GP. Regeneration in Salaria pavo (Blenniidae, Teleostei). Histogenesis of the regenerating pectoral fin suggests different mechanisms for morphogenesis and structural maintenance. Anat Embryol (Berl). 1992;186(2):153–165. doi: 10.1007/BF00174953

[65]

Misof B.Y., Wagner G.P. Regeneration in Salaria pavo (Blenniidae, Teleostei). Histogenesis of the regenerating pectoral fin suggests different mechanisms for morphogenesis and structural maintenance // Anat Embryol (Berl). 1992. Vol. 186, N 2. P. 153–165. doi: 10.1007/BF00174953

[66]

Misof BY, Wagner GP. Regeneration in Salaria pavo (Blenniidae, Teleostei). Histogenesis of the regenerating pectoral fin suggests different mechanisms for morphogenesis and structural maintenance. Anat Embryol (Berl). 1992;186(2):153–165. doi: 10.1007/BF00174953

[67]

Patel S, Ranadive I, Desai I, Balakrishnan S. Regeneration of caudal fin in Poecilia latipinna: Insights into the progressive tissue morphogenesis. Organogenesis. 2019;15(2):35–42. doi: 10.1080/15476278.2019.1633168

[68]

Patel S., Ranadive I., Desai I., Balakrishnan S. Regeneration of caudal fin in Poecilia latipinna: Insights into the progressive tissue morphogenesis // Organogenesis. 2019. Vol. 15, N 2. P. 35–42. doi: 10.1080/15476278.2019.1633168

[69]

Patel S, Ranadive I, Desai I, Balakrishnan S. Regeneration of caudal fin in Poecilia latipinna: Insights into the progressive tissue morphogenesis. Organogenesis. 2019;15(2):35–42. doi: 10.1080/15476278.2019.1633168

[70]

Caton RE, Farnell KE, Chronister RB, et al. Regeneration of the forebrain of the Japanese carp, Cyprinus carpio: a Golgi analysis. J Hirnforsch. 1980;21(3):257–263.

[71]

Caton R.E., Farnell K.E., Chronister R.B., et al. Regeneration of the forebrain of the Japanese carp, Cyprinus carpio: a Golgi analysis // J Hirnforsch. 1980. Vol. 21, N 3. P. 257–263.

[72]

Caton RE, Farnell KE, Chronister RB, et al. Regeneration of the forebrain of the Japanese carp, Cyprinus carpio: a Golgi analysis. J Hirnforsch. 1980;21(3):257–263.

[73]

Grivas J, Haag M, Johnson A, et al. Cardiac repair and regenerative potential in the goldfish (Carassius auratus) heart. Comp Biochem Physiol C Toxicol Pharmacol. 2014;163:14–23. doi: 10.1016/j.cbpc.2014.02.002

[74]

Grivas J., Haag M., Johnson A., et al. Cardiac repair and regenerative potential in the goldfish (Carassius auratus) heart // Comp Biochem Physiol C Toxicol Pharmacol. 2014. Vol. 163. P. 14–23. doi: 10.1016/j.cbpc.2014.02.002

[75]

Grivas J, Haag M, Johnson A, et al. Cardiac repair and regenerative potential in the goldfish (Carassius auratus) heart. Comp Biochem Physiol C Toxicol Pharmacol. 2014;163:14–23. doi: 10.1016/j.cbpc.2014.02.002

[76]

Smeeton J, Natarajan N, Anderson T, et al. Regeneration of jaw joint cartilage in adult zebrafish. Front Cell Dev Biol. 2022;9:777787. doi: 10.3389/fcell.2021.777787

[77]

Smeeton J., Natarajan N., Anderson T., et al. Regeneration of jaw joint cartilage in adult zebrafish // Front Cell Dev Biol. 2022. Vol. 9. P. 777787. doi: 10.3389/fcell.2021.777787

[78]

Smeeton J, Natarajan N, Anderson T, et al. Regeneration of jaw joint cartilage in adult zebrafish. Front Cell Dev Biol. 2022;9:777787. doi: 10.3389/fcell.2021.777787

[79]

Wilga CD, Lauder GV. Function of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering. J Exp Biol. 2002;205(Pt 16):2365–2374. doi: 10.1242/jeb.205.16.2365

[80]

Wilga C.D., Lauder G.V. Function of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering // J Exp Biol. 2002. Vol. 205, Pt 16. P. 2365–2374. doi: 10.1242/jeb.205.16.2365

[81]

Wilga CD, Lauder GV. Function of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering. J Exp Biol. 2002;205(Pt 16):2365–2374. doi: 10.1242/jeb.205.16.2365

[82]

Mitchell CD, Criscitiello MF. Comparative study of cartilaginous fish divulges insights into the early evolution of primary, secondary and mucosal lymphoid tissue architecture. Fish Shellfish Immunol. 2020;107(Pt B):435–443. doi: 10.1016/j.fsi.2020.11.006

[83]

Mitchell C.D., Criscitiello M.F. Comparative study of cartilaginous fish divulges insights into the early evolution of primary, secondary and mucosal lymphoid tissue architecture // Fish Shellfish Immunol. 2020. Vol. 107, Pt B.P. 435–443. doi: 10.1016/j.fsi.2020.11.006

[84]

Mitchell CD, Criscitiello MF. Comparative study of cartilaginous fish divulges insights into the early evolution of primary, secondary and mucosal lymphoid tissue architecture. Fish Shellfish Immunol. 2020;107(Pt B):435–443. doi: 10.1016/j.fsi.2020.11.006

[85]

Ashhurst DE. The cartilaginous skeleton of an elasmobranch fish does not heal. Matrix Biol. 2004;23(1):15–22. doi: 10.1016/j.matbio.2004.02.001

[86]

Ashhurst D.E. The cartilaginous skeleton of an elasmobranch fish does not heal // Matrix Biol. 2004. Vol. 23, N 1. P. 15–22. doi: 10.1016/j.matbio.2004.02.001

[87]

Ashhurst DE. The cartilaginous skeleton of an elasmobranch fish does not heal. Matrix Biol. 2004;23(1):15–22. doi: 10.1016/j.matbio.2004.02.001

[88]

Dean MN, Summers AP. Mineralized cartilage in the skeleton of chondrichthyan fishes. Zoology (Jena). 2006;109(2):164–168. doi: 10.1016/j.zool.2006.03.002

[89]

Dean M.N., Summers A.P. Mineralized cartilage in the skeleton of chondrichthyan fishes // Zoology (Jena). 2006. Vol. 109, N 2. P. 164–168. doi: 10.1016/j.zool.2006.03.002

[90]

Dean MN, Summers AP. Mineralized cartilage in the skeleton of chondrichthyan fishes. Zoology (Jena). 2006;109(2):164–168. doi: 10.1016/j.zool.2006.03.002

[91]

Marconi A, Hancock-Ronemus A, Gillis JA. Adult chondrogenesis and spontaneous cartilage repair in the skate, Leucoraja erinacea. Elife. 2020;9:e53414. doi: 10.7554/eLife.53414

[92]

Marconi A., Hancock-Ronemus A., Gillis J.A. Adult chondrogenesis and spontaneous cartilage repair in the skate, Leucoraja erinacea // Elife. 2020. Vol. 9. P. e53414. doi: 10.7554/eLife.53414

[93]

Marconi A, Hancock-Ronemus A, Gillis JA. Adult chondrogenesis and spontaneous cartilage repair in the skate, Leucoraja erinacea. Elife. 2020;9:e53414. doi: 10.7554/eLife.53414

[94]

Satoh A, Kashimoto R, Ohashi A, et al. An approach for elucidating dermal fibroblast dedifferentiation in amphibian limb regeneration. Zoological Lett. 2022;8(1):6. doi: 10.1186/s40851-022-00190-6

[95]

Satoh A., Kashimoto R., Ohashi A., et al. An approach for elucidating dermal fibroblast dedifferentiation in amphibian limb regeneration // Zoological Lett. 2022. Vol. 8, N 1. P. 6. doi: 10.1186/s40851-022-00190-6

[96]

Satoh A, Kashimoto R, Ohashi A, et al. An approach for elucidating dermal fibroblast dedifferentiation in amphibian limb regeneration. Zoological Lett. 2022;8(1):6. doi: 10.1186/s40851-022-00190-6

[97]

Vieira WA, Wells KM, McCusker CD. Advancements to the axolotl model for regeneration and aging. Gerontology. 2020;66(3):212–222. doi: 10.1159/000504294

[98]

Vieira W.A., Wells K.M., McCusker C.D. Advancements to the axolotl model for regeneration and aging // Gerontology. 2020. Vol. 66, N 3. P. 212–222. doi: 10.1159/000504294

[99]

Vieira WA, Wells KM, McCusker CD. Advancements to the axolotl model for regeneration and aging. Gerontology. 2020;66(3):212–222. doi: 10.1159/000504294

[100]

Yokoyama H, Ogino H, Stoick-Cooper CL, et al. Wnt/beta-catenin signaling has an essential role in the initiation of limb regeneration. Dev Biol. 2007;306(1):170–178. doi: 10.1016/j.ydbio.2007.03.014

[101]

Yokoyama H., Ogino H., Stoick-Cooper C.L., et al. Wnt/beta-catenin signaling has an essential role in the initiation of limb regeneration // Dev Biol. 2007. Vol. 306, N 1. P. 170–178. doi: 10.1016/j.ydbio.2007.03.014

[102]

Yokoyama H, Ogino H, Stoick-Cooper CL, et al. Wnt/beta-catenin signaling has an essential role in the initiation of limb regeneration. Dev Biol. 2007;306(1):170–178. doi: 10.1016/j.ydbio.2007.03.014

[103]

Singh BN, Koyano-Nakagawa N, Donaldson A, et al. Hedgehog signaling during appendage development and regeneration. Genes (Basel). 2015;6(2):417–435. doi: 10.3390/genes6020417

[104]

Singh B.N., Koyano-Nakagawa N., Donaldson A., et al. Hedgehog signaling during appendage development and regeneration // Genes (Basel). 2015. Vol. 6, N 2. P. 417–435. doi: 10.3390/genes6020417

[105]

Singh BN, Koyano-Nakagawa N, Donaldson A, et al. Hedgehog signaling during appendage development and regeneration. Genes (Basel). 2015;6(2):417–435. doi: 10.3390/genes6020417

[106]

Guimond JC, Lévesque M, Michaud PL, et al. BMP-2 functions independently of SHH signaling and triggers cell condensation and apoptosis in regenerating axolotl limbs. BMC Dev Biol. 2010;10:15. doi: 10.1186/1471-213X-10-15

[107]

Guimond J.C., Lévesque M., Michaud P.L., et al. BMP-2 functions independently of SHH signaling and triggers cell condensation and apoptosis in regenerating axolotl limbs // BMC Dev Biol. 2010. Vol. 10. P. 15. doi: 10.1186/1471-213X-10-15

[108]

Guimond JC, Lévesque M, Michaud PL, et al. BMP-2 functions independently of SHH signaling and triggers cell condensation and apoptosis in regenerating axolotl limbs. BMC Dev Biol. 2010;10:15. doi: 10.1186/1471-213X-10-15

[109]

Lévesque M, Gatien S, Finnson K, et al. Transforming growth factor: beta signaling is essential for limb regeneration in axolotls. PLoS One. 2007;2(11): e1227. doi: 10.1371/journal.pone.0001227

[110]

Lévesque M., Gatien S., Finnson K., et al. Transforming growth factor: beta signaling is essential for limb regeneration in axolotls // PLoS One. 2007. Vol. 2, N 11. P. e1227. doi: 10.1371/journal.pone.0001227

[111]

Lévesque M, Gatien S, Finnson K, et al. Transforming growth factor: beta signaling is essential for limb regeneration in axolotls. PLoS One. 2007;2(11): e1227. doi: 10.1371/journal.pone.0001227

[112]

Epperlein HH, Vichev K, Heidrich FM, Kurth T. BMP-4 and Noggin signaling modulate dorsal fin and somite development in the axolotl trunk. Dev Dyn. 2007;236(9):2464–2474. doi: 10.1002/dvdy.21247

[113]

Epperlein H.H., Vichev K., Heidrich F.M., Kurth T. BMP-4 and Noggin signaling modulate dorsal fin and somite development in the axolotl trunk // Dev Dyn. 2007. Vol. 236, N 9. P. 2464–2474. doi: 10.1002/dvdy.21247

[114]

Epperlein HH, Vichev K, Heidrich FM, Kurth T. BMP-4 and Noggin signaling modulate dorsal fin and somite development in the axolotl trunk. Dev Dyn. 2007;236(9):2464–2474. doi: 10.1002/dvdy.21247

[115]

Schuelert N, Zhang C, Mogg AJ, et al. Paradoxical effects of the cannabinoid CB2 receptor agonist GW405833 on rat osteoarthritic knee joint pain. Osteoarthritis Cartilage. 2010;18(11):1536–1543. doi: 10.1016/j.joca.2010.09.005

[116]

Schuelert N., Zhang C., Mogg A.J., et al. Paradoxical effects of the cannabinoid CB2 receptor agonist GW405833 on rat osteoarthritic knee joint pain // Osteoarthritis Cartilage. 2010. Vol. 18, N 11. P. 1536–1543. doi: 10.1016/j.joca.2010.09.005

[117]

Schuelert N, Zhang C, Mogg AJ, et al. Paradoxical effects of the cannabinoid CB2 receptor agonist GW405833 on rat osteoarthritic knee joint pain. Osteoarthritis Cartilage. 2010;18(11):1536–1543. doi: 10.1016/j.joca.2010.09.005

[118]

Cosden RS, Lattermann C, Romine S, et al. Intrinsic repair of full-thickness articular cartilage defects in the axolotl salamander. Osteoarthritis Cartilage. 2011;19(2):200–205. doi: 10.1016/j.joca.2010.11.005

[119]

Cosden R.S., Lattermann C., Romine S., et al. Intrinsic repair of full-thickness articular cartilage defects in the axolotl salamander // Osteoarthritis Cartilage. 2011. Vol. 19, N 2. P. 200–205. doi: 10.1016/j.joca.2010.11.005

[120]

Cosden RS, Lattermann C, Romine S, et al. Intrinsic repair of full-thickness articular cartilage defects in the axolotl salamander. Osteoarthritis Cartilage. 2011;19(2):200–205. doi: 10.1016/j.joca.2010.11.005

[121]

Irmis RB, Parker WG. Unusual tetrapod teeth from the Upper Triassic Chinle Formation, Arizona, USA. Canadian Journal of Earth Sciences. 2005;42:1339–1345. doi: 10.1139/e05-031

[122]

Irmis R.B., Parker W.G. Unusual tetrapod teeth from the Upper Triassic Chinle Formation, Arizona, USA // Canadian Journal of Earth Sciences. 2005. Vol. 42. P. 1339–1345. doi: 10.1139/e05-031

[123]

Irmis RB, Parker WG. Unusual tetrapod teeth from the Upper Triassic Chinle Formation, Arizona, USA. Canadian Journal of Earth Sciences. 2005;42:1339–1345. doi: 10.1139/e05-031

[124]

Lozito TP, Tuan RS. Lizard tail regeneration: regulation of two distinct cartilage regions by Indian hedgehog. Dev Biol. 2015;399(2):249–262. doi: 10.1016/j.ydbio.2014.12.036

[125]

Lozito T.P., Tuan R.S. Lizard tail regeneration: regulation of two distinct cartilage regions by Indian hedgehog // Dev Biol. 2015. Vol. 399, N 2. P. 249–262. doi: 10.1016/j.ydbio.2014.12.036

[126]

Lozito TP, Tuan RS. Lizard tail regeneration: regulation of two distinct cartilage regions by Indian hedgehog. Dev Biol. 2015;399(2):249–262. doi: 10.1016/j.ydbio.2014.12.036

[127]

Alibardi L. Regeneration of the epiphysis including the articular cartilage in the injured knees of the Lizard Podarcis muralis. J Dev Biol. 2015;3(2):71–89. doi: 10.3390/jdb3020071

[128]

Alibardi L. Regeneration of the epiphysis including the articular cartilage in the injured knees of the Lizard Podarcis muralis // J Dev Biol. 2015. Vol. 3, N 2. P. 71–89. doi: 10.3390/jdb3020071

[129]

Alibardi L. Regeneration of the epiphysis including the articular cartilage in the injured knees of the Lizard Podarcis muralis. J Dev Biol. 2015;3(2):71–89. doi: 10.3390/jdb3020071

[130]

Alibardi L. Regeneration of articular cartilage in lizard knee from resident stem/progenitor cells. Int J Mol Sci. 2015;16(9):20731–20747. doi: 10.3390/ijms160920731

[131]

Alibardi L. Regeneration of articular cartilage in lizard knee from resident stem/progenitor cells // Int J Mol Sci. 2015. Vol. 16, N 9. P. 20731–20747. doi: 10.3390/ijms160920731

[132]

Alibardi L. Regeneration of articular cartilage in lizard knee from resident stem/progenitor cells. Int J Mol Sci. 2015;16(9):20731–20747. doi: 10.3390/ijms160920731

[133]

Schott RK, Bell RC, Loew ER, et al. Transcriptomic evidence for visual adaptation during the aquatic to terrestrial metamorphosis in leopard frogs. BMC Biol. 2022;20(1):138. doi: 10.1186/s12915-022-01341-z

[134]

Schott R.K., Bell R.C., Loew E.R., et al. Transcriptomic evidence for visual adaptation during the aquatic to terrestrial metamorphosis in leopard frogs // BMC Biol. 2022. Vol. 20, N 1. P. 138. doi: 10.1186/s12915-022-01341-z

[135]

Schott RK, Bell RC, Loew ER, et al. Transcriptomic evidence for visual adaptation during the aquatic to terrestrial metamorphosis in leopard frogs. BMC Biol. 2022;20(1):138. doi: 10.1186/s12915-022-01341-z

[136]

Tanizaki Y, Wang S, Zhang H. Liver development during Xenopus tropicalis metamorphosis is controlled by T3-activation of WNT signaling. iScience. 2023;26(4):106301. doi: 10.1016/j.isci.2023.106301

[137]

Tanizaki Y., Wang S., Zhang H., et al. Liver development during Xenopus tropicalis metamorphosis is controlled by T3-actiation of WNT signaling // iScience. 2023. Vol. 26, N 4. P. 106301. doi: 10.1016/j.isci.2023.106301

[138]

Tanizaki Y, Wang S, Zhang H. Liver development during Xenopus tropicalis metamorphosis is controlled by T3-activation of WNT signaling. iScience. 2023;26(4):106301. doi: 10.1016/j.isci.2023.106301

[139]

Tereshina MB, Zaraisky AG, Novoselov VV. Ras-dva, a member of novel family of small GTPases, is required for the anterior ectoderm patterning in the Xenopus laevis embryo. Development. 2006;133(3):485–494. doi: 10.1242/dev.02207

[140]

Tereshina M.B., Zaraisky A.G., Novoselov V.V. Ras-dva, a member of novel family of small GTPases, is required for the anterior ectoderm patterning in the Xenopus laevis embryo // Development. 2006. Vol. 133, N 3. P. 485–494. doi: 10.1242/dev.02207

[141]

Tereshina MB, Zaraisky AG, Novoselov VV. Ras-dva, a member of novel family of small GTPases, is required for the anterior ectoderm patterning in the Xenopus laevis embryo. Development. 2006;133(3):485–494. doi: 10.1242/dev.02207

[142]

King MW, Neff AW, Mescher AL. The developing xenopus limb as a model for studies on the balance between inflammation and regeneration. Anat Rec. 2012;295(10):1552–1561. doi: 10.1002/ar.22443

[143]

King M.W., Neff A.W., Mescher A.L. The developing Xenopus limb as a model for studies on the balance between inflammation and regeneration // Anat Rec (Hoboken). 2012. Vol. 295, N 10. P. 1552–1561. doi: 10.1002/ar.22443

[144]

King MW, Neff AW, Mescher AL. The developing xenopus limb as a model for studies on the balance between inflammation and regeneration. Anat Rec. 2012;295(10):1552–1561. doi: 10.1002/ar.22443

[145]

Joven A, Elewa A, Simon A. Model systems for regeneration: salamanders. Development. 2019;146(14): dev167700. doi: 10.1242/dev.167700

[146]

Joven A., Elewa A., Simon A. Model systems for regeneration: salamanders // Development. 2019. Vol. 146, N 14. P. dev167700. doi: 10.1242/dev.167700

[147]

Joven A, Elewa A, Simon A. Model systems for regeneration: salamanders. Development. 2019;146(14): dev167700. doi: 10.1242/dev.167700

[148]

Roy S, Gatien S. Regeneration in axolotls: a model to aim for! Exp Gerontol. 2008;43(11):968–973. doi: 10.1016/j.exger.2008.09.003

[149]

Roy S., Gatien S. Regeneration in axolotls: a model to aim for! // Exp Gerontol. 2008. Vol. 43, N 11. P. 968–973. doi: 10.1016/j.exger.2008.09.003

[150]

Roy S, Gatien S. Regeneration in axolotls: a model to aim for! Exp Gerontol. 2008;43(11):968–973. doi: 10.1016/j.exger.2008.09.003

[151]

He Y, Li Z, Alexander PG, et al. Pathogenesis of osteoarthritis: risk factors, regulatory pathways in chondrocytes, and experimental models. Biology (Basel). 2020;9(8):194. doi: 10.3390/biology9080194

[152]

He Y., Li Z., Alexander P.G., et al. Pathogenesis of osteoarthritis: risk factors, regulatory pathways in chondrocytes, and experimental models // Biology (Basel). 2020. Vol. 9, N 8. P. 194. doi: 10.3390/biology9080194

[153]

He Y, Li Z, Alexander PG, et al. Pathogenesis of osteoarthritis: risk factors, regulatory pathways in chondrocytes, and experimental models. Biology (Basel). 2020;9(8):194. doi: 10.3390/biology9080194

[154]

Kalamegam G, Memic A, Budd E, et al. A comprehensive review of stem cells for cartilage regeneration in osteoarthritis. Adv Exp Med Biol. 2018;1089:23–36. doi: 10.1007/5584_2018_205

[155]

Kalamegam G., Memic A., Budd E., et al. Comprehensive review of stem cells for cartilage regeneration in osteoarthritis // Adv Exp Med Biol. 2018. Vol. 1089. P. 23–36. doi: 10.1007/5584_2018_205

[156]

Kalamegam G, Memic A, Budd E, et al. A comprehensive review of stem cells for cartilage regeneration in osteoarthritis. Adv Exp Med Biol. 2018;1089:23–36. doi: 10.1007/5584_2018_205

[157]

Deng ZH, Li YS, Gao X, et al. Bone morphogenetic proteins for articular cartilage regeneration. Osteoarthritis Cartilage. 2018;26(9):1153–1161. doi: 10.1016/j.joca.2018.03.007

[158]

Deng Z.H., Li Y.S., Gao X., et al. Bone morphogenetic proteins for articular cartilage regeneration // Osteoarthritis Cartilage. 2018. Vol. 26, N 9. P. 1153–1161. doi: 10.1016/j.joca.2018.03.007

[159]

Deng ZH, Li YS, Gao X, et al. Bone morphogenetic proteins for articular cartilage regeneration. Osteoarthritis Cartilage. 2018;26(9):1153–1161. doi: 10.1016/j.joca.2018.03.007

[160]

Ellman MB, Yan D, Ahmadinia K, et al. Fibroblast growth factor control of cartilage homeostasis. J Cell Biochem. 2013;114(4):735–742. doi: 10.1002/jcb.24418

[161]

Ellman M.B., Yan D., Ahmadinia K., et al. Fibroblast growth factor control of cartilage homeostasis // J Cell Biochem. 2013. Vol. 114, N 4. P. 735–742. doi: 10.1002/jcb.24418

[162]

Ellman MB, Yan D, Ahmadinia K, et al. Fibroblast growth factor control of cartilage homeostasis. J Cell Biochem. 2013;114(4):735–742. doi: 10.1002/jcb.24418

[163]

Blaney Davidson EN, Vitters EL, van den Berg WB, van der Kraan PM. TGF beta-induced cartilage repair is maintained but fibrosis is blocked in the presence of Smad7. Arthritis Res Ther. 2006;8(3): R65. doi: 10.1186/ar1931

[164]

Blaney Davidson E.N., Vitters E.L., van den Berg W.B., van der Kraan P.M. TGF beta-induced cartilage repair is maintained but fibrosis is blocked in the presence of Smad7 // Arthritis Res Ther. 2006. Vol. 8, N 3. P. R65. doi: 10.1186/ar1931

[165]

Blaney Davidson EN, Vitters EL, van den Berg WB, van der Kraan PM. TGF beta-induced cartilage repair is maintained but fibrosis is blocked in the presence of Smad7. Arthritis Res Ther. 2006;8(3): R65. doi: 10.1186/ar1931

[166]

Madry H, Orth P, Cucchiarini M. Gene therapy for cartilage repair. Cartilage. 2011;2(3):201–225. doi: 10.1177/1947603510392914

[167]

Madry H., Orth P., Cucchiarini M. Gene therapy for cartilage repair // Cartilage. 2011. Vol. 2, N 3. P. 201–225. doi: 10.1177/1947603510392914

[168]

Madry H, Orth P, Cucchiarini M. Gene therapy for cartilage repair. Cartilage. 2011;2(3):201–225. doi: 10.1177/1947603510392914

[169]

Taguchi T, Kotelsky A, Takasugi M, et al. Naked mole-rats are extremely resistant to post-traumatic osteoarthritis. Aging Cell. 2020;19(11): e13255. doi: 10.1111/acel.13255

[170]

Taguchi T., Kotelsky A., Takasugi M., et al. Naked mole-rats are extremely resistant to post-traumatic osteoarthritis // Aging Cell. 2020. Vol. 19, N 11. P. e13255. doi: 10.1111/acel.13255

[171]

Taguchi T, Kotelsky A, Takasugi M, et al. Naked mole-rats are extremely resistant to post-traumatic osteoarthritis. Aging Cell. 2020;19(11): e13255. doi: 10.1111/acel.13255

[172]

Faulkes CG, Davies KT, Rossiter SJ, Bennett NC. Molecular evolution of the hyaluronan synthase 2 gene in mammals: implications for adaptations to the subterranean niche and cancer resistance. Biol Lett. 2015;11(5):20150185. doi: 10.1098/rsbl.2015.0185

[173]

Faulkes C.G., Davies K.T., Rossiter S.J., Bennett N.C. Molecular evolution of the hyaluronan synthase 2 gene in mammals: implications for adaptations to the subterranean niche and cancer resistance // Biol Lett. 2015. Vol. 11, N 5. P. 20150185. doi: 10.1098/rsbl.2015.0185

[174]

Faulkes CG, Davies KT, Rossiter SJ, Bennett NC. Molecular evolution of the hyaluronan synthase 2 gene in mammals: implications for adaptations to the subterranean niche and cancer resistance. Biol Lett. 2015;11(5):20150185. doi: 10.1098/rsbl.2015.0185

[175]

Bilyalov AI, Filimoshina DD, Filatov NS, et al. Elastic ear cartilage of Acomys mice is recovering after injury. Genes & Cells. 2022;17(1):42–47. EDN: EKHSUG doi: 10.23868/202205003

[176]

Билялов А.И., Филимошина Д.Д., Филатов Н.С., и др. У мышей рода Acomys после травмы восстанавливается эластический хрящ ушной раковины // Гены и Клетки. 2022. Т. 17, № 1. C. 42–47. EDN: EKHSUG doi: 10.23868/202205003

[177]

Bilyalov AI, Filimoshina DD, Filatov NS, et al. Elastic ear cartilage of Acomys mice is recovering after injury. Genes & Cells. 2022;17(1):42–47. EDN: EKHSUG doi: 10.23868/202205003

Funding

Министерства науки и высшего образования Российской Федерации (грант)Ministry of Science and Higher Education of the Russian Federation (grant)Ministry of Science and Higher Education of the Russian Federation (grant)(075-15-2021-1344)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/