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ABSTRACT Homogenization methods can be used to predict the effective macroscopic properties of materials that are
heterogenous at micro- or fine-scale. Among existing methods for homogenization, computational homogenization is
widely used in multiscale analyses of structures and materials. Conventional computational homogenization suffers from
long computing times, which substantially limits its application in analyzing engineering problems. The neural networks
can be used to construct fully decoupled approaches in nonlinear multiscale methods by mapping macroscopic loading
and microscopic response. Computational homogenization methods for nonlinear material and implementation of offline
multiscale computation are studied to generate data set. This article intends to model the multiscale constitution using
feedforward neural network (FNN) and recurrent neural network (RNN), and appropriate set of loading paths are selected
to effectively predict the materials behavior along unknown paths. Applications to two-dimensional multiscale analysis
are tested and discussed in detail.
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1 Introduction

Homogenization theories for heterogeneous microstruc-
tures have been developed since the 1950s. In the
homogenization method, in order to separate the macro
and micro scales, there are two basic hypotheses: scale
separation hypothesis and periodicity hypothesis. Hier-
archical multiscale method based on the representative
volume element (RVE) is a type of multiscale method that
offers the numerical constitutive relationship at the
macroscopic point depending on the micro- or the fine-
scale model. The RVE is usually defined as a sample
volume element of material. It should be sufficiently large
in order to represent the statistical fluctuations or spatial
variation in the microstructure and hence capture the
effective mechanical properties, and yet it should be small
enough to fulfill the assumption of separation in the length
scale. Computational homogenization is one of the most
widely used approaches, now used systematically for the
assessment of structure-property relations.

Computational homogenization method offers the
possibility of relatively high accuracy for complex material
composition, however at high computational cost. Various
efforts have been made in order to reduce the computa-
tional costs especially in nonlinear coupled simulations at
two scales, such as the proper orthogonal decomposition
(POD) [1,2], nonuniform transformation analysis (NFTA)
[3,4], the self-consistent clustering analysis (SCA) [5,6].
However, the computational cost at present remains high
and thus reduce its applicability for engineering applica-
tions in analysis of large-scale model. Recently, data-
driven based methods were developed to compute the
response of heterogeneous microstructures using an
interpolation technique from a prior set of databases
computed from offline nonlinear calculations on the
RVEs [7]. However, these methods are usually problem-
dependent, and the ability to extrapolation to other cases is
not guaranteed, e.g., different material laws and loading
paths [8].
Artificial neural networks (ANNs) have been used to

approximate various constitutive model because of the
capability to learn complex nonlinear relationships. In the
early 90s, Ghaboussi et al. [9] proposed to model theArticle history: Received Feb 19, 2020; Accepted Mar 18, 2020
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material behavior with neural network. Afterwards, the use
of ANNs for direct representation of constitutive behavior
[10–13] and macroscopic mechanical properties [14] has
been studied by several researchers. The development
echoes with the renaissance of neural network thanks to the
raise of back propagation (BP) algorithm by Rumelhart
et al. [15]. Recently, due to the recent growth in data
availability, algorithm, and computing power that have
brought a resurgence to the machine learning (ML),
especially for ML based deep-learning neural network
[16]. With deep learning framework, such as Tensorflow,
PyTorch and so on, researchers can build and train deep-
learning neural network expediently.
The neural networks can be used to construct fully

decoupled approaches in nonlinear multiscale methods by
mapping macroscopic loading and microscopic response
[7]. Unger and Könke [17] used support vector machines
and a multilayer perceptron for the decision of loading/
unloading and the evaluation of stress tensor in a
multiscale simulation, respectively. Bessa et al. [18]
proposed a framework for data-driven multiscale analysis
of materials, and Sobol sequence was used for the design
of experiments. Le et al. [19] used neural network to
determine the constitutive law of nonlinear elastic hetero-
geneous material. Lefik et al. [20] adopted neural networks
in modeling of composites and hierarchical structures with
a relatively small set of suitable numerical experiments.
However, choosing the loading case for adequate training
of multiscale constitutive model is a challenging task,
which is not precisely known at this time. Different loading
paths selected to train neural network for constitutive
model or multiscale simulation will be discussed herein-
after. Most neural networks for multiscale constitutive
model are based on feedforward neural network (FNN) and
BP algorithm. Recurrent neural network (RNN) is a type of
neural network where the output from previous step is fed
as input to the current step, so that it may be used to model
the nonlinear multiscale constitutive model considering
material history dependency. However, only limited papers
have adopted RNN for constitutive modeling. Zhu et al.
[21] developed a RNNmodel for simulating and predicting
soil behavior. Recently, Wang and Sun [22] built a
multiscale multi-permeability poroplasticity model using
long short-term memory (LSTM) neural network.
This article intends to model the multiscale constitution

using FNN and RNN, and appropriate loading paths are
selected so that the neural network multiscale constitutive
model can be effectively generalized to unknown paths.
The nonlinear multiscale computation is carried out using a
multilevel finite element (FE2) [23] method in ABAQUS.
It is found that the trained FNN and RNN model both have
good generalization ability on test set, and the stacked
RNN model is more capable of mapping a given path, but
also more sensitive to hyperparameters and initial para-
meters. The paper is composed as follows. In Section 2,

multiscale modeling, including computational homogeni-
zation method for nonlinear material and implementation
of offline multiscale computation. In Section 3, neural
network, FNN and RNN for multiscale constitutive model
are introduced. The detail of loading paths and training
method will be discussed. Finally, applications to 2-
dimensional nonlinear multiscale analysis are addressed in
Section 4. Concluding remarks are given in Section 5.

2 Multiscale modeling

2.1 Computational homogenization method for nonlinear
material

In the nonlinear computational homogenization scheme, at
least two-scales models are needed, namely macro- and
microscales or sometimes called coarse- and fine-scale
models. Macroscale incremental strain is applied on RVE,
while the homogenized incremental effective stress and
homogenized tangent constitutive tensor are returned back
to the macroscale model as shown in Fig. 1. In the two-
scale homogenization theory, two different coordinates
notations, namely x and y, associated to the macroscale
domain Ω and microscale models Θ, are adopted
respectively. These two coordinates are related by
y ¼ x=z with 0 < z << 1. Consider a heterogeneous
inelastic solid on a domain Ωz with boundary ∂Ωz . The
strong incremental form of the boundary value problem on
the macroscale domain is given as:

Δ�z
ij,j þ Δbzi ¼ 0 on Ωz , (1)

Δ�z
ij ¼ L

z
ijklΔε

z
kl on Ωz , (2)

Δεzij ¼
1

2
Δuzi,j þ Δuzj,i

� �
on Ωz , (3)

Δ�z
ijn

z
j ¼ Δti

z on ∂Ωtz , (4)

Δuzi ¼ Δui
z on ∂Ωuz , (5)

where the superscript z denotes the scale factor between
the macroscale and the microscale, ∂Ωtz and ∂Ωuz denote
the traction and displacement boundaries, respectively,

Fig. 1 The computational homogenization scheme.
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Δ�z
ij , Δε

z
ij , Δu

z
i , L

z
ijkl denote the components of incremental

stress, strain, displacement and tangent constitutive tensor,
respectively. Δbzi and tzi denote the body force vector and
traction vectors, respectively.
With the use of the asymptotic expansion of the

incremental displacement, the governing equations of the
two-scale problem can be obtained. The derivation of the
governing equations of a two-scale system will not be
repeated here and readers are referred to Refs. [24–26].
1) The macroscale problem

Δ�ij,j þ Δbi ¼ 0 on Ω, (6)

Δ�ij ¼ LijklΔεkl on Ω, (7)

Δ�ijnj ¼ Δti on ∂Ωt, (8)

Δui ¼ Δui on ∂Ωu: (9)

2) The microscale problem

½LijklðHmn
k,ylþIklmnÞ�,yj ¼ 0 on Θ, (10)

Hmn
i ðyÞ ¼ Hmn

i ðyþ lÞ on ∂Θ, (11)

Hmn
i ðyÞ ¼ 0 on ∂Θvert, (12)

where Hmn
k ðyÞ is termed as a first-order displacement

influence function, Θ is the domain of the microscale
model.
The bridging between the two-scale problems is given

by

Lijkl ¼
1

jΘj!
Θ

Lijkl H
mn
k,yl þ Iklmn

� �
dΘ, (13)

h�ijitþ1
y ¼ h�ijity þ

1

jΘj!
Θ

Δ�ijdΘ, (14)

where h�ijitþ1
y is the average stress of the microscale

material stress in increment t þ 1.

2.2 Implementation of offline multiscale computation

In the FE2 method, the microscopic displacement can be
written as the sum of a periodic field and a macroscopic
field [23].

uðx,yÞ ¼ vðx,yÞ þ εðxÞ⋅b, (15)

where vðx,yÞ is a y-periodic displacement field, εðxÞ is the
macroscopic strain. The general expression of periodic
boundary condition is deduced as

uiðyþj Þ – uiðy –j Þ ¼ viðyþj Þ – viðy –j Þ þ εijðyþj – y –j Þ

¼ εijðyþj – y –j Þ: (16)

The periodic boundary conditions can be applied
efficiently by creating constrain equations, readers are
referred as Ref. [24] for more details.
In offline multiscale calculation, the macroscopic strain,

obtained a prior from a given loading path without
computed results from macroscale model, is applied on a
single RVE with constraint equations. The microscale
model is simulated incrementally by restart analysis until
the final step in the loading path is reached. To calculate the
macroscopic stress and tangent tensor, one general and
three perturbation steps for plane-stress problems are
carried out on the RVE model. For restart analysis, the
results from the previous step are used for the analysis in
the current step and then overwritten in the next analysis
step, which greatly reduces data storage in memory. The
implementation comprises of the following steps as
illustrated in Fig. 2. The flowchart demonstrates the
following four steps:

step 1: obtain the macroscopic total strain εtij (step t)
from the loading path;
step 2: call the fine-scale model script to apply the

periodic boundary conditions and macroscopic strain to the
RVE model at global load step t, which will be the base

Fig. 2 Flow chart of offline multiscale computation using
ABAQUS.
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configuration of the step t þ 1. Then calculate the overall
quantities h�ijity;
step 3: carry out the perturbation steps for the global load

step t, then compute the macroscopic consistent tangent
tensor L

t
ijkl;

step 4: write out the macroscopic stress h�ijity and

tangent tensor L
t
ijkl into the corresponding output files and

continue for the next load step.

3 Neural networks

Two types of neural networks are here used in this paper,
namely FNN and RNN. In the following sections, a short
overview highlighting the main features of the two
approaches and why they are best suited for our problem
is outlined. Most importantly, the generation of training
data and neural network training details will be described
and discussed.

3.1 Feed forward network (FNN)

A feed forward network (FNN) usually consists of an input
layer, multiple hidden layers and an output layer, as shown
in Fig. 3. FNN can learn and store a large number of input-
output mode-mapping relationships without first revealing
mathematical equations describing such mapping relation-
ships. The learning mechanism of FNN is to continuously
adjust the weights and the thresholds of network by using
the steepest descent method. Through BP process that the
minimization of the errors from the network between the
output values and target values can be finally realized and
the training is completed.
In Fig. 3, each circle represents a neuron, which is

connected to other neurons in the neighboring layers with a
weight and bias. Only forward connections are allowed in
the FNN. The output ali of neuron i in layer l is calculated
as Ref. [17].

ali ¼ f ðnliÞ, (17)

nli ¼
XNl

i

j¼1

wl
jia

l – 1
j þ bli, (18)

where f is the activation function, wl
ji corresponds to the

weights of each connection and bl is the bias.
As the nonlinear response of macroscale model is

depend on the loading history and current loading
increment, the macroscopic stress and strain of the
previous step and the current incremental strain are used
as the input parameters within this paper. The overall
structure of the neural network can be described as

Δ�tþ1
ij ¼ FFNN ð�tij,εtij,Δεtþ1

ij Þ, (19)

where FFNN is FNN that maps inputs (�t
ij,εtij,Δεtþ1

ij ) and

outputs (Δ�tþ1
ij ).

The stiff matrix Dtþ1
ijkl can be obtained by computing the

partial derivatives of the output Δ�tþ1
ij with respect to its

input Δεtþ1
ij , described by Eq. (20), which can be calculated

using Jacobian function in Tensorflow.

Dtþ1
ijkl ¼ ∂Δ�tþ1

ij

∂Δεtþ1
ij

: (20)

3.2 Recurrent neural network (RNN)

FNN can be regarded as a complex function where each
input is independent, and the output of the network
depends only on the current input. This may work for many
types of problems in engineering. However, for the loading
path problem that we are investigating in this work, it is
apparent that the input to the network is not only related to
the input at the current moment, but also related to the
output of the past period of time as a timing dependent
problem. That means the “history” of previous events will
influence the current event. To solve this issue, we will
employ RNN. The RNN is a kind of neural network with
short-term memory ability. In a RNN, neurons cannot only
receive information from the neurons in the upper layer,
but also accept their own information to form a network
structure with loops.
RNN have been widely used in tasks such as speech

recognition, language modeling and natural language
processing. When the input sequence is relatively long,
there will be the vanishing or exploding problem, known
as the long-term dependence problem. A very good
solution to the problem is to introduce gating mechanism
to control the rate of information accumulation, including
selectively adding new information and forgetting previous
accumulated information, which is called Gated RNN.
There are two kinds of Gated RNN: Long Short-TermFig. 3 General layout of FNN.
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memory (LSTM) and Gated Recurrent Unit (GRU). Here,
the latter is adopted in this paper because of its simple
structure and promising performance. As proposed by Cho
et al. [27], the architecture of a basic GRU cell is shown in
Fig. 4.

An update gate zt is introduced to control the current
state ht that requires information to be accepted from the
historical state ht – 1 and candidate states ~ht given as

ht ¼ ztht – 1 þ ð1 – ztÞ~ht, (21)

zt ¼ �ðWzxt þ Uzht – 1 þ bzÞ, (22)

~ht ¼ tanhðWhxt þ Uhðrtht – 1Þ þ bhÞ, (23)

rt ¼ �ðWrxt þ Urht – 1 þ brÞ, (24)

where rt is the reset gate used to control whether the
computation of candidate state ~ht depends on the previous

state ht – 1, � is the sigmoid function � xð Þ ¼ 1

1þ expð – xÞ,
‘tanh’ is the hyperbolic tangent function tanh(x) =
expðxÞ – expð – xÞ
expðxÞ þ expð – xÞ, Wz, Wh, Wr, Uz, Uh, Ur are weight

matrices, bz, bh, br are bias vectors. To map the current
state ht to the final output yt, fully connection layers
equivalent to FNN are introduced to complete this process.
The motivation to use RNN for multiscale nonlinear

computation is that the loading history information can be
retained. Different from training discrete data points for
each path in FNN, a loading path is used as a time-
dependent data chain in RNN, and the previous data will
affect the later outputs. The inputs and outputs for RNN are
only strain increments and stress increments of different
time, respectively. Deep RNN that stacks multiple RNN
can be used to enhance the capability of RNN. Within this
paper, a stacked GRU neural network (SRNN) connected
with fully connected layers at each time step is adopted,
which is illustrated in Fig. 5.

3.3 Generation of training data

For ML, the most important part is the acquisition of data.
The question of what constitutes sufficient data sets for
adequate training of neural network material model is not
precisely known at this time [28], and the well-trained
neural network model does not guarantee a good general-
ization to other paths. The choice of loading cases to be
included in the training data set is often based on empirical
knowledge [22].
A most popular loading method is the so-called spherical

coordinate system (R,�,α) method with a constant
magnitude in each components of strain vector
[10,14,17]. In previous works, loops of hysteresis [29]
and proportional loading paths [22] have been used to
model the nonlinear constitutive behavior. However, the
capability of a method for adapting to different types of
loading paths are not fully stated or investigated in the
above works. To breakthrough this limit, the macroscopic
strain tensor increment is set to be inhomogeneous by
using a cosine function, and thus the total macroscopic
strain tensor component is given as

εti ¼ εt – 1i þ k

n
Rcos �ti

� �
, k ¼ 1,:::,n, (25)

where ε0i ¼ 0, R and � are the loading radius and angle,
respectively. The applied macroscopic strain tensor
components are increased with independent constant
increments until k ¼ n, and the loading angles will change
randomly within the set f0°,1°,:::,180°g. Therefore, the
training data can reflect the characteristics of different
loading direction. The procedure for applying the strain
component is illustrated in Fig. 6. The reason for using the
cosine function is to generate the data points with relatively
large strain increments denser while changing the loading
direction illustrated in Fig. 7.

3.4 Training the neural network

In neural network, hyperparameters refer to prior para-
meters that need to be tuned to optimize it, including the
network structure (number of layers, number of neurons in
each layer, activation function, etc.), optimized parameters

Fig. 4 GRU cell.

Fig. 5 The stacked GRU neural networks unrolled through time.
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(learning rate, mini-batch size, etc.) and regularization
coefficient. Grid search and manual search are the most
widely used strategies for hyperparameter optimization.
Within this paper, grid search with orthogonal experi-
mental design (OED) is used to obtain optimal result in a
short time. The OED is a multifactor experiment design
method based on the orthogonal array, it selects repre-
sentative points from full factorial experiment in a way that
the points are distributed uniformly within the test range
and thus can represent the overall situation [30].
Considering a problem having 3 number of 3 level factors,
9 experimental points can be selected from 27 test points of
full experiment with orthogonal array L9ð34Þ, as Fig. 8
shows. The Adam optimization algorithm, mini-batch
gradient descent and dropout are adopted based on the
Tensorflow within this paper. In addition, the input data X
and output data Y for both FNN and RNN are scaled to be
within –1 to+ 1 range, and the activation functions for
fully connected layers are all chosen to be tanh. The error
function J and accuracy P for predicted values Y and true
values Y of M samples are computed as

J ¼ 1

M

XM
i¼1

ðjYi – YijÞ
 !

, (26)

P ¼ 1 –

XM
i¼1

j Yi – Yi
Yi

� �
Yij

XM
i¼1

jYij
¼ 1 –

XM
i¼1

jYi –Yij

XM
i¼1

jYij
: (27)

4 Example: two-dimensional inelastic
multiscale analysis for plane stress problem

In this section, the FNN and deep RNN will be applied to
model two-dimensional inelastic plane stress problem. The
RVE model shown in Fig. 9 is studied in this section.
Materials B and M, respectively marked with color red and
blue, follow the isotropic hardening law (Fig. 10), and their
material parameters are shown in Table 1.

The parameters n of Eq. (25) is set to be 2, 5, 10, 20, and
each parameter is aligned with 50 loading paths, so that a

Fig. 7 The distance between two adjacent points the strain
component in the cosine function cos�.

Fig. 6 The procedure for applying the strain component.

Fig. 8 9 experimental points selected from 27 test points with
orthogonal array L9ð34Þ.

Fig. 9 Two-dimensional RVE model.
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total of 200 loading paths are selected. The parameters R is
set to be 10 – 4, and each path comprises 100 sub steps, so
the macroscopic strain component falls in the range of
½ – 0:01,0:01�. However, the macroscopic strain component
jεijmax in the training set is about to be 0.005 given that the
loading angles are chosen randomly, and the extreme
values can only be obtained when the loading angles are
selected to be 0° or 180° every time. Take one loading path
as an example (n ¼ 5), the macroscopic strain components
of different time steps in cartesian are shown in Fig. 11.
The data set is divided into training set, validation set and
test set, and the partition is 6:2:2.

4.1 FNN model

As mentioned in previous section, the input and output are
(�Nij ,εNij ,ΔεNþ1

ij ) and (Δ�Nþ1
ij ), respectively. The validation

set is used for hyperparameter optimization with orthogo-
nal experimental design (OED). The hyperparameters to be
optimized for FNN are the number of neural network
layers, learning rate, mini-batch size and dropout rate. The
orthonormal testing calculation and result based on
orthogonal array L9ð34Þ are shown in Table 2. The optical
hyperparameters are not selected simply from the sample
points, but obtained by comparing the average of the
results for each hyperparameter.

The accuracy is calculated using Eq. (27), and the error
and accuracy curves of training set are shown in Fig. 12.
The accuracies of training set and test set are 93.0% and
91.7%, respectively. One test loading path and correspond-
ing stress-strain curves in the test set are shown in Fig. 13.
It can be seen from the figure that the curves calculated by
FNN in the test set fit well with the numerical result using
FEM, which shows the generalization ability of FNN
model is very good.

4.2 Deep RNN model

Different from FNN, the input and output for RNN are
only strain increment and stress increment, respectively.
Deep RNN that stacks multiple RNN is used to enhance
the capability of RNN. The hyperparameters to be
optimized for RNN are the number of GRU cell and
fully connected layer, learning rate, and dropout rate.
Similar to last section, orthogonal array L9ð34Þ is used for
hyperparameter optimization shown in Table 3.
The error and accuracy curves of training set are shown

in Fig. 14. The accuracies of training set and test set are

Fig. 10 The isotropic hardening law model.

Table 1 Material parameters

material E ðMPaÞ Et ðMPaÞ � �s ðMPaÞ
M 1� 105 2� 104 0.3 200

B 1� 105 1� 104 0.3 100

Fig. 11 The macroscopic strain components of different time
steps.

Table 2 The orthonormal testing calculation

experiment
number

layers
number

learning
rate

mini-batch
size

dropout
rate

accuracy

1 4 1e – 2 16 0.75 0.767

2 4 1e – 3 32 0.85 0.838

3 4 1e – 4 64 0.95 0.856

4 5 1e – 2 32 0.95 0.866

5 5 1e – 3 64 0.75 0.866

6 5 1e – 4 16 0.85 0.870

7 6 1e – 2 64 0.85 0.867

8 6 1e – 3 16 0.95 0.933

9 6 1e – 4 32 0.75 0.895

parameter 6 1e – 3 32 0.95

Note: The number of neurons of layer i is set to be n_input$2n-i, where n_input is
the neuron number of input layer, n is total number of layers.

Bin LI & Xiaoying ZHUANG. Multiscale computation on FNN and RNN 1291



96.3% and 93.6%, respectively. As the network is more
complex, the RNN model is more capable of mapping a

given path, but also more sensitive to hyperparameters and
initial parameters. One loading path and corresponding
stress-strain curves in the test set are shown in Fig. 15.

4.3 The ability to generalize to other paths

To illustrate the ability of the neural network model to
generalize to other paths, three typical loading paths are
selected, where the increment and strain are within the
corresponding value range of the neural network model. In
the second loading path, the strain increases monotoni-
cally, and the strain increments at different time are Sobol
sequence. The three loading paths and stress-strain curves
of numerical computation, FEM, FNN, and RNN are
shown in Figs. 16–18. The accuracies of three paths
predicted by FNN are 90.6%, 96.8%, and 92.4%,
respectively, while the accuracy for RNN are 88.3%,
96.7%, and 88.2%, respectively.
It can be seen from the Figs. 16–18 that the ability to

Fig. 12 The error and accuracy curves of training set.

Fig. 13 One loading path and corresponding stress-strain curves in the test set. (a) The loading paths; (b) the stress-strain curves
(�11-ε11); (c) the stress-strain curves (�22-ε22 ); (d) the stress-strain curves (�12-ε12).
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Table 3 The orthonormal testing calculation

experiment
number

GRU
layers

FNN
layers

learning
rate

dropout
rate

accuracy

1 1 1 1e – 3 0.75 0.817

2 1 2 1e – 4 0.85 0.800

3 1 3 1e – 5 0.95 0.681

4 2 1 1e – 4 0.95 0.840

5 2 2 1e – 5 0.75 0.660

6 2 3 1e – 3 0.85 0.938

7 3 1 1e – 5 0.85 0.521

8 3 2 1e – 3 0.95 0.949

9 3 3 1e – 4 0.75 0.828

parameter 2 3 1e – 3 0.95

Note: The number of neurons of GRU layer and fully connected layer i are set to
be n_input$16 and n_input$2n+1–i, respectively, where n_input is the number of
neurons of input layer, n is the number of fully connected layers.

Fig. 14 The error and accuracy curves of training set.

Fig. 15 One loading path and corresponding stress-strain curves in the test set. (a) The loading paths; (b) the stress-strain curves
(�11-ε11); (c) the stress-strain curves (�22-ε22); (d) the stress-strain curves (�12-ε12).
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generalize to other simple paths is guaranteed for both
FNN and RNN, especially in the case of monotonic
loading. Due to the small shear modulus, �12 is relatively
small, and its prediction is not as accurate as other stress
components. The data set for RNN is the loading paths,
which is much smaller than the data set of FNN, but the
prediction capability of the two model are comparable.
Although some other paths have been given to prove the
generalization ability of FNN and RNN models, the proof
of extrapolation to other paths is insufficient, which
requires further research.
In the examples shown in Figs. 16–18, the calculation

time of FEM, FNN model and RNN model are recorded in
Table 4, and the time of FEM, FNN prediction and RNN
prediction is the average of the three samples. It takes more
time to train RNN model than FNN model, but the
prediction time difference between the two model is very
small. With the neural network model, the computational
expense can be greatly reduced. Once the neural network

model is trained, it can predict the behavior of the RVE
model in just a few seconds, while FEM can take about half
an hour. However, data acquisition consumes a lot of time
as the finite element simulation of different paths is not
parallel, which needs to be improved in the future.

4.4 The ability to generalize to other RVE model

In the calculation of different RVE models, it is found that
the macroscopic stress and tangent tensor of the micro-
structure are mainly related to the proportion of different
components when the material constitution remain
unchanged. Another RVE model (RVE2) shown in
Fig. 19 has the same volume fraction and material
constitution with the RVE model (RVE1) in Fig. 9. The
macroscopic stress-strain curves of the two RVEmodel at a
given loading path shown in Fig. 20 are almost coincide, so
the trained FNN and RNN model based on RVE1 can be
used to predicted the behavior of RVEmodel with the same

Fig. 16 First loading path and corresponding stress-strain curves. (a) The loading paths; (b) the stress-strain curves (�11-ε11); (c) the
stress-strain curves (�22-ε22); (d) the stress-strain curves (�12-ε12).
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components. The loading path is obtained from Eq. (25),
and the parameter n is 10. It can be seen from the Fig. 20
that both FNN and RNN models can fit well with the result
from FEM. However, the input parameters of FNN model
and RNN model do not include the proportion of different
components and their spatial distribution, so the ability to
generalize to other RVE model is limited, which can be
studied in the future.
In the example shown in Fig. 20, the calculation time of

FEM, FNN model and RNN model is recorded in Table 5.
Similar to the result in Table 4, the computational expense
can be greatly reduced with the neural network model.

5 Conclusions

Within this paper, neural network based multiscale
material model using FNN and RNN are proposed, and

proper loading paths are selected to effectively generalized
to unknown paths to some extent. The data set is obtained
via implementation of offline multiscale computation
based on FE2 method. The trained FNN and RNN model
both have good generalization ability on test set. The
stacked RNN model is more capable of mapping a given
path considering its more complex network structure, but
also more sensitive to hyperparameters and initial para-
meters. The main ideas of building a material model based
on FNN and RNN considering material history depen-
dency are as follows: 1) including as many paths as
possible; 2) taking historical information as input vari-
ables. Physical variables such as internal variables [31–33]
can also be introduced to build one to one or many to one
mapping for neural network material model, thus enhance
the robustness and generalization ability of the neural
network based multiscale model. Recently, an energy
approach [34,35] and a collocation method [36,37] have

Fig. 17 Second loading path and corresponding stress-strain curves. (a) The loading paths; (b) the stress-strain curves (�11-ε11); (c) the
stress-strain curves (�22-ε22); (d) the stress-strain curves (�12-ε12).

Bin LI & Xiaoying ZHUANG. Multiscale computation on FNN and RNN 1295



Fig. 18 Third loading path and corresponding stress-strain curves. (a) The loading paths; (b) the stress-strain curves (�11-ε11); (c) the
stress-strain curves (�22-ε22); (d) the stress-strain curves (�12-ε12).

Table 4 Calculation time of FEM, FNN model and RNN model

FEM data acquisition FNN training FNN prediction RNN training RNN prediction

2400 s 48000 s (2400* 200 s) 1089 s 3 s 1846.8 s 4 s

Fig. 19 Two-dimensional RVE model (RVE2).
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been proposed to solve partial differential equations,
providing a deeper perspective to combine computational
mechanics and ML, which needs further study.
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