CHANGES OF THE IMMUNOHISTOCHEMICAL CHARACTERISTICS OF NEURONS OF THE MIDDLE GROUP OF THE HYPOTHALAMIC NUCLEI DURING AGING

V. V. Porseva , M. B. Korzina , A. A. Spirichev , P. A. Vyshnyakova , D. A. Aryaeva , A. D. Nozdrachev , P. M. Masliukov

Morphology ›› 2019, Vol. 156 ›› Issue (5) : 39 -43.

PDF
Morphology ›› 2019, Vol. 156 ›› Issue (5) : 39 -43. DOI: 10.17816/morph.101842
Articles
research-article

CHANGES OF THE IMMUNOHISTOCHEMICAL CHARACTERISTICS OF NEURONS OF THE MIDDLE GROUP OF THE HYPOTHALAMIC NUCLEI DURING AGING

Author information +
History +
PDF

Abstract

The aim of the study - to identify differences in the immunohistochemical characteristics of the neurons of the arcuate (ARС), ventromedial (VMH) and dorsomedial (DMH) hypothalamus between young and old rats. Material and methods. The work was performed on male Wistar rats aged 3-4 months and 2-2,5 years using immunohistochemical methods. Results. In DMH, the percentage of calbindin (CB)immunoreactive (IR) of neurons is significantly reduced, and the percentage of calretinin (CR)-IR of neurons increases in DMH and VMH during aging. In old animals, the number of neuronal nitric oxide synthase (nNOS)-IR neurons and the degree of immunofluorescence to nNOS increased in all studied nuclei. In old rats, there is an increase in the density of neuropeptide Y-IR fibers in the VMH and a decrease in the DMH. Conclusions. The neurochemical composition of the nuclei of the middle group (mainly DMH and VMH) of the hypothalamus changes during aging.

Keywords

hypothalamus / middle group of nuclei / aging / immunohistochemistry

Cite this article

Download citation ▾
V. V. Porseva, M. B. Korzina, A. A. Spirichev, P. A. Vyshnyakova, D. A. Aryaeva, A. D. Nozdrachev, P. M. Masliukov. CHANGES OF THE IMMUNOHISTOCHEMICAL CHARACTERISTICS OF NEURONS OF THE MIDDLE GROUP OF THE HYPOTHALAMIC NUCLEI DURING AGING. Morphology, 2019, 156(5): 39-43 DOI:10.17816/morph.101842

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Маслюков П. М., Ноздрачёв А. Д., Емануйлов А. И. Возрастные особенности экспрессии кальций-связывающих белков в нейронах ганглиев автономной нервной системы // Успехи геронтол. 2016. Т. 29, № 2. С. 247-253.

[2]

Ahn J. H., Hong S., Park J. H., Kim I. H., Cho J. H., Lee T. K., Lee J. C., Chen B. H., Shin B. N., Bae E. J., Jeon Y. H., Kim Y. M., Won M. H., Choi S. Y. Immunoreactivities of calbindin-D28k, calretinin and parvalbumin in the somatosensory cortex of rodents during normal aging // Mol. Med. Rep. 2017. Vol. 16 (5). P. 7191-7198. doi: 10.3892/mmr.2017.7573

[3]

Chachlaki K., Garthwaite J., Prevot V. The gentle art of saying NO: how nitric oxide gets things done in the hypothalamus // Nat. Rev. Endocrinol. 2017. Vol. 13, № 9. P. 521-535. doi: 10.1038/ nrendo.2017.69

[4]

Dacks P. A., Moreno C. L., Kim E. S., Marcellino B. K., Mobbs C. V. Role of the hypothalamus in mediating protective effects of dietary restriction during aging // Front. Neuroendocrinol. 2013. Vol. 34, № 2. P. 95-106. doi: 10.1016/j.yfrne.2012.12.001

[5]

Dilman V. M., Anisimov V. N. Hypothalamic mechanisms of ageing and of specific age pathology - I. Sensitivity threshold of hypothalamo-pituitary complex to homeostatic stimuli in the reproductive system // Exp. Gerontol. 1979. Vol. 14. P. 161-174.

[6]

Ferrini M., Wang C., Swerdloff R. S., Sinha Hikim A. P., Rajfer J., Gonzalez-Cadavid N. F. Aging-related increased expression of inducible nitric oxide synthase and cytotoxicity markers in rat hypothalamic regions associated with male reproductive function // Neuroendocrinology. 2001. Vol. 74, № 1. P. 1-11.

[7]

Kim K., Choe H. K. Role of hypothalamus in aging and its underlying cellular mechanisms // Mech. Ageing Dev. 2019. Vol. 177. P. 74-79. doi: 10.1016/j.mad.2018.04.008

[8]

Masliukov P. M., Emanuilov A. I., Moiseev K., Nozdrachev A. D., Dobrotvorskaya S., Timmermans J. P. Development of non-catecholaminergic sympathetic neurons in para- and prevertebral ganglia of cats // Int. J. Dev. Neurosci. 2015. Vol. 40. P. 76-84.

[9]

Mattson M. P. Calcium and neurodegeneration // Aging Cell. 2007. Vol. 6, № 3. P. 337-350.

[10]

Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. 7th Edition. Elsevier: Academic Press, 2013. 472 p.

[11]

Satoh A., Imai S. I., Guarente L. The brain, sirtuins, and ageing // Nat. Rev. Neurosci. 2017. Vol. 18, № 6. P. 362-374. doi: 10.1038/nrn.2017.42

[12]

Seoane-Collazo P., Fernø J., Gonzalez F., Diéguez C., Leis R., Nogueiras R., López M. Hypothalamic-autonomic control of energy homeostasis // Endocrine. 2015. Vol. 50, № 2. P. 276-291. doi: 10.1007/s12020-015-0658-y

[13]

Schwaller B. The regulation of a cell’s Ca(2+) signaling toolkit: the Ca (2+) homeostasome // Adv. Exp. Med. Biol. 2012. Vol. 740. P. 1-25.

[14]

Zhang Y., Kim M. S., Jia B., Yan J., Zuniga-Hertz J. P., Han C., Cai D. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs // Nature. 2017. Vol. 548, № 7665. P. 52-57. doi: 10.1038/nature23282

RIGHTS & PERMISSIONS

Porseva V.V., Korzina M.B., Spirichev A.A., Vyshnyakova P.A., Aryaeva D.A., Nozdrachev A.D., Masliukov P.M.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/