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ABSTRACT This article proposes a novel methodology that uses mathematical and numerical models of a structure to
build a data set and determine crucial nodes that possess the highest sensitivity. Regression surfaces between the structural
parameters and structural output features, represented by the natural frequencies of the structure and local transmissibility,
are built using the numerical data set. A description of a possible experimental application is provided, where sensors are
mounted at crucial nodes, and the natural frequencies and local transmissibility at each natural frequency are determined
from the power spectral density and the power spectral density ratios of the sensor responses, respectively. An inverse
iterative process is then applied to identify the structural parameters by matching the experimental features with the
available parameters in the myriad numerical data set. Three examples are presented to demonstrate the feasibility and
efficacy of the proposed methodology. The results reveal that the method was able to accurately identify the boundary
coefficients and physical parameters of the Euler-Bernoulli beam as well as a highway bridge model with elastic
foundations using only two measurement points. It is expected that the proposed method will have practical applications
in the identification and analysis of restored structural systems with unknown parameters and boundary coefficients.
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1 Introduction

Structural modeling plays an essential role in any model
updating or structural health monitoring process [1]. The
structural model is normally initiated based on the nominal
values of material properties provided by the manufactur-
ing codes and design drawings as well as the analyst’s
assumptions about the connectivity and element types and
sizes [2]. It is inevitable that experimental and numerical
models will deviate from each other for reasons such as
modeling idealizations, model simplifications, and round-
off errors in numerical models associated with computer-
based processes [3]. Structural model updating or
structural model validation (SMV) can be categorized as
the first essential step in practical structural health
monitoring [4]. During the updating process, the numerical
model is tuned to match the in situ real-world model

normally by minimizing the discrepancies between their
responses.
The most important system parameters in an SMV are

the material properties, model geometry, and boundary
conditions (BCs). Although there has been extensive focus
on updating the system parameters, the updating of BCs
has not received similar attention [5,6]. In most applica-
tions, the BCs are idealized as either fixed or free.
However, BCs can deteriorate by aging and rust and thus
can be a major source of system uncertainty in structural
health monitoring and updating processes [7,8]. While
there are guides for the deterioration of material properties,
such as Young’s modulus of elasticity and density, due to
environmental effects and manufacturing deficiency, there
are no such guides for BCs [9,10]. This process can
become more complicated when dealing with detailed real-
world engineering structures whose optimization schemes
require accurate local and global information [11].
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any SMV process. The conventional system features for
SMV are the results of an eigenvalue problem (EVP)
represented by the natural frequencies (NFs) and mode
shapes [12]. In a linear system, the relationship between
the force and displacement in the static form is linear,
whereas the relationship between the system parameters
and its features is nonlinear. This could be the main reason
that most optimum points returned by customary SMV
algorithms are not reliable and are usually local optimum
points [13,14]. In addition, there is no way to check the
uniqueness of the results to justify the entire process.
The solution of the inverse EVP is one of the most

topical subjects in the structural engineering field; it is
essential for the SMV process and has been investigated by
many authors. Nanthakumar et al. [15] suggested an
algorithm to solve the inverse problem in order to detect
material interfaces iteratively using the extended finite
element model (FEM). Another SMV method was
proposed by Mao and Dai [16], who used a quadratic
inverse eigenvalue solver with incomplete modal data. An
inverse structural modification process was developed by
Tsai et al. [17], who solved the inverse problem of
receptance instead of the original matrices or modal model.
The method iteratively minimizes the dynamic stiffness
modification matrix defined in their study and the
corresponding objective functions. Anitescu et al. [18]
proposed a method to solve the inverse problem of a
complex-valued Helmholtz equation by using artificial
neural networks and a grid point generation engine to
approximate a differential equation in its domain and the
BCs. Experimental SMV studies were performed by
Nehete et al. [19] to obtain accurate information about
the vibroacoustic cavity by using an inverse eigen
sensitivity method; the authors were able to identify the
BC properties of their 3D model.
A major challenge with SMV implementation is

determining the most significant structural responses with
the smallest number of sensors. In addition, the locations
and distributions of the sensors must be appropriately
assigned to collect structural features that have sufficient
information to identify system parameters [20]. Conven-
tional optimal sensor installation is normally performed
based on information entropy and probabilistic tools. The
information entropy, as a scalar value, measures the quality
of structural information using various clusters of sensor
configurations [21]. Stochastic simulations using the
Bayesian framework must be performed repeatedly to
evaluate the optimal sensor locations and uncertainties. An
extensive review of the prevalent optimal sensor placement
was performed by Mallardo and Aliabadi [22]. The
concurrent methods depend mostly on probabilistic,
heuristic, artificial, and genetic algorithm theories [23,24].
The current structural model updating algorithms have

the following disadvantages: (i) system responses normally
require numerous degrees of freedoms (DOFs) for mode
shape extraction; (ii) the BCs of the system are

traditionally assumed to be known and are not considered
in the updating process; (iii) there is no way to determine
whether the returned value is genuine; (iv) gradient-based
and heuristic methods are typically executed with
sequential, implicit, and black-box steps that will turn
out to be the optimum point closest to the initial guess of
the analyst. Several apt treatments are offered to eliminate
existent flaws during the process.
A novel approach is presented in this work to identify

the uncertain parameters of a system as well as its BCs
using the minimum number of measurement points. A new,
exquisite method for assigning appropriate weights to the
objective function is presented. In this proposed method, a
returned point’s stability and uniqueness can be investi-
gated by a visual inspection toolbox, which is unprece-
dented for SMV analysis. The parallel coordinate toolbox
is also presented to enhance the SMV’s confidence in
determining whether the returned points are in a unique
region. Furthermore, the economic cost of the experiment
is reduced by recognizing and then mounting a sufficient
number of sensors, while the required number of structural
modes are excited.
This article is organized as follows. The methodology

section introduces a novel comprehensive algorithm for
authentic SMVs. The algorithm uses a multi-stage process
to determine a system’s properties with high confidence.
Three examples are presented in the example and
verification section, ranging from a simple model to
more sophisticated ones, to show the feasibility of the
proposed method in various situations. The possible
experimental implementation section elaborates on the
implementation of the proposed method in real-life
scenarios. The article ends with the discussion and
conclusion section.

2 Methodology

In this section, the steps required for conventional SMVare
presented first. This is followed by a description of the
proposed algorithm.

2.1 Conventional structural model updating process

In this process, a common objective function, which
defines the difference between the analytical and experi-
mental models, is minimized subject to some constraints.
The following is an example [13,25]:

min :   J Xð Þ ¼
XN
i¼1

ωf
i

fa,i – fe,i
fe,i

� �2

þ
XN
i¼1

ωφ
i

1 –MACi

MACi

� �2

, (1)
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S:T : :    LB£X£UB, (2)

XN
i¼1

ðωf
i þ ωφ

i Þ ¼ 1, (3)

where X ¼ fx1 � � � xMg is a vector that contains uncertain
parameters defined as random variables (RVs). N andM are
the total number of modes and total number of uncertain
system parameters, respectively. LB and UB are the lower
and upper bounds of the RVs, respectively. The feasible
region (FR) of the unknown parameters is defined by those
bounds. MAC is the modal assurance criterion, which
measures the correlation between a pair of local mode
shapes [3,26]. Finally, fa,i, fe,i, ωf

i , and ωφ
i are the ith

analytical NF, experimental NF, NF weighting coefficient,
and mode shape coefficient of the ith mode, respectively.
This formulation normally uses a single objective

function that comprises weighted terms, where each
weight indicates the relative degree of importance of that
term. This process faces a critical pitfall in assigning
appropriate weights to each term in order to determine the
optimum point(s) [27]. Various weights can return spurious
optimum points, which could be far from genuine. In
addition, if the objective function is in the form of a multi-
objective function, then it may return a Pareto optimal front
issue, which is difficult to resolve and refine in higher-
dimensional space [13]. The optimization codes must
minimize the objective function by updating the input
parameters either randomly or by using gradient-based
schemes. The sensitivity of the eigenvalues and eigenvec-
tors (features) of any system to unknown parameters can be
expressed as follows [12]:

∂hð2πfiÞ2i
∂pj

¼ fφigT
∂½K�
∂pj

– hð2πfiÞ2i
∂½M �
∂pj

� �
fφig, (4)

∂fφig
∂pj

¼ –
XN
s¼1

fφsgT ∂½K�
∂pj

– hð2πfiÞ2i ∂½M �
∂pj

� �
fφig

ð2πfsÞ2 – ð2πfiÞ2

0
@

1
Afφsg,

(5)

where [M], [K], pj, fi, and φi are the mass matrix, stiffness
matrix, jth unknown parameter, ith NF, and mode shape of
the system, respectively. As can be seen from Eqs. (4) and
(5), any change in the stiffness and mass matrices of the
system can lead to changes in the system features. In
addition, as the relationships between the system para-
meters and their features are nonlinear, the degree of
nonlinearity can be estimated using numerical simulations
and regression analyses.

2.2 Proposed methodology

The proposed methodology is designed to identify the
minimum number of essential global and local features to

determine the locations of the measurement node and
uncertain system parameters. A flowchart of the proposed
methodology is presented in Fig. 1. The methodology is
divided into a multi-stage process as follows.

2.2.1 STAGE (1): construct an EVP with a PDE/FEM

The first step is to construct an EVP for the desired
structural system, which can be solved analytically or
numerically. For simple discrete and continuous elastic

Fig. 1 Flow chart of the proposed authentic SMV process
showing the eight stages and their components.
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media such as rods, beams, plates, or shells with simple
BCs, it is possible to analytically solve the EVP. In these
cases, the behavior of the system can be expressed by a
partial differential equation (PDE), and then a nonlinear
characteristic equation must be derived for further input-
output (I/O) analysis. Alternatively, a detailed FEM of the
structure can be constructed to numerically solve its EVP.

2.2.2 STAGE (2): design of experiments

As the relationship between the system’s features and
parameters is implicit, design of experiments (DOE) can be
exploited to generate several input parameters. These trial
points are various combinations of the system’s uncertain
parameters within their FR [28]. The number of samples
depends on the number of design variables or RVs, the size
of the FR, the number of DOFs of the boundary variables,
and the acceptable cross correlation between various RVs.
In this research, Latin hypercube sampling (LHS) was used
for the DOE process. This method shuffles samples of
multi-dimensional variables randomly within the FR
without any priority [29]. With this setup, each variable
is distributed uniformly, and the least correlation exists
between any pair of variables to cover the entire FR
appropriately.

2.2.3 STAGE (3): solve and save EVPs

In this step, the constructed EVP must be solved for all
DOEs. The physical parameters of the entire system,
X ¼ fx1 � � � xMg, construct a vector of M number of
unknowns. Each output of the system yn is usually either an
eigenvalue or an eigenfunction. The outputs of the entire
system, Y ¼ ffi,φi : i ¼ 1 : Ng, construct 2N system
features. It has been strongly suggested that, to determine
a viable solution, the number of selected features must be
equal to or greater than the number of parameters that need
to be identified [20]. In other words, in order to estimateM
system parameters authentically, at least N modes must be
excited, where (N≥M). The input parameters and
corresponding output global features and local features
are used to construct regression surfaces hereafter.

2.2.4 STAGE (4): find sensitive nodes

In this step, collection points for local information are
identified. These are points where spots/nodes oscillate the
most when the parameters of the system change. The local
information depends on the location as well as the
directions (x, y, and z) of motion at the measurement
points. Because it is computationally expensive to collect
all the mode shapes of a system, it would be more practical
to simply find the most sensitive nodal information [30].
The mode shape component, φij, represents the amplitude
of the ith mode at the jth DOF. The selection of the node

number and its DOF in each mode depends on its
sensitivity to various system parameter variabilities. In
this section, we present the modal transmissibility (MT) to
represent the local feature hereafter. The MT is defined by
the ratio of the mode shape components of the jth and kth
DOFs in the ith mode as follows:

MTjk
i ¼ φij

φik
: (6)

In practice, this local variable can be estimated by power
spectral density transmissibility (PSDT). First, the ratio of
the PSD between the time domain signals of yj(t) and yk(t)
with a reference signal yr(t) is defined by the following
formula [31,32]:

Tr
jk fð Þ ¼ Gjrðf Þ

Gkrðf Þ
, (7)

where Gjr(f ) and Gkr(f ) are the cross PSDs of the
corresponding signals. The PSDT is a frequency-depen-
dent function. Around the ith NF of the system, this
function returns the MTi as follows [33–35]:

lim
f ↕ ↓fi

  Tr
jk f ¼ fið Þ ¼ φij

φik
¼ MTjk

i : (8)

Numerically, the entire mode shape can be easily
collected for further statistical processing. Then, after
finding the best sensitive nodes on the structure, the data at
these nodes can be mounted for the feature extraction
process during sensor collection. The minima and maxima
of mode shapes at any node are associated with the
smallest and largest energies, respectively. If the minimum
of a mode shape at a node is close to zero, that node attains
the least energy and is called a fixed/modal node. On the
other hand, if the maximum of the mode shapes is an
antinode, this means that the highest energy is concentrated
on them during excitation [26,36]. It was found that the
most appropriate locations for data collection were the
points that attained the highest standard deviation (STD)
while being far away from the fixed points or minimum. A
high STD means that the nodes oscillate the most when the
system parameters change and attain the highest sensitivity
to the predefined system parameters. The source of a high
STD of any node could be at least one uncertain parameter
because the system parameters vary simultaneously.

2.2.5 STAGE (5): create global and local information RSs

Because the FEM is a type of black box and the
interrelationship of various I/O parameters is unknown,
the response surface (RS) method is presented in this work
as a substitute for the FEM [28,37]. It will be shown that
highly nonlinear relationships exist between the local and
global features of the system and system parameters.
Owing to the derivability and tractability provided by
polynomial expressions, polynomials are used in the

1334 Front. Struct. Civ. Eng. 2020, 14(6): 1331–1348



curve-fitting process. It has been proven that the number of
regression coefficients required for precise curve fitting
grows exponentially as the polynomial degree increases
[9,11]. The general high-order polynomial RS model plus
its interaction terms for the system feature, y can be
expressed as [38,39]

yðx1,x2,:::,xM Þ ¼

Xp
i1¼0

Xp – i1
i2¼0

Xp – i1 – i2
i3¼0

� � �
Xp – i1 – i2���iM – 1

iM¼0

βi1i2���iM x
i1
1 x

i2
2 � � � xiMM þ ε, (9)

where βi1i2���iM , xn, ε, M, and p are the regression
coefficients, nth independent variable or predictor para-
meter, Gaussian error term, total number of independent
variables, and highest order of polynomials, respectively.
There are two major indicators of the goodness and
accuracy of curve-fitted surfaces/functions. The coefficient
of determination, R2, is the first indicator and represents the
ratio of the sum of the square regression (SSR) to the total
sum of the square (SST) as follows [1]:

R2 ¼ SSR

SST
¼

Xn
i¼1

ŷi – yð Þ2

Xn
i¼1

yi – yð Þ2
: (10)

This coefficient (R2) can vary from 0.0, which indicates
no accuracy, to 1.0. The second indicator is the root mean
square error (RMSE), which evaluates the overall accuracy
of the fitting surface and is defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffi
SST

n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

yi – ŷið Þ2

n
:

vuuut
(11)

Usually, the RS method is executed by a second-order
(p = 2, quadratic) or at most third-order (p = 3, cubic)
polynomial, owing to the simplicity in estimating its
coefficients [4,40]. However, when considering several
uncertain parameters simultaneously, satisfactory R2 can
barely be achieved by a low polynomial order. However,
the real degree of nonlinearity between the system features
and its uncertain parameters is demanded in this proposed
method. Practically, it is impossible to achieve an exact RS
to express the I/O relationship. Therefore, the order of the
polynomials was gradually increased until a high accuracy
(R2≥0.99) and minimum RMSE were achieved. The
overall problem definition can be expressed as follows: If
there are M system parameters (xi) that need to be
identified, N features (yj) must be extracted to correctly
identify (xi). In other words, the system parameter vector is
X ¼ fx1 � � � xMg, and the system feature vector is

Y ¼ fy1 � � � yNg. The direct and inverse problems, respec-
tively, are as follows:

X ¼ fx1 � � � xMg ↕ ↓

yields
Y ¼ fy1 � � � yNg, (12)

Y ¼ fy1 � � � yNg ↕ ↓

yields
X ¼ fx1 � � � xMg: (13)

In the direct approach, either the PDE or FEM returns
the system features based on predefined model parameters,
while the inverse problems aim to find system parameters
from extracted model features. The crucial issue in almost
all inverse problem solvers is determining whether the
returned result is a genuine or a false one, especially for a
high-dimensional domain in which there is no way to
investigate the optimum domain.

2.2.6 STAGE (6): create a myriad discrete set

To check the uniqueness of the FR, the infinite continuous
multidimensional space is discretized to a plentiful number
(ND) of random trial points that cover the FR accurately
using the same method as in Stage 2 while utilizing the
highest number of trial points that the computer can handle
for searching. Because the parallel coordinate can only plot
a discrete set of multidimensional points, this step must be
executed for further visualization. As can be seen in the
second and third examples, ND = 1E6 random trial points
were generated by the DOE process for the discretization
of the domains.

2.2.7 STAGE (7): I/O evaluation of a myriad set from RSs

In this stage, the myriad set must be evaluated by the RSs
estimated from the global and local information (Stage 5).
This process is computationally trivial because there is no
longer a need to solve EVPs; instead, one just needs to
evaluate RSs. At the end of this step, the I/O values of the
myriad points can be estimated in a metadata for-
mat X : Yf g. Because the continuous FR was discretized
in a multidimensional space, there is still a gap between
each sequential input X and output Y of the system. In this
proposed methodology, instead of putting ambiguous
weights, such as those in Eq. (1), into the system features,
each feature is assigned a unique weight based on its own
range in the FR. Because each feature varies independently
of other features as the input parameter changes in the FR,
selection of the desired points is based on an equal
percentage of range/variability for each feature. In the
constructed set X : Yf g, the feature gap percentage (FGP)
is presented as the quotient of the maximum difference
between two successive or sequentially ordered features in
the set divided by its own potential range. This can be
considered the existent discretization gap due to the
sampling at the previous step. The scalar FGP index for
the constructed set can be evaluated by
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FGP ¼ MaxfDistance½OrderedðyiÞ�=Range ðyiÞ;

i ¼ 1 : Ng: (14)

The FGP can be considered a percentage by which each
feature in the constructed set can increase or decrease to its
neighborhood point. It must be mentioned that when the
number of NDs increases, the FGP decreases by the same
amount. The maximum of the individual feature gap must
be chosen to ensure that the search process will find at least
one sample.

2.2.8 STAGE (8): find minimum required modal
information

This stage is the most critical; it indicates the number of
essential eigen solutions required to identify the system
parameters. It is always desirable to identify system
parameters with the smallest number of excited modes
because it is costly to excite many modes of a large
structure. The additional extracted features could be
redundant and could ruin the results because there is less
accuracy in the higher mode features in practice [30]. If we
know how many features are sufficient, then more energy
must be used in extracting them more precisely based on
the required accuracy rather than finding redundant ones.
In Stage 5, it was found that the relationships between
system parameters and their features are highly nonlinear.
It, therefore, needs to be determined whether a unique
intersection domain of local and global features can be
achieved. For two-dimensional (2D) functions, a contour
plot can visually show the intersection of the local and
global features, as in the first example. Whereas if a feature
be function of more than two independent variables, it is
challenging to plot that function in common 3D Cartesian
domain. A novel contribution of this work is the use of the
parallel coordinate for SMV purposes, and its feasibility is
demonstrated in the second and third examples. The
parallel coordinate is a well-known geometric toolbox for
the visualization of discretized high-dimensional data [41–
43].
The eighth stage comprises several steps, as shown in

the dotted box at the lower end of the flowchart in Fig. 1.
The goal of this stage is to find the minimum number of
modes Nm that can provide sufficient constraints to
authentically find M system parameters. There are several
reasons why every conventional optimization code returns
several optimum points. First, based on the definition of
the conventional objective function described by Eq. (1),
different weights return different parameters. Second, as
extracted features are obtained repeatedly during experi-
ments, it is inevitable that these features will have some
variations even in the same environment. Finally, there is
no way to determine whether these returned optimum
points are genuine. Therefore, it is anticipated that the

proposed parallel coordinate will find a unique domain
(UD), which means that each returned system parameter is
stable around a single neighborhood. As mentioned earlier,
all optimization codes provide several optimum points that
could vary in FR, but the UD returns a unique intersection
around single system parameter values.
Consequently, an iterative loop was defined to reach a

UD from the smallest number of modes Nm = 1, as shown
in Fig. 1. In each iteration, a trial point of system
parameters X ðiÞ was randomly generated within the FR in
the same manner as in the second stage. Then, the system
features Y ðiÞ that contain only Nm modal information
could be estimated in a similar way as in the third stage.
Now, even if the exact value of Y ðiÞ does not exist in the
constructed discrete myriad set X : Yf g, the algorithm will
still be able to find the optimum system parameters Xo in
the set as follows:

Optimum Points

¼ Find Xo j Y ðiÞ –BY£Y£ Y ðiÞ þ BY

n o
, (15)

where the feature bound vector (BY ) is defined to provide a
fine interval:

BY ¼ FGP$Range Y
� �

: (16)

The FGP gives weights to the system features by
assigning a degree of importance to each feature based on
its variability inside FR. Afterwards, Eqs. (15) and (16)
return several optimum points Xo from the myriad set.
Then, the algorithm increases the number of modes Nm
during the search process of the defined loop automatically
until a UD of Xo is achieved. The UD can be defined when
the distance between various Xo becomes less than an
acceptable value. The UD for the first example is displayed
with a counter plot as two independent variables exist. For
the second and third examples, the UD is investigated by
parallel coordinates because more than two independent
variables exist in the RSs.

3 Examples and verifications

This section aims to thoroughly demonstrate all the
required steps based on the proposed methodology
depicted in Fig. 1. Three examples, ranging from a simple
structural model to more complex ones, were chosen. The
first and second examples present prismatic beams
supported on various BCs described by the Euler-Bernoulli
theory, and the third example is a full three-dimensional
FEM of a highway bridge superstructure. In this research,
MATLAB® was adopted for the DOE process, root-
finding of nonlinear characteristic equations, high-order
polynomial curve-fitting, and data visualization. In the
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third example, ABAQUS and the Abaqus2Matlab toolbox
[44] were exploited for the eigen solver machine and data
collection purposes.

3.1 Example 1: prismatic Euler-Bernoulli beam plus
rotational spring supports at each end (two system para-
meters)

A well-known EVP is a continuous prismatic beam of a
homogeneous material described by modulus of elasticity
E, second moment of area I, density ρ, length L, and cross
section A. The flexural displacement of the Euler-Bernoulli
beam can be written as the following PDE [45,46]:

�A
∂2w
∂t2

þ EI
∂4w
∂x4

¼ 0: (17)

Using the separation of variables technique, this PDE
has the following solution:

wðx,tÞ ¼ φðxÞ$qðtÞ ¼
X1
n¼1

φnðxÞ$qnðtÞ

¼
X1
n¼1

φnðxÞ$eið2πfnÞt, (18)

where φn, qn, and fn are the nth mode shape, frequency
equation, and resonant frequency, respectively. Substitut-
ing Eq. (18) into Eq. (17) and making a few calculation
simplifications yields the following univariable equations:

d2qnðtÞ
∂t2

þ qnðtÞ ¼ 0, (19)

d4φnðxÞ
∂x4

– β4nφnðxÞ ¼ 0, (20)

where βn is the nth modal coefficient that depends on the
nth frequency coefficient (modal number) ln. This modal
coefficient is related to the material properties as well as the
geometry of the beam as follows:

β4n ¼
ln

L

� �4

¼ ð2πfnÞ2
�A

EI
, (21)

fn ¼
l2n

2πL2

ffiffiffiffiffiffi
EI

�A

s
: (22)

The general solution of the EVP described by Eq. (20),
that is, the mode shapes of the system, can be calculated as
follows [47]:

φnðxÞ ¼ An$sinðβnxÞ þ Bn$cosðβnxÞ
þ Cn$sinhðβnxÞ þ Dn$coshðβnxÞ, (23)

where An, Bn, Cn, and Dn are the constant coefficients for

each mode, which can be estimated based on various BCs.
By substituting various BCs into the latter equation, a
nonlinear univariable equation, namely the characteristic
equation with infinite roots, is obtained. Its roots are modal
numbers ln, which are related to the system NF by
Eq. (21).
The first example, which is a Euler-Bernoulli beam with

two rotational springs, is shown in Fig. 2(a). The four BCs
of this model are as follows [48]:

φnðx ¼ 0Þ ¼ 0,

φnðx ¼ LÞ ¼ 0,

d2φnðx ¼ 0Þ
dx2

¼ K�l

EI

dφnðx ¼ 0Þ
dx

,

d2φnðx ¼ LÞ
dx2

¼ –K�r

EI

dφnðx ¼ LÞ
dx

:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(24)

Substituting the BCs shown in Eq. (24) into the general
solution of Eq. (23) and making several parametric
manipulations yields the characteristic equations (fre-
quency equation):

K*2
�l þ K*

�l
ln½1þ α�½sinðlnÞcoshðlnÞ – cosðlnÞsinhðlnÞ�

α½1 – cosðlnÞcoshðlnÞ�

þ 2l2nsinðlnÞsinhðlnÞ
α½1 – cosðlnÞcoshðlnÞ�

¼ 0: (25)

This equation is remarkably nonlinear, and its roots need
to be evaluated for various spring coefficients using a
robust root-finding toolbox. Then, by substituting the roots
of this equation as well as the modal unknown coefficients
into Eq. (23), the normalized mode shape can be
determined as follows [49]:

φnð�Þ ¼ sinðln�Þ – sinhðln�Þ

þ sinhðlnÞ – sinðlnÞ
cosðlnÞ – coshðlnÞ –

2ln
K*
�l

sinhðlnÞ

0
BB@

1
CCA

� cosðln�Þ – coshðln�Þ –
2ln
K*
�l

sinhðln�Þ
� �

, (26)

where α ¼ K�r

K�l
, K*

�l ¼
K�l

ðEI=LÞ, K
*
�r ¼

K�r

ðEI=LÞ, and � ¼ x=L

are the rotational spring ratio, dimensionless left-side
rotational spring, dimensionless right-side rotational
spring, and dimensionless beam length, respectively. As
Eqs. (25) and (26) are evaluated by solving a pre-defined
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PDE and then become dimensionless, they are applicable
to all similar prismatic beams with the same BCs. In this
example, two dimensionless spring constants (K*

�l, K
*
�r) are

considered as the system parameters. Any combination of
these dimensionless constants in the characteristic Eq. (25)
will yield infinite modal parameters ln as the equation
roots. Then, those roots will construct infinite mode shapes
of the system by Eq. (26). As only NFs could be extracted
experimentally and the characteristic equation roots are the
modal numbers, the following formula, which relates
modal numbers ln to the normalized NFs, was used:

fn
f1
¼ l2n

l21
: (27)

This formula can be confirmed by Eq. (22); somehow,
all NFs are normalized to the first NF. Therefore, numerical
as well as experimental results could be completely related.

In Fig. 3(a), the correlation plot of the 500 samples
generated by the LHS algorithm is shown.
By substituting these samples into Eq. (25), a collection

of modal numbers ln based on various (K*
�l, K

*
�r) was

estimated numerically by the highest precisions the root
finding toolbox could handle. Then, the normalized mode
shapes were evaluated based on Eq. (26); the overlaid
mode shapes of the first three modes and their statistical
information are plotted in Fig. 4. For this example, nodes at
�= 0.2 and �= 0.8 were chosen for the local information
collection (MT) based on Eq. (6), as these nodes attain
relatively high STD while being located far away from the
nodal points of the first three modes. The local information
in this example, i.e., MT1, MT2, and MT3, are the MT
features at those nodes in the first, second, and third modes,
respectively. For RS fitting, global and local information
must be chosen; they intersect at one region/domain. The
RS of a few initial global and local features of the samples

Fig. 2 (a) The first model, a prismatic beam plus only rotational springs; (b) the second model, a prismatic beam plus both translational
and rotational springs; (c) the third model, one span of a USA highway bridge (FHWA #33472).

Fig. 3 2000 DOE obtained by the LHS technique and their correlation plots: (a) 500 samples of the first example with two system
parameters; (b) 1000 samples of the second example with four system parameters; (c) 500 samples of the third example with six system
parameters.
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Fig. 4 500 overlaid mode shapes of the first example and their statistical information for the three initial modes based on the normalized
axis (�): (a) first mode shapes; (b) second mode shapes; (c) third mode shapes; (d) first mode statistics; (e) second mode statistics; (f) third
mode statistics.

Fig. 5 RSs of the first three pieces of modal information of the first example: (a) second mode global information normalized by first
mode; (b) third mode global information normalized by first mode; (c) first mode local information MT1; (d) second mode local
information MT2; (e) third mode local information MT3.
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as well as curve-fitted data are shown in Fig. 5. In this
example, (p = 4) was applied as the highest polynomial
order to obtain a high coefficient of determination
(R2≥0.99). As there are only two independent parameters,
the intersection domain can be visually identified.
The contour plots of the feature RSs by specific trial

values are shown in Fig. 6(a) and Fig. 6(b) for FGP = 0.01
and FGP = 0.05, respectively. From the Fig. 6 contour
plots, three important conclusions can be made. First, both
local and global information are required to update and
identify system parameters at a UD. In other words, neither
global nor local information individually can specify a UD;
however, the region where the two intersect can. Second,
as the feature value uncertainty FGP increases, a broader
domain of optimal points can be returned by the UD. This
plot shows that, by enlarging the feature uncertainty, the
provided UD swells and consequently proliferates the
potential optimum points. Finally, it is clear from the
contour plot that at least two modes must be excited and
that their global and sensitive local features are able to
return the correct system parameters (Nm = 2). The other
modal information is redundant, as shown in Fig. 6.

3.2 Example 2: prismatic Euler-Bernoulli beam plus
translational and rotational spring supports at each end (four
system parameters)

In this example, both translational and rotational springs at
the bearing sides are considered simultaneously as the
most general case for the Euler-Bernoulli beam BCs, as
shown in Fig. 2(b). The four BCs in this problem are as
follows [48]:

d3φnðx ¼ 0Þ
dx3

¼ –
KX l

EI
φnðx ¼ 0Þ,

d2φnðx ¼ 0Þ
dx2

¼ K�l

EI

dφnðx ¼ 0Þ
dx

,

d3φnðx ¼ LÞ
dx3

¼ KX r

EI
φnðx ¼ LÞ,

d2φnðx ¼ LÞ
dx2

¼ –K�r

EI

dφnðx ¼ LÞ
dx

:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(28)

Substituting the BCs shown in Eq. (28) into the general
solution of Eq. (23) and making a few parametric
manipulations gives the following characteristic
Eqs [49]:

l8n½1 – cosðlnÞcoshðlnÞ�

– l7n½ðK*
�l þ K*

�rÞðsinðlnÞcoshðlnÞ þ cosðlnÞsinhðlnÞÞ�

– l6n½2K*
�lK

*
�rsinðlnÞsinhðlnÞ�

þl5n½ðK*
X l þ K*

X rÞðcosðlnÞsinhðlnÞ – sinðlnÞcoshðlnÞÞ�

þl4n½ðK*
�lK

*
X l þ K*

X rK
*
�rÞð1þ cosðlnÞcoshðlnÞÞ

þ2ðK*
�rK

*
X l þ K*

X rK
*
�lÞðcosðlnÞcoshðlnÞÞ�

þl3n½K*
�lK

*
�rðK*

X l þ K*
X rÞ

ðcosðlnÞsinhðlnÞ þ sinðlnÞcoshðlnÞÞ�

þ2l2n½K*
X lK

*
X rsinhðlnÞsinðlnÞ� þ ln½K*

X lK
*
X rðK*

�l þ K*
�rÞ

ðsinðlnÞcoshðlnÞ – cosðlnÞsinhðlnÞÞ�

þK*
�lK

*
�rK

*
X lK

*
X r½1 – cosðlnÞcoshðlnÞ� ¼ 0: (29)

This equation is nonlinear, and its roots depend on K*
X l

¼ KX l

EI=L3
and K*

X r ¼
KX r

EI=L3
, which are the left and right

translational normalized spring coefficients, respectively.
The two rotational spring coefficients K*

�l and K*
�r are the

same as in example 1. In this example, four dimensionless
spring constants (K*

X l, K
*
X r, K

*
�l, K

*
�r) are considered as the

system parameters. The mode shapes are determined by
inserting the roots of Eq. (29) into the mode-shape formula.
Because it is a very long equation, it will not be shown in
the paper. However, it is available in the literature [50,51].
In Fig. 3(b), the correlation plot of the 1000 samples

generated by the LHS algorithm is shown. The mode
shapes of the system based on various sample values can
be evaluated. The overlaid mode shapes of the first five
modes and their statistical information are plotted in Fig. 7.
In this example, nodes at �= 0.1 and �= 0.9 were chosen for
local information collection (MT) based on Eq. (6) because
they met the high STD criteria while being far away from
the nodal points of the initial five modes of the beam. The
local information in this example, MT1, MT2, MT3, MT4,
and MT5, are the MT features at those nodes in the first
through fifth modes, respectively. In this example, (p = 5)
was applied as the highest polynomial order to obtain a
high coefficient of determination (R2≥0.99). The order of
the polynomials is one degree more than that in the
previous example, where rotational springs were consid-
ered. Although the RSs cannot be plotted as four
independent variables, the statistical information for the
global and local features of the 1000 samples is shown in
Fig. 8 to check their sensitivity. The intersection domain
must be investigated using the parallel coordinate toolbox
of the myriad data set to find the UD. To find the essential
information for correct parameter identification, the myriad
discretization step was performed with ND = 1E6 points
provided by LHS and FGP = 0.01. In Fig. 9, parallel
coordinate plots are shown for the myriad and the
gradually increasing Nm from just two modes up to four
modes of trial features. Several different trial feature points
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were used to ensure that there was enough information to
find the UD. Based on this toolbox, the four modes must be
excited and their global and local information at the pre-
mentioned nodes must be collected in order to find the UD
(Nm = 4). In this case, the information in the fifth mode is
redundant and can be disregarded during the experimental
feature extraction process.

3.3 Example 3: highway bridge super structure plus
rotational BCs (six system parameters)

This structural model was selected as a benchmark for a
more complex structure. It is one span of a highway bridge
constructed by a concrete deck on four girders and 12 cross

beams, as shown in Fig. 2(c). The generalized EVP can be
expressed by the following Eq [52]:

½½K� – ð2πfiÞ2½M ��fφig ¼ 0, (30)

whereM,K, Fi, and φi are the mass matrix, stiffness matrix,
ith NF, and mode shape of the system, respectively.
In this example, six uncertain parameters were con-

sidered for the SMV process, fEs,Ec,�s,�c,K�l,K�rg,
representing the Young’s modulus of elasticity of stainless
steel used in the girders and cross-beams, Young’s
modulus of elasticity of the concrete used in the deck,
density of stainless steel, density of concrete, left side of
the rotational stiffness of the bearing system, and right side

Fig. 6 Contour plot of the 2D domain to visualize the global and local feature intersections of the first example produced by one trial
point: (a) unique domain by FGP = 0.01 (1% range criteria); (b) unique domain by FGP = 0.05 (5% range criteria).

Fig. 7 1000 overlaid mode shapes of the second example and their statistical information for the five initial modes based on the
normalized axis (�): (a) the first mode shapes; (b) the second mode shapes; (c) the third mode shapes; (d) the fourth mode shapes; (e) the
fifth mode shapes; (f) the first mode statistics; (g) the second mode statistics; (h) the third mode statistics; (i) the fourth mode statistics; (j)
the fifth mode statistics.
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Fig. 8 Results of 1000 samples for the second example: (a) NFs variation; (b) MTs variation; (c) global information statistics; (d) local
information statistics; (e) global feature bounds; (f) local feature bounds.

Fig. 9 Parallel coordination plots of 1E6 samples produced by the DOE tool for the second example with FGP = 0.01; (a) whole I/O
dataset plus two modes outputs; (b) selected global features by two modes; (c) selected local features by two modes; (d) whole I/O dataset
plus three modes outputs; (e) selected global features by three modes; (f) selected local features by three modes; (g) whole I/O dataset plus
four modes outputs; (h) selected global features by four modes; (i) selected local features by four modes.
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of the rotational stiffness of the bearing system, respec-
tively. The three-dimensional FEM of the bridge was
simulated by 7929 elements of the 4-node quadrilateral
elastic shell element in Abaqus®. The overall bridge
model had 9028 nodes after it was meshed in the software.
Because the FEM is deployed as the EVP solver, the
number of elements was obtained by starting from an
initial guess and proceeding to a finer mesh until the
relative variation of the required NFs became less than the
acceptable tolerance defined by the analyst.
In this study, the mesh sensitivity was determined from

the initial guess of the mesh size until the six initial NF
variations were less than 0.1% of the previous iteration. In
Fig. 3(c), the correlation plot of the 500 samples generated
by the LHS algorithm is shown. Then, all DOE combina-
tions were inserted as inputs to the FEM in Abaqus®, and
all the eigen solutions were collected automatically for
further analysis. The six initial bending mode shapes and
their STD contour plots are shown in Fig. 10. Only bending
modes were analyzed because these modes are more
sensitive to the system parameters. The DOFs required for
estimating MTi were chosen at � = 0.135 and � = 0.865 at
the middle longitudinal line of the deck. In Fig. 11, the
statistical information of the selected global and local
features is shown and is used to investigate the sensitivity
and precision of each feature. In this example, (p = 4) was

applied as the highest polynomial order to obtain a high
coefficient of determination (R2≥0.99). The intersection
domain must be investigated using the parallel coordinate
toolbox of the myriad set to find the UD. To determine the
essential information for correct parameter identification,
the myriad discretization step was performed with ND =
1E6 provided by LHS and FGP = 0.01. In Fig. 12, the
parallel coordinate plot of the myriad data set as well as the
gradually increasing constraints (Nm) from four to six
modes of a trial feature are plotted. Again, a few various
trial feature points were used to determine whether the
number would provide sufficient information to find the
UD. Through the parallel coordinate toolbox, it was found
that at least six modes must be excited, and then their
global and local information at the pre-mentioned nodes
must be collected to authentically find the UD (Nm = 6).
In this example, the standardization process was also

performed for better visualization using parallel coordi-
nates. Because the system parameters have different units
and ranges, each system parameter in the myriad set must

be standardized by (Zi ¼
Xi –�Xi

�Xi

). There are a few notes

that an analyst must keep in mind when using any FEM
software during the required EVP process, such as element
type, mesh size, and BCs, in order to minimize discretiza-
tion errors. If inappropriate values are used for any of these

Fig. 10 First six initial bending modes of the bridge span and the contour plots of the STD of the mode shape history used to locate
sensitive spots to construct MTi: (a) first mode shape; (b) first mode STD; (c) second mode shape; (d) second mode STD; (e) third mode
shape; (f) third mode STD; (g) fourth mode shape; (h) fourth mode STD; (i) fifth mode shape; (j) fifth mode STD; (k) sixth mode shape; (l)
sixth mode STD.

Ali KARIMPOUR & Salam RAHMATALLA. Structural parameter identification using measurement points 1343



Fig. 11 Results for 500 samples of the third example: (a) NFs variation; (b) MTs variation; (c) global information statistics; (d) local
information statistics; (e) global feature bounds; (f) local feature bounds.

Fig. 12 Parallel coordination plots of 1E6 samples produced by the DOE tool for the third example with FGP = 0.01; (a) whole I/O
dataset plus four modes outputs; (b) selected global features by four modes; (c) selected local features by four modes; (d) whole I/O dataset
plus five modes outputs; (e) selected global features by five modes; (f) selected local features by five modes; (g) whole I/O dataset plus six
modes outputs; (h) selected global features by six modes; (i) selected local features by six modes.
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simulation sources can mislead the optimization algorithm
toward spurious points.

4 Possible experimental implementation

This section presents the experimental application of the
theoretical/numerical algorithm presented in Fig. 1. As
indicated in Section 2, the algorithm presented in Fig. 1
provides the locations of the critical nodes that have high
energies and that are far away from the nodal points. While
the algorithm can identify more candidate nodes if needed,
the three examples solved in Section 3 showed that even
two nodes were sufficient to identify six system para-
meters. The algorithm also creates an RS between each
modal feature and the system parameters for large cases
within the FR. Having this information available will assist
the analyst in conducting experiments and identifying the
unknown system parameters as accurately as possible.
During the experiments, the acceleration data from the
sensors were used to identify the modal features of the
system represented by NFs as the global information and
MTs as the sensitive local information [26,53]. The NFs
can be identified from the PSD peaks of the signals, and the
ratio between the PSD magnitudes of the two sensors at the
different peaks (NFs) will be used to calculate the MT at
each NF [35,54].
Although the mode shapes for all DOEs must be

evaluated numerically to be used in the statistical analysis,
only specific mode shape indices are experimentally
extracted to construct in situ MTs. The computational
cost of mode shape extraction by computer-based FEM
code is negligible compared to the experimental cost
associated with mounting many sensors. Rather, a few
sensors can be deployed to extract similar structural
information (NFs and MTs). Once the real system features
are determined, the next step is to determine the system
parameters using an inverse problem. However, this
process does not require solving a computationally
expensive inverse problem; instead, it will rely on
matching the set of experimental features with the myriad
data set in the RSs. An iterative process is performed until
the experimental features match the closest system
parameters presented in the myriad data set. Because of
the discrete nature of the myriad data set, there is no
guarantee that an exact matching solution between the
myriad random set and the experimental features exist
[55]. Nevertheless, the bound vector (BY ), which is based
on the statistical range of the features in FR as defined by
Stage 8 of the algorithm, will be used to exquisitely perturb
the magnitude of the experimental features until it matches
the closet parameters in the myriad set. Eventually, the
returned results can be visually inspected by the parallel
coordinate tool [56].

5 Discussion and conclusions

This paper presents a novel approach for performing a
structural model updating process that minimizes system
uncertainties and determines a unique solution for the
system’s parameters and BCs using a minimum number of
measurement points and system features. A new approach
for assigning objective weights to each term in a multi-
objective function is proposed based on the system’s local
and global information, and its sensitivity and range in the
FR. Assigning objective weights to each term will swiftly
increase the efficiency of the optimization process. Second,
in contrast to conventional SMV methods, which select
arbitrary positions for data collection, the proposed method
used a new approach to identify the most sensitive nodes
for sensor placement. Third, the range-based weights and
the parallel coordinate toolbox were exploited as two
unprecedented approaches for SMV applications to
identify an authentic UD with a minimum number of
required features. Finally, in comparison with existing
methods, high-order polynomial RSs are suggested to
measure valid degrees of nonlinearity between system
parameters and their features. These nonlinearities are the
reason that most updating methodologies are unable to find
genuine optimum points.
In the first and third examples, where just rotational BCs

were considered as the system parameters, fourth-order
polynomials were found to be appropriate for estimating
acceptable RSs. However, in the second example, fifth-
order polynomials were required to obtain a similar
accuracy on the optimum point. The interaction between
both rotational and translational DOFs is the main reason
why higher-order polynomials were utilized to find UD of
optimum points with acceptable accuracy. These RSs with
high accuracy are deployed as pattern recognition func-
tions to evaluate myriad random points, instead of running
finite element (FE) code for enormous lengths of time.
However, a caveat exists when using high-order poly-
nomials to fit any data set. Extreme high-order polynomials
can cause severe ringing between the data points and
further spurious results. Therefore, the algorithm must
gradually enlarge the order of the polynomial from low to
high until an acceptable criterion is achieved.
The number of samples in the DOE was selected based

on the cross-correlation between the variables. For each
problem, the number of samples was increased until the
cross-correlation between the variables became (�£0:1).
In general, the number of samples is affected by several
factors, including the number of design variables, the size
of the FR, and the number of DOFs of the boundary
variables. It appears that the latter factor has a greater
impact on the resulting number of samples. For example,
the first problem had four unknown parameters and two
boundary variables with two DOFs (a translational spring
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at each end of the beam), and 500 samples were found to be
adequate. The second example had six unknown para-
meters with four DOFs at the boundaries (a translational
and a rotational spring at each end) that needed more
samples; therefore, 1000 samples were used. The third
problem had six unknown parameters but two unknown
DOFs at the boundaries (two rotational springs); thus, 500
samples were deemed sufficient.
The order of the polynomials for the RSM depends on

the magnitude of the coefficient of determination R2, as
specified in Eq. (2). For each problem, the order of the
polynomial is increased until R2 becomes≥0.99. It appears
that the order of the polynomial is also sensitive to the
number of DOFs at the boundaries. In the third example,
only rotational DOFs were considered as variables; the
second example was more sophisticated because both
translational and rotational DOFs were considered in RVs.
Therefore, the higher order of polynomials in the second
example was required to reduce DOF interaction effects
during RS construction and curve fitting.
The minimum value of FGP was selected by increasing

the number of myriad sets (ND). In this case, the feasible
domain was discretized by a finer mesh and much smaller
distances that provided a smaller FGP. Consequently, a
smaller FGP returns system parameters with higher
precision in their values. In addition, the FGP helps the
experimenter become aware of the precision with which
modal information (NFs and transmissibility) must be
extracted in order to find the system’s unknown parameter
with greater/lesser precision. In the first example, both
(1%) and (5%) FGP were exploited to show how FGP
affects the precision of the optimum points, as shown in
Fig. 6. In the second and third examples, (0.1%) FGP was
provided based on fine discretization of the FR by one
million samples (myriad set) and the associated consecu-
tive sample distances. As a rule of thumb, more samples
produce higher resolution and result in higher precision of
the optimum points.
The number of samples needed to obtain a myriad

discrete set depends on the computer/LHS capacity and
speed in generating samples as well as on the required
accuracy of both system parameters and features. The more
points used, the better, as they discretize the FR with a
higher accuracy. Because of the limitations of our
computing system, we were not able to go beyond one
million points. Nevertheless, one million points produced
(0.1%) FGP, which met the acceptable resolutions for the
three examples. For instance, for the second NF of the
second example and for the 5 Hz samples, 5.005 and
4.995 Hz samples are available in the neighborhood. If
analysts need higher resolutions of features, they can
increase the number of myriad sets (ND).
For the first example, nodes at � ¼ 0:2 and � ¼ 0:8 were

chosen for the local information collection (MT) based on
Eq. (6). These nodes attain relatively high STD while they
are located away from the nodal points of the first three

modes simultaneously, and they are also round numbers,
which may make it easy for the analyst to use. Neighboring
nodes at (� ¼ 0:18, � ¼ 0:82) and (� ¼ 0:22, � ¼ 0:78)
were also selected, which represented deviations of up to
10% around � ¼ 0:2 and � ¼ 0:8, but that did not affect the
final values of the resulting system parameters. A similar
approach was used to select the nodes for the second
example at � ¼ 0:1 and at � ¼ 0:9. In this case, neighbor-
ing nodes with (� ¼ 0:12, � ¼ 0:88) and (� ¼ 0:08,
� ¼ 0:92) were also selected and did not affect the final
values of the resulting system parameters.
There are still several situations in which the algorithm

could struggle to find optimum points between the myriad
set. First, either the PDE or FE model could be faulty and
fail to recognize some system differential behaviors.
Second, the EVP solver might return imprecise results,
which would yield wrong RSs. Third, the RSs might not
attain acceptable accuracy in estimating genuine structural
responses (R2£0:99). Fourth, the myriad set might not be
vast enough to contain genuine optimum points. Fifth, the
FR might be not broad enough, and the system parameters
might fall inside the pre-defined FR. Sixth, and most
importantly, the experimentally extracted features may be
fallacious, which can occur due to environmental setup
and/or analyst error. Finally, selecting the locations of the
critical node can be a challenging task, especially when a
large number of mode shapes is used. In addition, these
locations can be impractical for experimental implementa-
tion. Nevertheless, numerical experiments have shown that
neighboring nodes are effective as long as they are far
enough away from the nodal points of the Nm modes. To
put it simply, if simultaneous high STDs of Nm local
information can be achieved at neighboring nodes as well,
those nodes can still be good candidates for data collection.

Acknowledgements The research described in this paper was funded by
the Mid-America Transportation Center through a grant from the US
Department of Transportation’s University Transportation Centers Program
(Grant No. DOT 69A3551747107). The contents reflect the views of the
authors, who are responsible for the veracity and accuracy of the information
presented herein and are not necessarily representative of the views of the
sponsoring agencies.

References

1. Zong Z, Lin X, Niu J. Finite element model validation of bridge

based on structural health monitoring—Part I: Response surface-

based finite element model updating. Journal of Traffic and

Transportation Engineering, 2015, 2(4): 258–278

2. Castro-Triguero R, Murugan S, Gallego R, Friswell M I. Robustness

of optimal sensor placement under parametric uncertainty. Mechan-

ical Systems and Signal Processing, 2013, 41(1–2): 268–287

3. Sehgal S, Kumar H. Structural dynamic model updating techniques:

A state-of-the-art review. Archives of Computational Methods in

Engineering, 2016, 23(3): 515–533

4. Fang S E, Zhang Q H, Ren W X. An interval model updating

1346 Front. Struct. Civ. Eng. 2020, 14(6): 1331–1348



strategy using interval response surface models. Mechanical

Systems and Signal Processing, 2015, 60–61: 909–927

5. Ren W X, Chen H B. Finite element model updating in structural

dynamics by using the response surface method. Engineering

Structures, 2010, 32(8): 2455–2465

6. Zapico J L, González M P, Friswell M I, Taylor C A, Crewe A J.

Finite element model updating of a small scale bridge. Journal of

Sound and Vibration, 2003, 268(5): 993–1012

7. Park Y S, Kim S, Kim N, Lee J J. Finite element model updating

considering boundary conditions using neural networks. Engineer-

ing Structures, 2017, 150: 511–519

8. Park Y S, Kim S, Kim N, Lee J J. Evaluation of bridge support

condition using bridge responses. Structural Health Monitoring,

2019, 18(3): 767–777

9. Cui Y, Lu W, Teng J. Updating of structural multi-scale monitoring

model based on multi-objective optimisation. Advances in Struc-

tural Engineering, 2019, 22(5): 1073–1088

10. Gordis J H. Artificial boundary conditions for model updating and

damage detection. Mechanical Systems and Signal Processing,

1999, 13(3): 437–448

11. Zhou L, Wang L, Chen L, Ou J. Structural finite element model

updating by using response surfaces and radial basis functions.

Advances in Structural Engineering, 2016, 19(9): 1446–1462

12. Mottershead J E, Link M, Friswell M I. The sensitivity method in

finite element model updating: A tutorial. Mechanical Systems and

Signal Processing, 2011, 25(7): 2275–2296

13. Jin S S, Cho S, Jung H J, Lee J J, Yun C B. A new multi-objective

approach to finite element model updating. Journal of Sound and

Vibration, 2014, 333(11): 2323–2338

14. Jang J, Smyth A W. Model updating of a full-scale FE model with

nonlinear constraint equations and sensitivity-based cluster analysis

for updating parameters. Mechanical Systems and Signal Proces-

sing, 2017, 83: 337–355

15. Nanthakumar S S, Lahmer T, Zhuang X, Zi G, Rabczuk T.

Detection of material interfaces using a regularized level set method

in piezoelectric structures. Inverse Problems in Science and

Engineering, 2016, 24(1): 153–176

16. Mao X, Dai H. A quadratic inverse eigenvalue problem in damped

structural model updating. Applied Mathematical Modelling, 2016,

40(13–14): 6412–6423

17. Tsai S H, Ouyang H, Chang J Y. Inverse structural modifications of

a geared rotor-bearing system for frequency assignment using

measured receptances. Mechanical Systems & Signal Processing,

2018, 110(Sep): 59–72

18. Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T. Artificial

neural network methods for the solution of second order boundary

value problems. Computers, Materials, & Continua, 2019, 59(1):

345–359

19. Nehete D V, Modak S V, Gupta K. Experimental studies in finite

element model updating of vibro-acoustic cavities using coupled

modal data and FRFs. Applied Acoustics, 2019, 150: 113–123

20. Catbas F N, Ciloglu S K, Hasancebi O, Grimmelsman K, Aktan A E.

Limitations in structural identification of large constructed struc-

tures. Journal of Structural Engineering, 2007, 133(8): 1051–1066

21. Zhang J, Maes K, De Roeck G, Reynders E, Papadimitriou C,

Lombaert G. Optimal sensor placement for multi-setup modal

analysis of structures. Journal of Sound and Vibration, 2017, 401:

214–232

22. Mallardo V, Aliabadi M. Optimal sensor placement for structural,

damage and impact identification: A review. Structural Durability

and Health Monitoring, 2013, 9(4): 287–323

23. Guo H Y, Zhang L, Zhang L L, Zhou J X. Optimal placement of

sensors for structural health monitoring using improved genetic

algorithms. Smart Materials and Structures, 2004, 13(3): 528–534

24. Sun H, Büyüköztürk B. Optimal sensor placement in structural

health monitoring using discrete optimization. Smart Materials and

Structures, 2015, 24(12): 125034

25. Jaishi B, Ren W X. Structural finite element model updating using

ambient vibration test results. Journal of Structural Engineering,

2005, 131(4): 617–628

26. Avitabile P. Modal Testing (A Practitioner’s Guide). Hoboken, NJ:

John Wiley & Sons, 2018

27. Marler R T, Arora J S. The weighted sum method for multi-

objective optimization: New insights. Structural and Multidisciplin-

ary Optimization, 2010, 41(6): 853–862

28. Shahidi S G, Pakzad S N. Generalized response surface model

updating using time domain data. Journal of Structural Engineering,

2014, 140(8): A4014001

29. Rennen G, Husslage B, Van Dam E R, Den Hertog D. Nested

maximin Latin hypercube designs. Structural and Multidisciplinary

Optimization, 2010, 41(3): 371–395

30. Brincker R, Ventura C. Introduction to Operational Modal Analysis.

Hoboken, NJ: John Wiley & Sons, 2015

31. Weijtjens W, Lataire J, Devriendt C, Guillaume P. Dealing with

periodical loads and harmonics in operational modal analysis using

time-varying transmissibility functions. Mechanical Systems and

Signal Processing, 2014, 49(1–2): 154–164

32. Devriendt C, Guillaume P. The use of transmissibility measure-

ments in output-only modal analysis. Mechanical Systems and

Signal Processing, 2007, 21(7): 2689–2696

33. Devriendt C, Guillaume P. Identification of modal parameters from

transmissibility measurements. Journal of Sound and Vibration,

2008, 314(1–2): 343–356

34. Yan W J, Ren W X. An enhanced power spectral density

transmissibility (EPSDT) approach for operational modal analysis:

Theoretical and experimental. Engineering Structures, 2015, 102:

108–119

35. Yan W J, Zhao M Y, Sun Q, Ren W X. Transmissibility-based

system identification for structural health Monitoring: Fundamen-

tals, approaches, and applications. Mechanical Systems and Signal

Processing, 2019, 117: 453–482

36. Brandt A. Noise and Vibration Analysis: Signal Analysis and

Experimental Procedures. Hoboken, NJ: John Wiley & Sons, 2011

37. Marwala T. Finite element model updating using response surface

method. In: Proceedings of the 45th Collection of Technical Papers-

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics

and Materials Conference. California: Palm Springs, 2004, 5165–

5173

38. Box G E P, Draper N R. Empirical Model Building and Response

Surface. Hoboken, NJ: John Wiley & Sons, 1987

39. Myers R H, Montgomery D C, Anderson-Cook C M. Response

Surface Methodology: Process and Product Optimization Using

Ali KARIMPOUR & Salam RAHMATALLA. Structural parameter identification using measurement points 1347



Designed Experiments. Hoboken, NJ: John Wiley & Sons, 2016

40. Khuri A I, Mukhopadhyay S. Response surface methodology. Wiley

Interdisciplinary Reviews: Computational Statistics, 2010, 2(2):

128–149

41. Raseman W J, Jacobson J, Kasprzyk J R. Parasol: An open source,

interactive parallel coordinates library for multi-objective decision

making. Environmental Modelling & Software, 2019, 116: 153–163

42. Huang T H, Huang M L, Jin J S. Parallel rough set: Dimensionality

reduction and feature discovery of multi-dimensional data in

visualization. In: Lu B L, Zhang L, Kwok J, eds. Neural Information

Processing. ICONIP 2011. Lecture Notes in Computer Science,

7063. Berlin, Heidelberg: Springer, 2011.

43. Inselberg A. The plane with parallel coordinates. Visual Computer,

1985, 1: 69–91

44. Papazafeiropoulos G, Muñiz-Calvente M, Martínez-Pañeda E.

Abaqus2Matlab: A suitable tool for finite element post-processing.

Advances in Engineering Software, 2017, 105: 9–16

45. Bishop R E D, Johnson D B. The Mechanics of Vibration.

Cambridge: Cambridge University Press, 1960.

46. Digilov R M, Abramovich H. Flexural vibration test of a beam

elastically restrained at one end: A new approach for Young’s

modulus determination. Advances in Materials Science and

Engineering, 2013, 2013: 329530

47. Leissa A W, Qatu M S. Vibration of Continuous Systems. New

York: McGraw Hill Professional, 2011

48. Fahy F, Walker J. Advanced Applications in Acoustics, Noise and

Vibration. London: Taylor & Francis, 2005

49. Gonçalves P J P, Brennan M J, Peplow A, Tang B. Calculation of the

natural frequencies and mode shapes of a Euler-Bernoulli beam

which has any combination of linear boundary conditions. Journal

of Vibration and Control, 2019, 25(18): 2473–2479

50. Li Z, Tang D, Li W. Analysis of vibration frequency characteristic

for elastic support beam. Advanced Materials Research, 2013, 671–

674: 1324–1328

51. Karnovsky I A, Lebed O I. Free Vibrations of Beams and Frames:

Eigenvalues and Eigenfunctions. New York: McGraw Hill Profes-

sional, 2004

52. Dawson C B, Cha P D. A sensitivity-based approach to solving the

inverse eigenvalue problem for linear structures carrying lumped

attachments. International Journal for Numerical Methods in

Engineering, 2019, 120(5): 537–566

53. Devriendt C, De Sitter G, Vanlanduit S, Guillaume P. Operational

modal analysis in the presence of harmonic excitations by the use of

transmissibility measurements. Mechanical Systems and Signal

Processing, 2009, 23(3): 621–635

54. Araújo I G, Laier J E. Operational modal analysis using SVD of

power spectral density transmissibility matrices. Mechanical

Systems and Signal Processing, 2014, 46(1): 129–145

55. Montgomery D C. Design and Analysis of Experiments. Hoboken,

NJ: John Wiley & Sons, 2017

56. Sansen J, Richer G, Jourde T, Lalanne F, Auber D, Bourqui R.

Visual exploration of large multidimensional data using parallel

coordinates on big data infrastructure. Informatics (MDPI), 2017,

4(3): 21

1348 Front. Struct. Civ. Eng. 2020, 14(6): 1331–1348


	Outline placeholder
	bmkcit1
	bmkcit2
	bmkcit3
	bmkcit4
	bmkcit5
	bmkcit6
	bmkcit7
	bmkcit8
	bmkcit9
	bmkcit10
	bmkcit11
	bmkcit12
	bmkcit13
	bmkcit14
	bmkcit15
	bmkcit16
	bmkcit17
	bmkcit18
	bmkcit19
	bmkcit20
	bmkcit21
	bmkcit22
	bmkcit23
	bmkcit24
	bmkcit25
	bmkcit26
	bmkcit27
	bmkcit28
	bmkcit29
	bmkcit30
	bmkcit31
	bmkcit32
	bmkcit33
	bmkcit34
	bmkcit35
	bmkcit36
	bmkcit37
	bmkcit38
	bmkcit39
	bmkcit40
	bmkcit41
	bmkcit42
	bmkcit43
	bmkcit44
	bmkcit45
	bmkcit46
	bmkcit47
	bmkcit48
	bmkcit49
	bmkcit50
	bmkcit51
	bmkcit52
	bmkcit53
	bmkcit54
	bmkcit55
	bmkcit56


