Interference with the C-terminal structure of MARF1 causes defective oocyte meiotic division and female infertility in mice

Guangyi Cao, Mingzhe Li, Hao Wang, Lanying Shi, You-Qiang Su

PDF(393 KB)
PDF(393 KB)
Journal of Biomedical Research ›› 2018, Vol. 32 ›› Issue (1) : 58-67. DOI: 10.7555/JBR.32.20170108
Original Article
Original Article

Interference with the C-terminal structure of MARF1 causes defective oocyte meiotic division and female infertility in mice

Author information +
History +

Abstract

Meiosis-arrest female 1 (MARF1) is a recently identified key oogenic regulator essential for the maintenance of female fertility and genome integrity in mice. However, the detailed functions and the underlying mechanisms of MARF1 remain elusive. Here, in an attempt to create a mouse model expressing fluorescent protein-tagged MARF1 to facilitate further exploration of the roles of MARF1 in oocytes, we produced a Marf1-eGFP knockin (KI) mouse line in which the C-terminal structure and function of MARF1 were interfered by its fusing eGFP peptide. Using these Marf1-eGFP-KI mice, we revealed, unexpectedly, the functions of MARF1 in the control of oocyte meiotic division. We found that the Marf1-eGFP-KI females ovulated mature oocytes with severe meiotic and developmental defects, and thus were infertile. Moreover, meiotic reinitiation was delayed while meiotic completion was accelerated in the KI-oocytes, which was coincident with the increased incidence of oocyte aneuploidy. Therefore, MARF1 is indispensable for maintaining the fidelity of homolog segregation during oocyte maturation, and this function relies on its C-terminal domains.

Keywords

MARF1 / meiosis / oocyte aneuploidy / female infertility / knock in / CRISPER/Cas9

Cite this article

Download citation ▾
Guangyi Cao, Mingzhe Li, Hao Wang, Lanying Shi, You-Qiang Su. Interference with the C-terminal structure of MARF1 causes defective oocyte meiotic division and female infertility in mice. Journal of Biomedical Research, 2018, 32(1): 58‒67 https://doi.org/10.7555/JBR.32.20170108

References

[1]
Eppig JJ, Viveiros  MM, Bivens CM, Regulation of mammalian oocyte maturation. Second edition[M]. San Diego: Elsevier Academic Press, 2004:113–123.
[2]
Jones KT. Turning it on and off: M-phase promoting factor during meiotic maturation and fertilization[J]. Mol Hum Reprod, 2004, 10(1): 1–5
Pubmed
[3]
Hassold T, Hunt  P. To err (meiotically) is human: the genesis of human aneuploidy[J]. Nat Rev Genet, 2001, 2(4): 280–291
Pubmed
[4]
Ganem NJ, Godinho  SA, Pellman D. A mechanism linking extra centrosomes to chromosomal instability[J]. Nature, 2009, 460(7252): 278–282
Pubmed
[5]
Kwon M, Godinho  SA, Chandhok NS, Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes[J]. Genes Dev, 2008, 22(16): 2189–2203
Pubmed
[6]
Quintyne NJ, Reing  JE, Hoffelder DR, Spindle multipolarity is prevented by centrosomal clustering[J]. Science, 2005, 307(5706): 127–129
Pubmed
[7]
Pont SJ, Robbins  JM, Bird TM, Congenital malformations among liveborn infants with trisomies 18 and 13[J]. Am J Med Genet A, 2006, 140(16): 1749–1756
Pubmed
[8]
Su YQ, Sugiura  K, Sun F, MARF1 regulates essential oogenic processes in mice[J]. Science, 2012, 335(6075): 1496–1499
Pubmed
[9]
Su YQ, Sun  F, Handel MA, Meiosis arrest female 1 (MARF1) has nuage-like function in mammalian oocytes[J]. Proc Natl Acad Sci U S A, 2012, 109(46): 18653–18660
Pubmed
[10]
Cong L, Ran  FA, Cox D, Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819–823
Pubmed
[11]
Wang H, Yang  H, Shivalila CS, One-step generation of mice carrying mutations in multiple genes by CRISPR/ Cas-mediated genome engineering[J]. Cell, 2013, 153(4): 910–918
Pubmed
[12]
Guo J, Shi  L, Gong X, Oocyte-dependent activation of MTOR in cumulus cells controls the development and survival of cumulus-oocyte complexes[J]. J Cell Sci, 2016, 129(16): 3091–3103
Pubmed
[13]
Anantharaman V, Zhang  D, Aravind L. OST-HTH: a novel predicted RNA-binding domain[J]. Biol Direct, 2010, 5: 13
Pubmed
[14]
Callebaut I, Mornon  JP. LOTUS, a new domain associated with small RNA pathways in the germline[J]. Bioinformatics, 2010, 26(9): 1140–1144
Pubmed
[15]
Lynch JA, Ozüak  O, Khila A, The phylogenetic origin of oskar coincided with the origin of maternally provisioned germ plasm and pole cells at the base of the holometabola[J]. PLoS Genet, 2011, 7(4): e1002029
Pubmed
[16]
Tanaka T, Hosokawa  M, Vagin VV, Tudor domain containing 7 (Tdrd7) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis[J]. Proc Natl Acad Sci U S A, 2011, 108(26): 10579–10584
Pubmed
[17]
Yabuta Y, Ohta  H, Abe T, TDRD5 is required for retrotransposon silencing, chromatoid body assembly, and spermiogenesis  in  mice[J].  J  Cell  Biol,  2011,  192(5): 781–795
Pubmed
[18]
Jamin SP, Arango  NA, Mishina Y, Requirement of Bmpr1a for Müllerian duct regression during male sexual development[J]. Nat Genet, 2002, 32(3): 408–410
Pubmed
[19]
Chesnel F, Eppig  JJ. Synthesis and accumulation of p34cdc2 and cyclin B in mouse oocytes during acquisition of competence to resume meiosis[J]. Mol Reprod Dev, 1995, 40(4): 503–508
Pubmed
[20]
Kanatsu-Shinohara M,  Schultz RM,  Kopf GS. Acquisition of meiotic competence in mouse oocytes: absolute amounts of p34(cdc2), cyclin B1, cdc25C, and wee1 in meiotically incompetent and competent oocytes[J]. Biol Reprod, 2000, 63(6): 1610–1616
Pubmed
[21]
Murray AW. Recycling the cell cycle: cyclins revisited[J]. Cell, 2004, 116(2): 221–234
Pubmed
[22]
Foley EA, Kapoor  TM. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore[J]. Nat Rev Mol Cell Biol, 2013, 14(1): 25–37
Pubmed
[23]
Giménez-Abián JF,  Díaz-Martínez LA,  Wirth KG, Regulated separation of sister centromeres depends on the spindle assembly checkpoint but not on the anaphase promoting complex/cyclosome[J]. Cell Cycle, 2005, 4(11): 1561–1575
Pubmed

Acknowledgments

This study was supported by National Basic Research Program (973) from Ministry of Science and Technology of the People’s Republic of China (grant numbers 2014CB943200, 2013CB945500); National Natural Science Foundation of China (grant numbers 31471351, 31271538); Natural Science Foundation of Jiangsu Province (grant number BK20140061) to YQ Su.

RIGHTS & PERMISSIONS

2018 2018 by the Journal of Biomedical Research.
PDF(393 KB)

Accesses

Citations

Detail

Sections
Recommended

/