MORPHOMETRIC PROPERTIES OF DORSAL CLARKE’S NUCLEI IN ROSTRAL SEGMENTS OF LUMBAR PORTION OF SPINAL CORD IN CAT

N. S. Merkulyeva , A. A. Veshchitskiy , P. Yu. Shkorbatova , B. S. Shenkman , P. E. Musienko , F. N. Makarov

Morphology ›› 2016, Vol. 150 ›› Issue (5) : 18 -23.

PDF
Morphology ›› 2016, Vol. 150 ›› Issue (5) : 18 -23. DOI: 10.17816/morph.397721
Articles
research-article

MORPHOMETRIC PROPERTIES OF DORSAL CLARKE’S NUCLEI IN ROSTRAL SEGMENTS OF LUMBAR PORTION OF SPINAL CORD IN CAT

Author information +
History +
PDF

Abstract

Morphometric properties of Clarke’s nuclei and their distribution in gray matter of the cat’s spinal cord were investigated using the methods of histochemical acetylcholinesterase demonstration, immunolabelling of non-phosphorylated domains of heavy neurofilament chains (SMI-32) and Klüver-Barrera technique for myelinated fiber demonstration. As a result of this research, averaged metric maps for LI-LIV lumbar segments of the spinal cord with Clarke’s nuclei boundaries were constructed based on the data received on 5 cats. The work provides information essential for precise stereotaxic access to Clarke’s nuclei in future fundamental and applied studies.

Keywords

spinal cord / lumbar segments / Clarke’s nuclei / cat

Cite this article

Download citation ▾
N. S. Merkulyeva, A. A. Veshchitskiy, P. Yu. Shkorbatova, B. S. Shenkman, P. E. Musienko, F. N. Makarov. MORPHOMETRIC PROPERTIES OF DORSAL CLARKE’S NUCLEI IN ROSTRAL SEGMENTS OF LUMBAR PORTION OF SPINAL CORD IN CAT. Morphology, 2016, 150(5): 18-23 DOI:10.17816/morph.397721

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Меркульева Н. С., Михалкин А. А., Вещицкий А. А. Особенности распределения ацетилхолинэстеразы в заднелатеральном ядре таламуса кошки // Морфология. 2015. Т. 148, вып. 4. С. 46-48.

[2]

Меркульева Н. С., Михалкин А. А., Никитина Н. И. и др. Формирование Y нейронов зрительной системы кошки во время раннего постнатального онтогенеза под влиянием бинокулярной ритмической световой стимуляции // Морфология. 2014. Т. 145, вып. 1. С. 13-18.

[3]

Сухорукова Е. Г., Григорьев И. П., Кирик О. В., Коржевский Д. Э. Дополнительные гистологические и иммуноцитохимические методы, используемые при изучении нейродегенерации // Молекулярная нейроморфология. Нейродегенерация и оценка реакции нервных клеток на повреждение. СПб.: СпецЛит, 2015. С. 87-105.

[4]

Aoyama M., Hongo T., Kudo N. Sensory input to cells of origin of uncrossed spinocerebellar tract located below Clarke’s column in the cat // J. Physiol. 1988. Vol. 398. P. 233-257.

[5]

Arber S. Motor circuits in action: specification, connectivity, and function // Neuron. 2012. Vol. 74. P. 975-989.

[6]

Bancroft J. D., Gamble M. Theory and Practice of Histological Techniques. Amsterdam: Elsevier Health Sciences, 2008.

[7]

Clarke J. L. Further researches on the gray substance of the spinal cord // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1859. Vol. 149. P. 437-467.

[8]

Clowry G. J., Moss J. A., Clough R. L. An immunohistochemical study of the development of sensorimotor components of the early fetal human spinal cord // J. Anat. 2005. Vol. 207. P. 313-324.

[9]

Hantman A. W., Jessell T. M. Clarke’s column neurons as the focus of a corticospinal corollary circuit // Nature Neurosci. 2010. Vol. 13. P. 1233-1240.

[10]

Jankowska E. Spinal interneuronal networks in the cat: elementary components // Brain Res. Rev. 2008. Vol. 57. P. 46-55.

[11]

Mann M. D. Clarke’s column and the dorsal spinocerebellar tract: a review // Brain Behav. Evol. 1973. Vol. 7. P. 34-83.

[12]

Maxwell D. J., Christie W. M., Ottersen O. P. et al. Terminals of group Ia primary afferent fibres in Clarke’s column are enriched with L-glutamate-like immunoreactivity // Brain Res. 1990. Vol. 510. P. 346-350.

[13]

Petras J. M., Cummings J. F. The Origin of spinocerebellar pathways. I. The nucleus centrobasalis of the cervical enlargement and the nucleus dorsalis of the thoracolumbar spinal cord // J. Comp. Neurol. 1977. Vol. 173. P. 693-716.

[14]

Rexed B. A cytoarchitectonic atlas of the spinal cord in the cat // J. Comp. Neurol. 1954. Vol. 100. P. 297-379.

[15]

Schatz C. R., Geula C., Morecraft R. J. et al. A one-step cobalt-ferrocyanide method for histochemical demonstration of acetylcholinesterase activity in central nervous system tissue // Histochem. Cytochem. 1992. Vol. 40. P. 431-434.

[16]

Silver A., Wolstencroft J. H. The distribution of cholinesterases in relation to the structure of the spinal cord in the cat // Brain Res. 1971. Vol. 34. P. 205-227.

[17]

Takahashi K., Schwarz E., Ljubetic C. et al. DNA plasmid that codes for human bcl-2 gene preserves axotomized Clarke’s nucleus neurons and reduces atrophy after spinal cord hemisection in adult rats // J. Comp. Neurol. 1999. Vol. 404. P. 159-171.

[18]

Yick L. W., Cheung P.-T., So K.-F. et al. Axonal regeneration of Clarke’s neurons beyond the spinal cord injury scar after treatment with chondroitinase ABC // Exp. Neurol. 2003. Vol. 182. P. 160-168.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/