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ABSTRACT The tensile behavior of hybrid fiber reinforced concrete (HFRC) is important to the design of HFRC and
HFRC structure. This study used an artificial neural network (ANN) model to describe the tensile behavior of HFRC. This
ANN model can describe well the tensile stress-strain curve of HFRC with the consideration of 23 features of HFRC. In
the model, three methods to process output features (no-processed, mid-processed, and processed) are discussed and the
mid-processed method is recommended to achieve a better reproduction of the experimental data. This means the strain
should be normalized while the stress doesn’t need normalization. To prepare the database of the model, both many direct
tensile test results and the relevant literature data are collected. Moreover, a traditional equation-based model is also
established and compared with the ANN model. The results show that the ANN model has a better prediction than the
equation-based model in terms of the tensile stress-strain curve, tensile strength, and strain corresponding to tensile
strength of HFRC. Finally, the sensitivity analysis of the ANNmodel is also performed to analyze the contribution of each
input feature to the tensile strength and strain corresponding to tensile strength. The mechanical properties of plain
concrete make the main contribution to the tensile strength and strain corresponding to tensile strength, while steel fibers
tend to make more contributions to these two items than PVA fibers.

KEYWORDS artificial neural network, hybrid fiber reinforced concrete, tensile behavior, sensitivity analysis, stress-strain
curve

1 Introduction

Fiber reinforced concrete (FRC) has become a prevalent
type of concrete and widely used in many civil infra-
structures [1–3], because of its improvement in mechanical
properties [4–6] and durability [7,8]. Many types of fibers,
including steel fibers, polyvinyl alcohol (PVA) fibers,
polypropylene (PP) fibers, and basalt fibers, have been
used to produce FRC [3,7,9,10]. For a given fiber type, the
geometry and the volume content of fibers could
significantly influence the mechanical properties of

concrete [11–15]. Moreover, the hybridization of different
fibers could enhance reinforcement [13]. Therefore, hybrid
fiber reinforced concrete (HFRC) was developed [16] and
two different types of fibers are usually adopted. For
example, steel fiber, a type of macrofibers, and PVA fiber, a
type of microfibers, are often used to prepare the HFRC,
which has more improvement in the mechanical behavior
than the steel or PVA FRC alone.
Constitutive modeling of HFRC is important for the

design of the HFRC structure. Many constitutive models of
HFRC has been proposed to present the stress-strain
relationship of HFRC [10,17,18] by considering many
fiber characteristics. But it is hard to develop one modelArticle history: Received Aug 4, 2020; Accepted Oct 26, 2020

Front. Struct. Civ. Eng. 2020, 14(6): 1299–1315
https://doi.org/10.1007/s11709-020-0712-6



from a purely mathematical perspective because of the
complexity of HFRC, such as the strain-softening/hard-
ening, and volumetric dilatancy [17]. Recently, the deep
learning method has been successfully applied in modeling
concrete to overcome these limitations [19,20]. As one of
the basic deep learning methods, artificial neural network
(ANN) has become a popular method to model the
mechanical properties of FRC [20], to design the mix
compositions of FRC [19], to describe the stress-strain
model of FRC [21], to predict the fracture energy of
polymer-nanoparticle composites (PNCs) [22,23], to
compute the flexoelectricity effect in truncated pyramid
structures [24], to build a deep collocation method for thin
plate bending problems [25], to solve boundary values
problem [26], and to act as function approximation
machines to approximate the solution of partial differential
equations [27]. Compared with the conventional constitu-
tive model, the ANN model could consider more factors
and provide a better prediction of the mechanical proper-
ties of concrete. However, few ANN models were
proposed to predict the whole stress-strain curve of
HFRC and to investigate the effect of HFRC’s contents
on its mechanical behavior.
Although the ANN model could implicitly detect

complex nonlinear relationships between dependent and
independent variables, it is usually recognized as ‘black
boxes’ that provide little information about relationships
among different variables, and therefore, are difficult to be
understood [28]. Sensitivity analysis has been proposed to
explain how the uncertainty in the output of the ANN
model can be divided and allocated to different sources of
uncertainty in its inputs [29,30]. There are several methods
to investigate the sensitivity of the ANN model: the ‘PaD’
method (Partial Derivatives), the ‘Weights’ method, the
‘Profile’ method, and the ‘Stepwise’ method [30]. Con-
sidering the values of the inputs and weights, the ‘PaD’
method could overcome some disadvantages of other
methods and be an easy method to calculate the
contribution of each input feature [28].
Therefore, this study aims to develop a new approach to

describe the tensile stress-strain curve of HFRC by using
the ANN model; and to highlight the ability of the ANN
model by investigating the effect of different contents of
HFRC on the tensile behavior of HFRC. To make a better
prediction and consider experimental conditions, many
factors are introduced into the ANN model, including the
fiber characteristics (fiber volume, weight, length, dia-
meter, the aspect ratio, and the reinforcement index),
mechanical properties of plain concrete (elastic modulus,
compressive strength, and strain corresponding to tensile
strength (SCTS)), and the composition of concrete mixture
(cement, fly ash, slag powder, water, coarse aggregate, fine
aggregate, and water binder ratio). Moreover, three
methods used to process output features are also assessed
and compared.
In the following sections, the framework of the ANN

model is first introduced. Then experimental results of
many direct tensile tests on HFRC carried out by our group
[9] and other data from previous literature are used to build
the database. After that, the ANN model is trained and
evaluated based on the database, meanwhile the equation-
based model is also built. The comparison between these
two models is made via the description of the experiment
data. The results of three processed methods are discussed
and the most suitable method for the ANN model is
recommended. The sensitivity analysis is finally done to
show how input features make contributions to output
features of the ANN model.

2 Framework of the ANN model

2.1 ANN Approach

Typically, ANN has three main layers: the input layer,
hidden layer, and output layer. The architecture of the ANN
model plays an essential role in building such a model.
Different hidden neurons and different hidden layers are
investigated, and 5-fold cross-validation [31] is used to
evaluate and get a better ANN model. Figure 1 shows the
procedure 5-fold cross-validation which includes finding
better parameters, such as neurons and hidden layers, on the
training dataset and making the final evaluation on the test
dataset. During the first procedure, the training dataset is
split into the inner training dataset (blue block in Fig. 1) and
the validation dataset (green block in Fig. 1). The maximal
epoch is 80 during the cross-validation. The cross-
validation results reveal that 2-hidden-layer are most
suitable for the ANN model in this work. Figure 2 shows
the architecture of the used ANN model, including one
input layer, 2-hidden-layer, and one output layer.

The calculation process of the ANN approach is that
considering the input vector of one neuron in one layer is
x ¼ ½x1,x2,:::,xm�, the neuron in the next layer is computed:
1) x will be multiplied by the weight; 2) the value of the
neuron in the next layer z is obtained by the activation
function, as shown in Eq. (1).

Fig. 1 5-fold cross-validation.

1300 Front. Struct. Civ. Eng. 2020, 14(6): 1299–1315



z ¼ f ðωTxþ bÞ ¼ f
Xm
i¼1

ωixi þ b

 !
, x 2 R1�m,

ω 2 R1�m, z 2 R: (1)

As increasing the nonlinearity of the neural network, the
activation function plays an important role in the neural
network. This study uses the popular activation function,
the rectified linear unit (ReLU) function [32], which is

f ðxÞ ¼ maxð0,xÞ: (2)

2.2 Procedures of the ANN model

There are four main procedures of the ANN model to
describe the tensile behavior of HFRC, as illustrated in
Fig. 3, including the dataset preprocess, dataset splitting,
the ANN model training and evaluating, and prediction.

2.2.1 Dataset preprocess

The quality of the dataset has a strong influence on the
performance of the ANN model. Therefore, several tensile
test results of HFRC which this research group did before
are combined with the relevant data collected in
Refs. [9,10,33–35] to improve the quantity and diversity of
the dataset. Since the ANN model is used to predict the
tensile stress-strain curve, the dataset would include many
tensile stress-strain curves of HFRC rather than only the
tensile strength and SCTS. According to the factors
influencing the tensile behavior of HFRC, the input data
has a total of 23 features in this study, which are
summarized in Table 1. Correspondingly, the output data
are the stress, the tensile strength of HFRC, and the SCTS
of HFRC, which could be used to obtain the tensile stress-
strain curve and evaluate the tensile behavior of HFRC.
The raw dataset needs preprocessing because the

amplitude and the range of different input features vary a
lot and could have a significant influence on the prediction
of the ANNmodel. For example, the strain of HFRC varies
from 0 to 0.01 and it has at least 1000 data points for one
HFRC specimen, but the weight of the cement only has
two options (225 and 449 kg/m3) which are far higher than
the maximal strain. Without normalization, large differ-
ences among input features could make it hard to train and
evaluate the ANN model. Therefore, before training and
evaluating the ANN model, the input data needs normal-
ization and the Min-Max Scaling method is used in this
work. The Min-Max Scaling could normalize the data to a
range from 0 to 1 by using the following equation,

xðiÞj,scaled ¼
xðiÞj – xðiÞmin

xðiÞmax – x
ðiÞ
min

, (3)

where i = 1,2,…,m (m is the number of features),

j = 1,2,…,n (n is the number of data samples); xðiÞmax and

Fig. 2 Scheme of the ANN approach in this study.

Fig. 3 Framework of the ANN model in this study.
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xðiÞmin are the maximal and minimal values of the ith feature,

respectively; xðiÞj is the original jth data sample of the ith

feature, and xðiÞj,scaled is the scaled jth data sample of the ith
feature. The Min-Max Scaling is completed by the
preprocessing module of scikit-learn [36].
There is also a large difference among different output

features, like the tensile strength of HFRC (greater than
3 MPa) and the SCTS of HFRC (less than 0.03), so it
would be better to normalize output features. To illustrate
this normalization effect, this study uses three methods to
process output features: no-processed, mid-processed, and
processed. No-processed means that output features keep
their original value and mid-processed means that only the
SCTS of HFRC is normalized. Processed means that all
three output features are normalized. Because of applying
three methods to process output features, triplicate ANN
models use these three methods separately and are trained
and evaluated in parallel.

2.2.2 Dataset split

The dataset needs to be separated into two subsets, the

training dataset and the test dataset, to train and evaluate the
ANNmodel. After shuffling the whole dataset, it is randomly
split into the training and test dataset via the model selection
module of scikit-learn, ‘train_test_split’ [36]. The training
dataset, 70% of the whole dataset, is used to train the ANN
model; and the test dataset, the other 30% of the whole
dataset, is used to evaluate the ANN model.

2.2.3 ANN model training and evaluating

The ANN model (Fig. 2) runs on the popular deep learning
library of Pytorch [37] and Skorch [38]. As this is the
regression problem, the loss function adopts the mean
square error (MSE) function. The used optimizer is the
adaptive moment estimation (Adam) [39] and the batch
size of the dataset is 128. The maximal epoch is 1000
epochs; during each epoch, the ANN model is first trained
by the training dataset and then evaluated by the test
dataset. Meanwhile, the losses of the training dataset and
test dataset are printed and compared to ensure that neither
underfitting nor overfitting happens.
The learning rate is a crucial hyperparameter which

determines how fast the parameters are updated. The initial
learning rate is 0.01; when the decreasing rate of loss value
is limited (i.e., 480 epochs in this work), the learning rate
would be reduced by 0.1 times. The learning rate decay
could improve the convergence of the ANN model.
After finishing training the ANN model, the parameters

of the ANN model would be saved to predict the new data
and do the sensitivity analysis.

2.2.4 Prediction

The new input dataset is fed into the ANN model after
completing training the ANN model. As mentioned above,
each data has three output features: stress, tensile strength,
and SCTS. The predicted stress is combined with the input
strain to obtain the tensile stress-strain curve. The final
predicted tensile strength and SCTS of each HFRC sample
are determined by the mean value of these two items of
each HFRC sample’s data.

3 Database of the tensile behavior of HFRC

To build the database, experimental data of a series of
direct tensile tests on HFRC containing fly ash and slag
powder performed by our group [9], as well as the relevant
data in the literature, were used. Table 2 summarizes the
key information of all collected data. As different
cementitious materials seem to have no significant
influence on the tensile behavior of HFRC [9], all these
data are combined to prepare the database.
To describe the tensile stress-strain curves, the whole

Table 1 Features of the input data

parts feature

strain strain

steel fiber fiber volume of steel fiber

weight of steel fiber

length of steel fiber

diameter of steel fiber

aspect ratio of steel fiber

reinforcement index of steel fiber

PVA fiber fiber volume of PVA fiber

weight of PVA fiber

length of PVA fiber

diameter of PVA fiber

aspect ratio of PVA fiber

reinforcement index of PVA fiber

mechanical properties of
plain concrete

elastic modulus of plain concrete

tensile strength of plain concrete

strain corresponding to tensile strength
of plain concrete

components of HFRC weight of the cement

weight of fly ash

weight of slag powder

weight of water

weight of coarse aggregate

weight of fine aggregate

water binder ratio
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dataset of these curves is necessary. This is the main
difference of the dataset comparing to other ANN models
that only focus on the tensile strength or the SCTS. The
direct tensile test can be used to obtain these stress-strain
curves, while the dog bone-shaped specimen is suggested
to be used [9]. Figure 4 shows the typical experimental
tensile stress-strain curves of HFRC. The black line is the
average tensile stress-strain curve of each type of HFRC
and the gray area is drawn by all tensile stress-strain curves
of each type of HFRC. The tensile strength and SCTS are

also illustrated in Fig. 4. Model details about the tests and
results can be found in Ref. [9].
With all these data, the main characters of each feature in

the output and input can be identified. Table 3 summarizes
the mean value, the medium value, and the standard
deviation of each feature in the database. The size of the
whole dataset is 9081. Among all output features, the
tensile strength has the biggest mean value and median
value, while the tensile stress has the biggest standard
deviation. All these values of the SCTS are relatively

Table 2 The steel-PVA fiber hybridization of HFRC from previous literature

cementitious
material

fiber volume (%) fiber length (mm) fiber diameter (mm) Ref.

steel fiber PVA fiber steel fiber PVA fiber steel fiber PVA fiber

cement+ fly ash+
slag powder
(HFRC)

0.5 0.5 38 12 0.677 0.039 [9]

0.5 1.0

0.5 1.5

1.0 0.5

1.0 1.0

1.0 1.5

1.5 0.5

1.5 1.0

1.5 1.5

cement
(HFRC)

0.8 0.1 35/50 8/12 0.55/0.75 0.04 [10]

0.8 0.2

1.3 0.1

1.3 0.2

cement
(HFRC)

0.05 0.15 38 12 1.10 0.04 [33]

0.1 0.3

0.3 0.6

0.03 0.17

0.06 0.34

0.11 0.69

0.02 0.18

0.04 0.36

0.08 0.72

cement
(HFRC)

0.25 0.07 12/15 30/60 0.5/0.73 0.015 [34]

0.25 0.14

0.51 0.07

0.51 0.14

cement
+GGBS*+ silica
fume
(HFRC)

0.25 0.25 20 6 0.4 0.12 [35]

0.5 0.25

0.75 0.25

1 0.25

1.25 0.25

0.25 0.25

*Note: GGBS: Ground-granulated blast-furnace slag.
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Fig. 4 Tensile stress-strain curves of (a) S0.5P0.5, (b) S0.5P1.0, (c) S0.5P1.5, (d) S1.0P0.5, (e) S1.0P1.0, (f) S1.0P1.5, (g) S1.5P0.5, (h) S1.5P1.0,
(i) S1.5P1.5.
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small, which may affect the training process and will be
discussed in section 4.2.

4 Performance of the ANN model

4.1 Indices for evaluating model

Several indices have been introduced to combine with the
loss to evaluate the performance of the ANN model,
including the coefficient of determination (R2) and mean
absolute error (MAE) [21]. R2 is defined in Eq. (4); the
closer its value is to 1, the better the prediction of the ANN
model fits with the true data.MAE is determined in Eq. (5)
and it is similar to the loss to evaluate the ANN model; the
smaller theMAE is, the better the performance of the ANN
model is:

R2 y,ŷð Þ ¼ 1 –

Xn
k¼1

ðyk – ŷkÞ2

Xn
k¼1

ðyk – yÞ2
, y ¼ 1

n

Xn
k¼1

yk , (4)

MAE y,ŷð Þ ¼ 1

n

Xn
k¼1

jyk – ŷk j, (5)

where ŷ is the predicted value, y is the true value, ŷk is the
predicted value of the kth sample, and yk is the true value of
the kth sample.

4.2 ANN model training and evaluating

The ANN model is trained and evaluated using the
database presented in Section 3. As the 5-fold cross-
validation is employed to find the better ANN model,
Figs. 5(a) and 5(b) show the R2 of the training dataset and
validation dataset for the 2-hidden-layer and 3-hidden-
layer ANN models, while the Sigmoid function is also
acted as the activation function to make a comparison.
Meanwhile, some typical machine learning methods, such
as support vector machine (SVM) [40], random forests (an
ensemble learning method) [41], Gaussian Processes [42],
are also used to make a comparison with the ANN model.
Figure 5(c) shows the R2 of the test dataset for these seven

Table 3 Summary of the dataset for the ANN model (size = 9801)

type feature mean median standard deviation

output tensile stress 2.40 2.47 0.97

tensile strength 4.10 4.02 0.20

strain corresponding to tensile strength 0.000253 0.000168 0.000172

input strain 0.002542 0.001309 0.003017

fiber volume of steel fiber 1.04 1.00 0.38

weight of steel fiber 81.84 78.50 29.79

length of steel fiber 39.53 38.00 4.54

diameter of steel fiber 0.68 0.68 0.05

aspect ratio of steel fiber 58.51 56.13 4.13

reinforcement index of steel fiber 0.61 0.56 0.22

fiber volume of PVA fiber 0.81 1.00 0.52

weight of PVA fiber 10.56 13.00 6.81

length of PVA fiber 11.59 12.00 1.21

diameter of PVA fiber 0.04 0.04 0.00

aspect ratio of PVA fiber 295.53 307.69 32.32

reinforcement index of PVA fiber 2.48 3.08 1.64

elastic modulus of plain concrete 35915 35369 1135

tensile strength of plain concrete 3.28 3.41 0.21

strain corresponding to tensile strength of plain concrete 0.000087 0.000088 0.000019

weight of the cement 282 225 98

weight of fly ash 56 75 33

weight of slag powder 56 75 33

weight of water 174 165 16

weight of coarse aggregate 1019 1024 8

weight of fine aggregate 756 785 50

water binder ratio 0.443 0.440 0.004
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models. Although the 3-hidden-layer ANN model with
ReLU has the highest R2 of the validation dataset, its R2 of
the test dataset is a little lower than that of the 2-hidden-
layer ANN model with ReLU. Both the 2-hidden-layer and
3-hidden-layer ANN models with ReLU are higher than
that with Sigmoid in terms of the R2 of the validation
dataset and test dataset, as shown in Fig. 5. Therefore,
ReLU is adopted as the activation function in the following
analysis. Compared with the ANN model, these three
typical machine learning methods have a lower R2 of the
test dataset.
According to Fig. 5, the ANN model with 80 neurons in

the hidden layer I and 10 neurons in the hidden layer II is
used. Then, training and evaluating this ANN model is
followed by the procedure in Section 2.2. Figure 6 shows
the loss curves, R2 curves, and MAE curves of the training
dataset and test dataset. The loss values of the training
dataset and test dataset (Fig. 6(a)) drop nonlinearly and
rapidly before 480 epochs and then they tend to remain
stable and converge. This is because the learning rate
changes from 0.01 to 0.001 at the 480 epochs. The lowest
flat part could be found in all loss curves after 960 epochs
because the learning rate changes from 0.001 to 0.0001.
The learning rate determines how fast the model

Fig. 5 R2 of the training and validation dataset for: (a) the 2-hidden-layer ANN model with ReLU and Sigmoid, respectively; (b) the 3-
hidden-layer ANN model with ReLU and Sigmoid, respectively; (c) R2 of the test dataset for the 2-hidden-layer ANN model with ReLU
and Sigmoid, respectively, the 3-hidden-layer ANN model with ReLU and Sigmoid respectively, SVM, Random Forests, Gaussian
Processes.
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converges. The big learning rate could make the loss
decrease quickly but not smoothly, which is usually used in
early training. As the learning rate becomes smaller, the
loss tends to vary slowly, which could help the model more
easily converge in the late period.
Three obvious patterns of loss curves could be found in

Fig. 6(a). This is induced by the three different processed
methods of output features presented in Section 2. The loss

of the no-processed method is the highest among the three
processed methods no matter the loss belongs to the
training dataset or the test dataset. As the degree of
processing improves, the loss of the training dataset and
test dataset decrease. This is because the Min-Max Scaling
could limit the data in a small area (like 0 to 1) and enable
the data to distribute evenly. For example, 3.113 and 4.022
MPa are the test data and the difference between these two
values is 0.909 MPa. After the Min-Max Scaling, the
corresponding data are 0.697 and 0.907, and the difference
decreases to 0.21. The decrease of the range and the
difference could enable the gap between the prediction and
test data to become smaller, leading to a decrease of the
loss (Fig. 6(a)).
The R2 and MAE of the training dataset and test dataset

are shown in Figs. 6(b) and 6(c). There are two patterns of
MAE curves for three processed methods; the normalized
output features have the lowestMAE of the training dataset
and test dataset. In contrast, there is no obvious difference
between the R2 of these three processed methods. All R2 of
the training dataset and test dataset increase dramatically to
0.9 before 49 epochs, then gradually rise and finally reach a
value higher than 0.99. All these indices reveal the good
reliability of the ANN model.

4.3 Equation-based model

An equation-based model is also proposed based on the
constitutive model recommended in GB 50010-2010 [43]
to compare with the ANN model. The tensile stress-strain
curve of HFRC can be described using the following
equation,

� ¼ ð1 – dtÞEcε, (6)

dt ¼
1 – �t½1:2 – 0:2x5�, x£1,

1 –
�t

αtðx – 1Þ1:7 þ x
, x > 1,

8><
>:

�c ¼
ft,H

Ecεt,H
, x ¼ ε

εt,H
, (7)

where σ is the tensile stress (MPa), ε is the strain; Ec is the
elastic modulus (MPa); ft,H is the tensile strength of HFRC
(MPa); εt,H is the strain corresponding to the tensile
strength of HFRC; d is the damage evolution parameter
and is mainly dependent on the degree of plasticity x that is
defined as the ratio of ε to εt,H; αt is the descending shape
parameter and determines the slope of the descending
branch during the post-peak stage. According to the
previous literature [10], Ec of HFRC is assumed identical
to the corresponding plain concrete in this study.
For the equation-based model of HFRC, ft,H, εt,H, and αt

are the three main parameters and can be determined by
back-fitting the experimental data. ft,H and εt,H can be easily

Fig. 6 Training and evaluating results of the ANN model:
(a) loss; (b) R2; (c) MAE.
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obtained from the peak point of each tensile stress-strain
curve. αt needs to be determined by fitting each tensile
stress-strain curve by using Eqs. (6) and (7). ft,H, εt,H, and αt
of HFRC are related to steel fibers and PVA fibers [9,10].
Therefore, the back-fitting of these three parameters needs
to consider the influences of steel fibers and PVA fibers on
the tensile behavior of HFRC. In this study, the polynomial
function is proposed, as a first approximation, to back fit
the relationship between ft,H, εt,H, and αt of HFRC and the
characteristics of steel fibers and PVA fibers. The fitting
results are indicated in Eqs. (8)–(10).

ft,H ¼ ft,pð1þ AÞ,

A ¼ 0:886lS þ 0:044lP

– 0:015lSlP – 0:589l
2
S – 0:008l

2
P, (8)

εt,H ¼ εt,pð1þ BÞ,

B ¼ – 0:296lS þ 0:400lP

þ 0:999lSlP – 0:060l
2
S – 0:032l

2
P, (9)

αt ¼
1

C
,

C ¼ 9:05 – 19:99lS þ 5:56lP – 3:82lSlP

– 33:51l2S – 0:62l
2
P,

lS¼
lS
dS

VS, lP ¼ lP
dP
VP, (10)

where ft,p is the tensile strength of plain concrete (MPa); εt,p
is the SCTS of plain concrete; lS is the reinforcement index
of steel fibers; and lP is the reinforcement index of PVA
fibers. lS, dS, and VS are the fiber length (mm), fiber
diameter (mm), and fiber volume content of steel fibers,
respectively; lP, dP, and VP are the fiber length (mm), fiber
diameter (mm), and fiber volume content of PVA fibers,
respectively.
Steel fibers and PVA fibers have a hybrid effect on the

tensile behavior of HFRC [9,10,12,13], and the term lSlP
is introduced into Eqs. (8)–(10) to consider this hybridiza-
tion of steel fibers and PVA fibers. Because lSlP is the
quadratic term, l2S and l

2
P are also listed in Eqs. (8)–(10) to

keep the balance. The back-fitting results of ft,H, εt,H, and αt
are presented in Fig. 7. Equations (8)–(10) can reproduce
the relationship between ft,H, εt,H, αt of HFRC and the
characteristics of steel fibers and PVA fibers well although
the value of R2 is not very high.
To obtain the equation-based model of HFRC, ft,P, εt,P,

and Ec needs to first get from the corresponding plain

concrete and be acted as the reference parameters in
Eqs. (8)–(10). Secondly, ft,H, εt,H, and αt could be obtained
by Eqs. (8)–(10) with the fiber characteristic parameter.
Then all these three parameters are fed into Eqs. (6) and (7)
to plot the tensile stress-strain curve of HFRC.

4.4 Model performance analysis

After the training of the ANN model, all input datasets are
fed into the ANN model to predict the tensile stress-strain

Fig. 7 Back-fitting results of key parameters in equation-based
model: (a) tensile strength, ft,H; (b) SCTS, εt,H; (c) descending
shape parameter, αt.
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curve, tensile strength, and SCTS of HFRC. As mentioned
above, triplicate ANN models with different methods to
process output features are compared in terms of predicting
the tensile behavior of HFRC. The equation-based model
is also used to predict the tensile stress-strain curve, tensile
strength, and the corresponding strain. Then, the R2 and
MAE of these curves are calculated for the three different
ANN models (the same architecture but different data
processed methods) and the equation-based model (in
Table 4), while these two indices of three methods are also
included. Figure 8 shows the predicted results of the ANN
model and the equation-based model as well as the
experimental results of HFRC. Compared with the
equation-based model, the ANN model has a better ability
to reproduce the experimental results. For the ANN model,
the predicted curves of the no-processed method and mid-
processed method could fit better and even overlap with
the experimental data, while there is a little bit gap between
the predicted curves of the processed method and the test
data. This is because, among the three processed methods,
the no-processed method and the mid-processed method
does not process the stress data and keep their original
version, while the processed method normalizes the stress
data. As mentioned above, the Min-Max Scaling limits the
data in the range from 0 to 1 and the difference between the
prediction and the test data would be amplified after
inversing the Min-Max Scaling as the range expands from
0 to 4.5. For example, assuming that the prediction is 0.821
and the test data is 0.902 in the processed method of the
ANN model, the gap between the prediction and the test
data is 0.081 and its value is small enough to be acceptable.
But after inversing the Min-Max Scaling, the prediction
becomes 3.648 and the test data becomes 4 (the peak value
of the ANN-Processed curve in Fig. 8(a)), and the gap
increases to 0.352. This explains the phenomenon that the
gap between the test data and the prediction of the
processed method is larger than that of the no-processed

method and the mid-processed method. The MAE of the
processed method is larger and the R2 of the processed
method is smaller than that of the no-processed method
and the mid-processed method, which can be seen in Table
4. It can also approve that normalizing the stress could
enlarge the gap between the prediction and the truth.
To further evaluate the performance of the ANN model,

the other two output features are also evaluated by
comparing the equation-based model and the ANN
model. Instead of listing the specific predictions, this
study introduces the relative error [10] to evaluate the
prediction of the tensile strength and SCTS, which can be
seen in Fig. 9. Compared with the equation-based model,
the ANN model shows a better prediction ability. The
relative error of the ANN model is lower than that of the
equation-based model in terms of the tensile strength and
SCTS. Besides, Fig. 9 also presents the relative error of
three processed methods. For the prediction of the tensile
strength, all three processed methods have a very small
relative error, but there is an obvious gap between these
three processed methods in terms of the prediction of
SCTS. The maximal relative error of the no-processed
could be up to 23.8%, while the other two processed
methods have a maximal value of less than 2%. This is
because, in the no-processed method, the SCTS is not
normalized in the data preprocessing procedure, and both
the other two processed methods normalize the SCTS. The
SCTS varies in a small range (from 0.00007 to 0.00068),
but the minimal loss of the no-processed method is
0.00251 (Fig. 6(a)) and the minimal MAE of the no-
processed method is 0.01698 (Fig. 6(c)). Both these two
indices are much higher than that of the SCTS. Without
normalization, the small range of the SCTS is difficult for
the ANN model to predict when combining the large range
of the tensile strength. The Min-Max Scaling would
amplify the SCTS to a range from 0 to 1 and it could enable
the ANN model to more easily predict the SCTS.

Table 4 MAE, R2 of the ANN model and equation-based model for predicting the tensile stress-strain curve of HFRC

mix ID MAE R2

ANN equation ANN equation

no-processed mid-processed processed no-processed mid-processed processed

S0.5P0.5 0.047 0.046 0.075 0.119 0.992 0.994 0.986 0.973

S0.5P1.0 0.045 0.050 0.094 0.199 0.996 0.995 0.977 0.929

S0.5P1.5 0.041 0.045 0.068 0.482 0.996 0.995 0.987 0.561

S1.0P0.5 0.077 0.076 0.109 0.234 0.982 0.984 0.968 0.918

S1.0P1.0 0.048 0.065 0.092 0.485 0.996 0.992 0.983 0.569

S1.0P1.5 0.068 0.059 0.143 0.692 0.989 0.992 0.955 0.350

S1.5P0.5 0.124 0.123 0.239 0.688 0.953 0.964 0.882 0.354

S1.5P1.0 0.048 0.049 0.132 0.571 0.997 0.997 0.977 0.622

S1.5P1.5 0.052 0.032 0.080 1.139 0.997 0.998 0.990 0.139
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5 Sensitivity analysis and discussion

5.1 Sensitivity analysis

The ‘PaD’ method focuses on calculating the derivative of
the output concerning the inputs of the ANN model [28],
which can be used to highlight the contribution of the input
features. These partial derivatives are called sensitivity and
are defined as Eq. (11). As the ANN model in this study
has one input layer, 2-hidden-layer, and one output layer, it
needs the chain rule to get the final version of the
sensitivity, which can be seen in Eq. (13). Once the
sensitivity has been obtained for each input feature and
data sample, two main indices could be calculated to
analyze the results: mean sensitivity (Smi,avg), and sum

squared sensitivity (SSSmi). SSSmi, defined in Eq. (14), is
the sum squared sensitivity of the output of the mth neuron
in the output layer concerning the ith input feature. Based
on the sum squared sensitivity, the contribution of each
input feature to each output feature could be defined as
Eq. (15).

smijXh
¼ ∂om

∂xi
ðXhÞ, (11)

om ¼ Σkωmkok , ok ¼ f2
X
j

ωkjoj

 !
,

oj ¼ f1
X
i

ωjixi

 !
, (12)

Fig. 8 Comparison of prediction results and experimental results of the tensile stress-strain curves: (a) S0.5P1.0; (b) S0.5P1.5; (c) S1.0P1.0;
(d) S1.0P1.5; (e) test unit 7 reported in Ref. [10].
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smijXh
¼ ∂om

∂ok
∂ok
∂oj

∂oj
∂xi

ðXhÞ, (13)

SSSmi ¼
XN
h¼1

ðsmijXh
Þ2, (14)

Contribution of ith input variable ¼ SSSmiX
i

SSSmi
, (15)

where N is the number of samples in the dataset; Xh is the
hth sample of the dataset; smijXh

is the sensitivity of the
output of the mth neuron in the output layer concerning the
input of the ith neuron in the input layer evaluated in Xh; Xi

is the input of the ith neuron in the input layer; om is the

output of the neuron m in the output layer; ok is the output
of the neuron k in the hidden layer II; oj is the output of the
neuron j in the hidden layer I; f2 and f1 are the activation
functions in the hidden layer II and I; ωmk, ωkj, and ωji are
the weight between the neuron m and the neuron k, the
weight between the neuron k and the neuron j, the weight
between the neuron j and the neuron i.
Figure 10 shows the contribution of each input feature to

the tensile strength and SCTS for each HFRC sample. The
color represents the contribution and the darker means the
higher contribution. Besides, four main parts are proposed
to combine similar input features to investigate the tensile
behavior: steel fiber, PVA fiber, mechanical properties of
plain concrete, and components of HFRC, which can be
seen in Table 1. Figure 11 shows the contributions of these

Fig. 9 The relative error of the ANN model and equation-based model in terms of (a) the tensile strength and (b) SCTS.
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Fig. 10 Contributions of each input feature to the tensile strength and SCTS of HFRC: (a) tensile strength; (b) SCTS.
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four parts to the tensile strength and SCTS for each HFRC
sample and the contributions of these four parts are
calculated by summarizing their input features (Table 1).
According to Figs. 10 and 11, the mechanical properties of
plain concrete make the main contribution to the tensile
strength and SCTS among almost all HFRC samples. The
contribution of steel fibers is higher than that of PVA fibers
in terms of the tensile strength and SCTS. When the fiber
volume of steel fibers is below 1.0%, the contributions of
steel fibers to the tensile strength and SCTS remain stable
and then increase as the fiber volume of steel fibers
increases to 1.5%. In comparison, the contributions of PVA
fibers to the tensile strength and SCTS increases gradually
when adding more PVA fibers. Besides, the contributions
of components of HFRC to the tensile strength and SCTS
of HFRC remain stable.

5.2 Discussion

As shown in Figs. 8, 9, and Table 4, the ANNmodel shows

a better ability to predict the tensile stress-strain curve,
tensile strength, and SCTS of HFRC than the equation-
based model. This is because, compared with the equation-
based model, the ANN model could consider more factors
(such as components of HFRC), adaptively extract more
crucial input features, and present more powerfully
nonlinear-fitting capacities. As the performance of the
equation-based model is strongly dependent on three key
parameters, ft,H, εt,H, and αt, the fitting results depend
largely on the manual effect, namely, the selection of
functions. In comparison, the ANN model could avoid this
manual effect to a certain extent, which enables the ANN
model to better describe the tensile behavior of HFRC.
However, the ANN model needs a large and diverse
database to improve its performance. Especially, many
tensile stress-strain curves of HFRC are necessary because
the ANN model is used to predict the tensile stress-strain
curve of the HFRC.
Three processed methods are introduced in this study to

process the output features: no-processed, mid-processed,

Fig. 11 Contribution of steel fibers, PVA fibers, mechanical properties of plain concrete, and components of HFRC to the tensile
strength and SCTS of HFRC: (a) tensile strength as the fiber volume of steel fibers is constant; (b) tensile strength as the fiber volume of
PVA fibers is constant; (c) SCTS as the fiber volume of steel fibers is constant; (d) SCTS as the fiber volume of PVA fibers is constant.
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and processed. As mentioned above, the processed method
has a worse prediction of the tensile stress than the other
two methods and the no-processed method shows the
worst prediction among the three methods in terms of the
SCTS, while all three methods present a similar prediction
of the tensile strength. Because the Min-Max Scaling
method limits the data in the range from 0 to 1, it seems to
have various influences on the different ranges of output
features. The Min-Max Scaling is suitable for the output
feature which varies in a very small range of less than 1,
such as SCTS. In comparison, the output feature changing
in a large range of much greater than 1, such as the stress,
tends to be worsen predicted by using the Min-Max
Scaling.
According to the ANNmodel, steel fibers tend to make a

higher contribution to the tensile strength and SCTS than
PVA fibers, which is similar to the experimental results that
steel fibers play a more important role in the tensile
behavior of HFRC [9]. Although their values are lower
than that of steel fiber, the contributions of PVA fibers to
the tensile strength and SCTS keep increasing whatever the
fiber volume of steel fiber is.

6 Conclusions

This study builds an ANN model to describe the tensile
behavior of HFRC containing fly ash and slag powder. The
results of many direct tensile tests are combined with the
literature data to build the database. Meanwhile, an
equation-based model is also established and compared
with the ANN model. Three methods to process output
features are discussed and the sensitivity analysis is made
to better understand the ANN model. The following
conclusions can be drawn:
1) The ANN model has a better capacity of reproducing

the tensile behavior of hybrid steel-PVA fiber concrete
containing fly ash and slag powder than the equation-based
model. The ANN model shows more powerfully non-
linear-fitting abilities and could consider more factors (a
total of 23 factors), including fibers’ characteristics,
mechanical properties of plain concrete, and concrete
composition.
2) The normalization has different influences on

different types of indices of the HFRC’s tensile behavior.
The SCTS should be normalized because it is usually very
small and varies in a small range (less than one). On the
contrary, the tensile stress should not be normalized as its
range is often much greater than 1.
3) The ANN model can interpret the influence of

different features on the tensile behavior of HFRC. Among
all input features, the mechanical properties of plain
concrete make the main contribution to the tensile strength
and SCTS; steel fiber tends to make a higher contribution
to the tensile strength and SCTS than PVA fiber. These
outcomes are similar to the experimental results.
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