(+)-Borneol is neuroprotective against permanent cerebral ischemia in rats by suppressing production of proinflammatory cytokines

Lei Chang, Chun-Yu Yin, Hai-Yin Wu, Bin-Bin Tian, Yan Zhu, Chun-Xia Luo, Dong-Ya Zhu

PDF(347 KB)
PDF(347 KB)
Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (4) : 306-314. DOI: 10.7555/JBR.31.20160138
Original Article
Original Article

(+)-Borneol is neuroprotective against permanent cerebral ischemia in rats by suppressing production of proinflammatory cytokines

Author information +
History +

Abstract

Stroke is one of the leading causes of disability and death globally. It occurs when a major artery is occluded in the brain and leads to death of cells within the injured tissue. (+)-Borneol, a simple bicyclic monoterpene extracted from traditional Chinese medicine, is widely used in various types of diseases. However, no study has proved the effects of (+)-borneol on functional recovery from permanent ischemic stroke and the mechanism is still unknown. Here, we report that in the rat model of permanent cerebral ischemia, we found that (+)-borneol (1.0 mg/kg) significantly ameliorated infarct size and neurological scoresvia reducing the expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α) in a dose dependent manner. Notably, (+)-borneol showed long-term effects on the improvement of sensorimotor functions in the photothrombotic model of stroke, which decreased the number of foot faults in the grid-walking task and forelimb asymmetry scores in the cylinder task, at least in part through reducing loss of dendritic spines in the length, brunch number and density. These findings suggest that (+)-borneol could serve as a therapeutic target for ischemic stroke.

Keywords

(+)-borneol / neuroprotective effects / permanent cerebral ischemia / anti-inflammation / functional recovery / dendritic spines

Cite this article

Download citation ▾
Lei Chang, Chun-Yu Yin, Hai-Yin Wu, Bin-Bin Tian, Yan Zhu, Chun-Xia Luo, Dong-Ya Zhu. (+)-Borneol is neuroprotective against permanent cerebral ischemia in rats by suppressing production of proinflammatory cytokines. Journal of Biomedical Research, 2017, 31(4): 306‒314 https://doi.org/10.7555/JBR.31.20160138

References

[1]
Blanco M, Castillo  J. Stroke in 2012: Major advances in the treatment of stroke[J]. Nat Rev Neurol, 2013, 9(2): 68–70
Pubmed
[2]
Dirnagl U, Iadecola  C, Moskowitz MA . Pathobiology of ischaemic stroke: an integrated view[J]. Trends Neurosci, 1999, 22(9): 391–397
Pubmed
[3]
Yan T, Chopp  M, Chen J . Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke[J]. Neurosci Bull, 2015, 31(6): 717–734
Pubmed
[4]
Liu R, Zhang  L, Lan X , Protection by borneol on cortical neurons against oxygen-glucose deprivation/reperfusion: involvement of anti-oxidation and anti-inflammation through nuclear transcription factor kappaB signaling pathway[J]. Neuroscience, 2011, 176: 408–419
Pubmed
[5]
Ehrnhöfer-Ressler MM ,  Fricke K ,  Pignitter M , Identification of 1,8-cineole, borneol, camphor, and thujone as anti-inflammatory compounds in a Salvia officinalis L. infusion using human gingival fibroblasts[J]. J Agric Food Chem, 2013, 61(14): 3451–3459
Pubmed
[6]
Tambe R, Jain  P, Patil S , Antiepileptogenic effects of borneol in pentylenetetrazole-induced kindling in mice[J]. Naunyn Schmiedebergs Arch Pharmacol, 2016, 389(5): 467–475
Pubmed
[7]
Chen Z, Gong  X, Lu Y , Enhancing effect of borneol and muscone on geniposide transport across the human nasal epithelial cell monolayer[J]. PLoS One, 2014a, 9(7): e101414
Pubmed
[8]
Chen J, Li  L, Su J , Synergistic apoptosis-inducing effects on A375 human melanoma cells of natural borneol and curcumin[J]. PLoS One, 2014b, 9(6): e101277
Pubmed
[9]
Jiang J, Shen  YY, Li J , (+)-Borneol alleviates mechanical hyperalgesia in models of chronic inflammatory and neuropathic pain in mice[J]. Eur J Pharmacol, 2015, 757: 53–58
Pubmed
[10]
Longa EZ, Weinstein  PR, Carlson S , Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1): 84–91
Pubmed
[11]
Clarkson AN, Huang  BS, Macisaac SE , Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke[J]. Nature, 2010, 468(7321): 305–309
Pubmed
[12]
Chen J, Li  Y, Wang L , Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats[J]. Stroke, 2001, 32(4): 1005–1011
Pubmed
[13]
Zhou L, Li  F, Xu HB , Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95[J]. Nat Med, 2010, 16(12): 1439–1443
Pubmed
[14]
Blasi E, Barluzzi  R, Bocchini V , Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus[J]. J Neuroimmunol, 1990, 27(2-3): 229–237
Pubmed
[15]
Sims NR, Muyderman  H. Mitochondria, oxidative metabolism and cell death in stroke[J]. Biochim Biophys Acta, 2010, 1802(1): 80–91
Pubmed
[16]
Xu P, Li  Y, Du SY , Comparative pharmacokinetics of borneol in cerebral ischemia-reperfusion and sham-operated rats[J]. J Zhejiang Univ Sci B, 2014, 15(1): 84–91
Pubmed
[17]
Macrae IM. Preclinical stroke research--advantages and disadvantages of the most common rodent models of focal ischaemia[J]. Br J Pharmacol, 2011, 164(4): 1062–1078
Pubmed
[18]
Yu CL, Zhou  H, Chai AP , Whole-scale neurobehavioral assessments of photothrombotic ischemia in freely moving mice[J]. J Neurosci Methods, 2015, 239: 100–107
Pubmed
[19]
Hering H, Sheng  M. Dendritic spines: structure, dynamics and regulation[J]. Nat Rev Neurosci, 2001, 2(12): 880–888
Pubmed
[20]
Kasai H, Matsuzaki  M, Noguchi J , Structure-stability-function relationships of dendritic spines[J]. Trends Neurosci, 2003, 26(7): 360–368
Pubmed
[21]
Walberer M, Rueger  MA, Simard ML , Dynamics of neuroinflammation in the macrosphere model of arterio-arterial embolic focal ischemia: an approximation to human stroke patterns[J]. Exp Transl Stroke Med, 2010, 2(1): 22
Pubmed
[22]
Amantea D, Micieli  G, Tassorelli C , Rational modulation of the innate immune system for neuroprotection in ischemic stroke[J]. Front Neurosci, 2015, 9: 147
Pubmed
[23]
Kastrup A, Engelhorn  T, Beaulieu C , Dynamics of cerebral injury, perfusion, and blood-brain barrier changes after temporary and permanent middle cerebral artery occlusion in the rat[J]. J Neurol Sci, 1999, 166(2): 91–99
Pubmed
[24]
Molina CA, Alvarez-Sabín  J. Recanalization and reperfusion therapies for acute ischemic stroke[J]. Cerebrovasc Dis, 2009, 27(Suppl 1): 162–167
Pubmed
[25]
Bourne JN, Harris  KM. Balancing structure and function at hippocampal dendritic spines[J]. Annu Rev Neurosci, 2008, 31: 47–67
Pubmed
[26]
Maiti P, Manna  J, Ilavazhagan G , Molecular regulation of dendritic spine dynamics and their potential impact on synaptic plasticity and neurological diseases[J]. Neurosci Biobehav Rev, 2015, 59: 208–237
Pubmed
[27]
Fiala JC, Spacek  J, Harris KM . Dendritic spine pathology: cause or consequence of neurological disorders[J]? Brain Res Brain Res Rev, 2002, 39(1): 29–54
Pubmed
[28]
Ahmed ME, Tucker  D, Dong Y , Methylene Blue promotes cortical neurogenesis and ameliorates behavioral deficit after photothrombotic stroke in rats[J]. Neuroscience, 2016, 336: 39–48
Pubmed
[29]
Chimura T, Launey  T, Yoshida N . Calpain-mediated degradation of drebrin by excitotoxicity in vitro and in vivo[J]. PLoS One, 2015, 10(4): e0125119
Pubmed
[30]
Sala C, Segal  M. Dendritic spines: the locus of structural and functional plasticity[J]. Physiol Rev, 2014, 94(1): 141–188
Pubmed
[31]
Brown CE, Wong  C, Murphy TH . Rapid morphologic plasticity of peri-infarct dendritic spines after focal ischemic stroke[J]. Stroke, 2008, 39(4): 1286–1291
Pubmed
[32]
Walberer M, Rueger  MA, Simard ML , Dynamics of neuroinflammation in the macrosphere model of arterio-arterial embolic focal ischemia: an approximation to human stroke patterns[J]. Exp Transl Stroke Med, 2010, 2(1): 22
Pubmed
[33]
Zhang R, Zhao  M, Ji HJ , Study on the dynamic changes in synaptic vesicle-associated protein and axonal transport protein combined with LPS neuroinflammation model[J]. ISRN Neurol, 2013, 2013: 496079
Pubmed
[34]
Santa-Cecília FV ,  Socias B ,  Ouidja MO , Doxycycline suppresses microglial activation by inhibiting the p38 MAPK and NF-kB signaling pathways[J]. Neurotox Res, 2016, 29(4): 447–459
Pubmed
[35]
Chen XH, Lin  ZZ, Liu AM , The orally combined neuroprotective effects of sodium ferulate and borneol against transient global ischaemia in C57 BL/6J mice[J]. J Pharm Pharmacol, 2010, 62(7): 915–923
Pubmed
[36]
Verheul HB, de Leeuw  FE, Scholten G , GABAA receptor function in the early period after transient forebrain ischaemia in the rat[J]. Eur J Neurosci, 1993, 5(7): 955–960
Pubmed
[37]
Granger RE, Campbell  EL, Johnston GA . (+)- And (-)-borneol: efficacious positive modulators of GABA action at human recombinant α1β2g2L GABA(A) receptors[J]. Biochem Pharmacol, 2005, 69(7): 1101–1111
Pubmed

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (91232304, 31530091, 81571188 and 81222016), the Natural Science Foundation of Jiangsu Province (BK2011029) and Distinguished Young Scientists Fund (BK20130040), and the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine.

RIGHTS & PERMISSIONS

2017 2017 by the Journal of Biomedical Research. All rights reserved
PDF(347 KB)

Accesses

Citations

Detail

Sections
Recommended

/