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ABSTRACT In this study, the deep learning models for estimating the mechanical properties of concrete containing
silica fume subjected to high temperatures were devised. Silica fume was used at concentrations of 0%, 5%, 10%, and
20%. Cube specimens (100 mm� 100 mm� 100 mm) were prepared for testing the compressive strength and ultrasonic
pulse velocity. They were cured at 20°C�2°C in a standard cure for 7, 28, and 90 d. After curing, they were subjected to
temperatures of 20°C, 200°C, 400°C, 600°C, and 800°C. Two well-known deep learning approaches, i.e., stacked
autoencoders and long short-term memory (LSTM) networks, were used for forecasting the compressive strength and
ultrasonic pulse velocity of concrete containing silica fume subjected to high temperatures. The forecasting experiments
were carried out using MATLAB deep learning and neural network tools, respectively. Various statistical measures were
used to validate the prediction performances of both the approaches. This study found that the LSTM network achieved
better results than the stacked autoencoders. In addition, this study found that deep learning, which has a very good
prediction ability with little experimental data, was a convenient method for civil engineering.
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1 Introduction

Durability is very important for reinforced concrete
structures as it affects the service life of these structures.
The durability can be affected by sulfate attacks, high-
temperature reinforcement corrosion, alkali-aggregate
reactions, and the effects of sulfate and carbonation. The
effects on the strength properties of concrete subjected to
high temperatures have been widely explored [1–6].
Concrete shows better behavior when exposed to fire or
high temperatures compared to other construction materi-
als [7]. When concrete is exposed to high temperatures,
chemical and physical reactions occur [8], for example, a
large loss of compressive strength (CS), wide and deep
cracks, disintegrations, and a significant decrease in
durability can occur [9–11]. When concrete is exposed to
temperatures of 200°C, there are small decreases in

strength [12]; however, microcracks were not observed
between the cement matrix and ITZ (Interfacial Transition
Zone) [13]. The strength of concrete decreases with
increasing temperatures. C-S-H starts to deteriorate at
400°C. Moreover, microcracks increase with increasing
temperature [12,14–17]. C-H decomposes at 600°C, and
aggregate expansion occurs [12,18]. For example, calcar-
eous aggregates disintegrate above this temperature [19],
and the damage to the microstructure of the concrete
increases [12]. When the temperature reaches 800°C, the
strength of the concrete is almost lost [20]; however, the
use of pozzolanic materials in concrete increases its
resistance to high temperatures. Poon et al. [21] investi-
gated the high-temperature resistance of concrete with
silica fume, fly ash, and slag, and found that the use of
silica fume with a concentration of more than 5% is not
recommended for structures subjected to high tempera-
tures. Furthermore, they found that fly ash and slag are
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[22] found that a maximum concentration of 6% of silica
fume should be used in concretes subjected to high
temperatures.
The estimation of the mechanical properties of concrete

has been widely explored by scientists [23–30]. However,
predicting properties of concrete using deep learning (DL)
is very limited in the literature [31–34], while the use of
DL has started recently in other engineering applications
[35–37]. Cha et al. [31] studied the crack detection of
concrete using DL and found it to be the most dependable
method for monitoring cracks. Zhang et al. [32] investi-
gated crack detection in asphalt surfaces using DL, and
they showed that cracks can be detected with a precision of
90.13%. Deng et al. [34] used DL to determine the CS of
recycled concrete, and the prediction results showed that
DL yielded a higher precision.
In this study, predictions of the strength properties of

concrete containing silica fume subjected to high tempera-
tures were made using DL methods. DL has attracted much
attention in image processing and pattern recognition
communities, although there are few studies on civil
engineering applications. Thus, we opted to use stacked
autoencoders and long short-term memory (LSTM) to
predict the CS and ultrasonic pulse velocity (UPV) of
concrete containing silica fume subjected to high tempera-
tures. Two autoencoder blocks, a hidden layer, and an
output layer were used to construct the deep neural
networks (DNN) model. A bidirectional LSTM layer, fully
connected layer and a regression layer was used to
construct the LSTM network. Various experiments were
conducted in the MATLAB environment, and the predic-
tion performance was evaluated statistically. The results
show that the LSTM network achieves better results
compared to the DNN model.
The remainder of this paper was organized as follows.

Section 2 introduced the experimental research, and the
materials, mixture proportions, curing and heating meth-
ods, stacked autoencoders, and LSTM theories were
reviewed in this section. Section 3.1 was presented the
experimental results. The prediction results using the
DNNs and LSTMwere discussed in Section 3.2. The paper
was concluded in Section 4.

2 Experimental research

2.1 Materials

CEM I/42.5R Portland cement was selected for this study.
Olivine (0–3 mm) was selected as the fine aggregate, river
sand (3–8 mm) was used as the coarse aggregate, and silica
fume was used as a pozzolanic material in this study. The
properties of olivine, silica fume, and cement were
illustrated in Table 1.

2.2 Mixture proportions

The mixture design was illustrated in Table 2. A super-
plasticizer was used in this study. The cement dosage was
400 kg/m3, and the specimens were prepared using a cubic
mold with dimensions of 100 mm � 100 mm � 100 mm.

2.3 Curing and heating methods

The specimens were removed from the mold after 24 h.
Subsequently, they were cured in water at 20°C�2°C for
periods of 7, 28, and 90 d. Following this, they were
exposed to temperatures of 200°C, 400°C, 600°C, and
800°C. Each temperature was maintained for 1 h [38]. The
heating ratio was set at 2.5°C/min [15,39].

2.4 Stacked auto-encoders

DL has recently demonstrated remarkable performances in
classification and forecasting applications [40–44]. In
particular, many classification applications have been
performed based on convolutional neural networks
(CNNs) and LSTM networks [41–43]. In addition, some
prediction applications have also been performed using
DL. Autoencoders, which have been used for both
classification and prediction applications, are one of the
DL methods [44]. Autoencoders are unsupervised
approaches that use unlabeled data sets as input and
transform the input features by minimizing the reconstruc-
tion error of the original input features with a single
nonlinear hidden-layer neural network. In other words,

Table 1 The chemical properties of cement, olivine, and silica fume

chemical compositions and physical properties Portland cement olivine silica fume

SiO2 (%) 21.12 42 91.0

Al2O3 (%) 5.62 0.5 0.58

Fe2O3 (%) 3.24 7 0.24

CaO (%) 62.94 0.05 0.71

MgO (%) 2.73 48 0.33

LOI (%) 1.42 – 1.84

specific surface area (cm2/g) 3430 – –

particle size – – < 45 mm (96.5%)

specific gravity (g/cm3) 3.10 3.3 2.2
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autoencoders can construct the input features exactly by
using a complex nonlinear transformation. An illustration
of the autoencoder is shown in Fig. 1.
Assuming an input x 2 ½0,1�d , an autoencoder initially

transforms (encoder part) the input x to a hidden feature

representation, e.g., h 2 ½0,1�d# , by using the following
equation:

h ¼ gðWxþ bÞ, (1)

where g is a nonlinear activation function, andW and b are
the weight matrix and bias vector, respectively. Then, h is
retransformed (decoder part) into the reconstructed input
feature x̂ by the following equation:

x̂ ¼ gðW#hþ b#Þ, (2)

where W# and b# are the reconstruction parameters. The
parameters, which are defined in Eqs. (1) and (2), are
determined by minimizing the average reconstruction
error.
Final DNNs can be obtained by stacking the auto-

encoders, as shown in Fig. 1. The encoder block contains a
structure, as shown in Fig. 2.
In the training of DNNs, the autoencoder is initially

employed to minimize the reconstruction error of the input
data. The output of the autoencoder is given to the hidden

unit, and the hidden unit is connected to the output layer.
As mentioned earlier, the auto-encoders work in an
unsupervised fashion; however, the stacked AEs are
trained with backpropagation on the entire network to
fine-tune the weights and biases in a supervised manner.

2.5 LSTM

The LSTM network is a type of recurrent neural network
(RNN). It contains three types of layers: input, hidden
recurrent, and output layers, as shown in Fig. 3 [41–43].
The memory block, which is a new structure, is the
difference between the LSTM and RNN models. The
memory block consists of four main elements: the input
gate, memory cell, forget gate, and output gate. The
memory-cell element contains a self-recurrent connection.
Gates in the memory cells that change the state of the
signal while allowing or blocking the output gate prevent
the memory-cell state from having an effect on the rest of
the network. The forget gate allows the memory cell to
forget its previous state when the information stream is out
of date. As seen in Fig. 3, the weighted “peephole”
connections from the cell to the gates are shown by dashed
lines.
The self-recurrent connection has a weight of 1.0 and

ensures that the state of a memory cell that prevents any

Table 2 Mixture proportion of concretes

designation of
mixture

cement
(kg/m3)

silica fume
(kg/m3)

W/C super-plasticizer
(kg/m3)

aggregates 0–3 mm
(kg/m3)

aggregates 3–8 mm
(kg/m3)

S0 400 – 0.55 4.8 1259 687

S5 380 20 0.55 4.8 1255 685

S10 360 40 0.55 4.8 1250 682

S20 320 80 0.55 4.8 1239 676

Fig. 1 An illustration for auto-encoder.

Fig. 2 The illustration of the whole DNNs structure.
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external interference remains constant from one time phase
to another. The following equations explain how a memory
block works in each t step:

it ¼ �ðWixt þ Uiht – 1 þ biÞ, (3)

ft ¼ �ðWf xt þ Uf ht – 1 þ bf Þ, (4)

ct ¼ ft$ct – 1 þ it$gðWcxt þ Ucht – 1 þ bcÞ, (5)

ot ¼ �ðWoxt þ Uoht – 1 þ Voct þ boÞ, (6)

ht ¼ ot$hðctÞ, (7)

where Wi, Wf , Wc, Wo, Ui, Uf , Uc, Uo, and Vo are the
weight matrices, and bi, bf , bc, and bo are bias vectors. it, ft,
and ot are the activations for the input, forget, and output
gates, respectively. While ct shows the state of the memory
cell at time t, ht indicates the output of the memory cell at
time instant t. The gate activation function �ðxÞ is assigned
as the standard logistics sigmoid function. gðxÞ and hðxÞ
are defined as the input and output activations, and the
‘tanh’ function is used for both gðxÞ and hðxÞ.

3 Results

3.1 Experimental results

The concretes with silica fume were subjected to high
temperatures in this study. For this purpose, cubic samples
were prepared for UPV and CS tests. The samples were
cured in water at 20°C�2°C for periods of 7, 28, and 90 d.
Then, they were exposed to temperatures of 200, 400, 600,
and 800°C. The CS results of samples exposed to high
temperatures were depicted in Figs. 4–6.
The CSs of concrete exposed to a temperature of 20°C

were 23.8, 28.09, 25.13, and 23.41 MPa for silica fume
contents of 0%, 5%, 10%, and 20% for a period of 7 d,
respectively. The CSs of concrete exposed to a temperature
of 200°C were 23.5, 27.5, 24.57, and 21.88 MPa for 0%,
5%, 10%, and 20% for a period of 7 d, respectively. The
CSs of concrete exposed to a temperature of 400°C were
18.97, 19.8, 19.47, and 18.56 MPa for 0%, 5%, 10%, and
20% for a period of 7 d, respectively. The CSs of concrete
exposed to a temperature of 600°C were 12.54, 14.97,
13.04, and 12.44 MPa for 0%, 5%, 10%, and 20% for a
period of 7 d, respectively. The CSs of concrete exposed to
a temperature of 800°C were 6.71, 8.21, 7.02, and 5.82
MPa for 0%, 5%, 10%, and 20% for a period of 7 d,
respectively.
The CSs of concrete exposed to a temperature of 20°C

were 30.22, 34.15, 31.85, and 29.57 MPa for silica fume
contents of 0%, 5%, 10%, and 20% at 28 d, respectively.
The CSs of concrete exposed to a temperature of 200°C
were 30.05, 32.52, 31.32, and 28.82 MPa for 0%, 5%,
10%, and 20% at 28 d, respectively. The CSs of concrete
exposed to a temperature of 400°C were 20.56, 21.91,
21.03, and 19.64 MPa for 0%, 5%, 10%, and 20% at 28 d,
respectively. The CSs of concrete exposed to a temperature
of 600°C were 17.3, 20.09, 18.09, and 16.01 MPa for 0%,
5%, 10%, and 20% at 28 d, respectively. The CSs of
concrete exposed to a temperature of 800°C were 8.21,

Fig. 3 The structure of the LSTM unit.

Fig. 4 CS results at 7 d.
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9.31, 8.51, and 7.74 MPa for 0%, 5%, 10%, and 20% at 28
d, respectively.
The CSs of concrete exposed to a temperature of 20°C

were 36.17, 47.21, 39.51, and 32.6 MPa for silica fume
contents of 0%, 5%, 10%, and 20% at 90 d, respectively.
The CSs of concrete exposed to a temperature of 200°C
were 35.03, 45.63, 37.81, and 32.09 MPa for 0%, 5%,
10%, and 20% at 90 d, respectively. The CSs of concrete
exposed to a temperature of 400°C were 26.97, 34.29,
32.21, and 24.78 MPa for 0%, 5%, 10%, and 20% at 90 d,
respectively. The CSs of concrete exposed to a temperature
of 600°C were 19.57, 25.89, 21.88, and 19.51 MPa for 0%,
5%, 10%, and 20% at 90 d, respectively. The CSs of
concrete exposed to a temperature of 800°C were 10.3,
14.04, 10.92, and 10.1 MPa for 0%, 5%, 10%, and 20% at
90 d, respectively.

It can be observed from Figs. 4–6 that the highest CS for
all the curing days was determined for the concretes
including 5% silica fume. Based on the reference concretes
at 20°C, 200°C, 400°C, 600°C, and 800°C in Fig. 4, the
increases in the CSs of concrete including 5% silica fume
at the same temperatures were 18.02%, 17.02%, 4.38%,
19.38%, and 22.35%, respectively. Based on the reference
concretes at 20°C, 200°C, 400°C, 600°C, and 800°C in
Fig. 5, the increases in the CSs of concrete including 5%
silica fume at the same temperatures were found to be 13%,
8.22%, 6.57%, 16.13%, and 13.40%, respectively. Based
on the reference concretes at 20°C, 200°C, 400°C, 600°C,
and 800°C in Fig. 6, the increases in the CS of concrete
including 5% silica fume at the same temperatures were
30.52%, 30.26%, 27.14%, 32.29%, and 36.31%, respec-
tively. According to the literature, a concentration of more

Fig. 5 CS results at 28 d.

Fig. 6 CS results at 90 d.
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than 6% silica fume should not be used in concrete
exposed to high temperatures [21,22]. Similar results were
obtained in this study. The samples containing 5% silica
fume were found to be the samples with the highest
resistance to high temperature in this study. The UPV are
shown in Figs. 7–9.
It can be seen from Figs. 7–9 that the highest UPV was

found for concretes with 5% silica fume for all numbers of
curing days. Based on the reference concretes at 20°C,
200°C, 400°C, 600°C, and 800°C in Fig. 7, the increases in
the UPVs of concrete including 5% silica fume at the same
temperatures were found to be 3.46%, 7.59%, 7.70%,
6.62%, and 4.90%, respectively. Based on the reference
concretes at 20°C, 200°C, 400°C, 600°C, and 800°C in
Fig. 8, the increases in the UPVs of concrete including 5%
silica fume at the same temperatures were found to be
7.76%, 10.51%, 8.7%, 10%, and 7.58%, respectively.
Based on the reference concretes at 20°C, 200°C, 400°C,
600°C, and 800°C in Fig. 9, the increases in UPVs of

concrete including 5% silica fume at the same temperatures
were found to be 9.22%, 9.22%, 6.17%, 2.36%, and
10.33%, respectively. High-temperature cracking causes
vapor pressure in the pores and a thermal gradient in the
concrete [20]. These two effects cause the concrete to crack
and disintegrate. Therefore, the CS and UPV will decrease
with the increase in temperature due to the increases in the
gap. The use of silica fume is known to increase the
strength properties of concrete; however, the use of silica
fume in concrete exposed to high temperatures can reduce
the high-temperature resistance of the concrete. Many
studies have found that more than 6% silica fume should
not be used [21,22]. In this study, concretes with 5% silica
fume were found to be high in both the UPV and CS at all
temperatures and curing times. However, in concrete with
10% silica fume, a higher strength than the reference
sample was obtained at all curing times and temperatures.
Xie et al. [45] reported that the best concentration of silica
fume was found to be 4% for concrete exposed to

Fig. 7 UPV results at 7 d.

Fig. 8 UPV results at 28 d.
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temperatures over 400°C. They said that this was due to the
pozzolanic effect.

3.2 Deep-learning-based forecasting results

3.2.1 DNN model results

In this section, a DNN model was devised to estimate the
CSs and UPVs of concrete containing silica fume exposed
to high temperatures. A data set consisting of 48 samples
was used in the DNNmodel. There were eight inputs in the
DNN model. These were determined as cement, silica
fume, water/cement, super-plasticizer, 0–3 mm aggregates,
3–8 mm aggregates, curing, and temperature. There were
used two outputs as CS and UPV in the DNN model. A
zero-mean-unit-variance normalization was applied to the
data set. All coding was carried out in the MATLAB neural
network and DL toolboxes.
The DNN model used in the experiments was shown in

Fig. 10. Two autoencoder blocks, a hidden layer, and an
output layer were used to construct the DNN model. Each
autoencoder block contained 50 hidden neurons. The
‘L2WeightRegularization’ parameter was set to 0.001; the
‘SparsityRegularization’ parameter was chosen to be 4; the
‘SparsityProportion’ parameter was assigned to be 0.05;
and the ‘DecoderTransferFunction’ was selected as ‘pure-
lin’. The hidden layer also contained 50 neurons. The
Levenberg-Marquardt backpropagation algorithm was
used to train the DNNs. Four different evaluation metrics
were used in the performance evaluation of the proposed
method: the mean square error (MSE), peak signal-to-noise
ratio (PSNR), R value, and mean absolute percentage error
(MAPE) [46,47]. A lower MSE, higher PSNR, R2 close 1,
and lower MAPE scores indicate a good performance.
Three different training and testing sets were used in the
experiments. In the first experiment, a randomly-selected
60% of the data set was used to training in the DNN, and
the remaining 40% was used for testing. In the second

experiment, a randomly-selected 70% of the data set was
used for training in the DNN, and 30% of the data was used
for testing. In the last experiment, 80% of the data set was
used for training, and the remaining 20% of the data was
used for testing in the DNN. The evaluation metric results
obtained for the CS predictions of DNN were given in
Table 3. The columns in Table 3 shown the experiments,
and the rows shown the evaluation metrics for the CS
prediction. The evaluation metrics in the first experiment
(60-40) were obtained as 0.0713 (MSE), 59.5991 (PSNR),
0.9349 (R-value), and 10.7343 (MAPE) scores. The
evaluation metrics in the second experiment (70-30)
were found as 0.0417 (MSE), 61.9296 (PSNR), 0.9561
(R-value), and 0.1052 (MAPE). Finally, the evaluation
metrics in the third experiment (80-20) were obtained as
0.0322 (MSE), 63.0554 (PSNR), 0.9565 (R-value), and
3.8593 (MAPE) scores. As observed in Table 3, the third
experiment (80-20) yielded better scores than did the first
(60-40) and second (70-30) experiments. In addition, the
second experiment produced better results than did the first
experiment. In addition, the actual and predicted results
were plotted in Fig. 11. The red color and the blue color in
Fig. 11 shown the actual results and the predicted results,
respectively. As shown in Fig. 11, the best fit was obtained
from the third experiment. Moreover, successful fits were
also obtained from the other experiments. Table 4 shown
the performances of the predictions of the DNN model for
the UPV. As seen in Table 4, the lowest MSE (0.0110) and
MAPE (5.8039) and the highest PSNR (75.0843) and R-
value (0.9842) scores were obtained in the third experi-
ment. This means that the third experiment outperformed
the first and second experiments. In addition, the
performance scores of the second experiment were better
than those of the first experiment. Figure 12 shown the
predicted and actual results of the UPVs for all experi-
ments. The first column of Fig. 12 illustrated the first
experiment. The second and third columns shown the
predicted and actual results for the second and third

Fig. 9 UPV results at 90 d.

1322 Front. Struct. Civ. Eng. 2020, 14(6): 1316–1330



experiments, respectively. As seen in Fig. 12, the best fit
was obtained from the third column. Furthermore, Figs. 13
and 14 shown the regression plots obtained for the DNN-
based predicted and actual results for the CS and UPV. The
highest R square value for the CS and UPV was obtained
as 0.9565 and 0.9842 in the third experiment, respectively.
Because the best performance was obtained in the third
experiment, the training and testing processes of the DNNs
model for the CS and UPV were given for the third
experiment (80-20) in Figs. 15 and 16.

3.2.2 LSTM network model results

In this section, the LSTM network model was used to
forecast the CSs and UPVs of concrete with silica fume

subjected to high temperatures. The same data set used in
the DNN model was also used in this section. The
parameters of the LSTM were determined heuristically
while running the experiments. The input sequence size of
the LSTM was set to 8. A zero mean and unit-variance
normalization were applied to the input data. A bidirec-
tional LSTM layer with an output size of 250 was used.
The fully connected layer of the LSTM network was set to
1, and a regression layer was used following the fully
connected layer. The ‘adam’ solver was chosen as the
LSTM training method. The gradient threshold of the
LSTM network was set to 1. The mini-batch size of the
LSTM network was 200. The initial learning rate of the
LSTM network was chosen to be 0.01. The learning rate
was decreased with a dropped factor of 0.001 during the

Fig. 10 The DNNs model that was used in experiments.

Fig. 11 Illustration of the DNN-based predicted and actual results for CS. (a) First experiment (60-40); (b) second experiment (70-30);
(c) third experiment (80-20).

Fig. 12 Illustration of the DNN-based predicted and actual results for UPV. (a) First experiment (60-40); (b) second experiment (70-30);
(c) third experiment (80-20).
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Fig. 13 The regression plots for the DNN-based predicted and actual results of CS. (a) First experiment (60-40); (b) second experiment
(70-30); (c) third experiment (80-20).

Fig. 14 The regression plots for the DNN-based predicted and actual results of UPV. (a) First experiment (60-40); (b) second experiment
(70-30); (c) third experiment (80-20).

Fig. 15 The training and testing processes of the DNN model for CS.
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training with 100 epoch periods. The evaluation metric
results obtained for the CS predictions of the LSTM model
were given in Table 5. As seen in Table 5, the evaluation
metrics for the first experiment (60-40) were 0.0620
(MSE), 59.2055 (PSNR), 0.9332 (R-value), and 10.4899
(MAPE) scores. In the second experiment (70-30), the
evaluation metrics were obtained as 0.0418 (MSE),
61.9193 (PSNR), 0.9319 (R-value), and 9.0691 (MAPE)
scores. Finally, the evaluation metrics for the third
experiment (80-20) were found as 0.0288 (MSE),
63.5427 (PSNR), 0.9760 (R-value), and 8.7020 (MAPE)
scores. As observed in Table 5, the third experiment (80-
20) yielded better scores than did the first (60-40) and

second (70-30) experiments. In addition, the second
experiment produced better results than did the first
experiment. Figure 17 shown the LSTM-based predicted
and actual results of the CSs for all experiments. The first
column of Fig. 17 illustrated the results of the first
experiment. The second and third columns shown the
predicted and actual results for the second and third
experiments, respectively. As seen in Fig. 17, the best fit
was obtained for the third column. The LSTM-based
prediction scores for the UPVs were given in Table 6.
Similar to the previous results, the best performance was
obtained for the third experiment. In addition, the second
experiment produced better evaluation scores than did the

Fig. 16 The training and testing processes of the DNN model for UPV.

Table 3 DNN-based prediction evaluation metrics for CS

item first experiment (60-40) second experiment (70-30) third experiment (80-20)

MSE 0.0713 0.0417 0.0322

PSNR 59.5991 61.9296 63.0554

R-value 0.9349 0.9561 0.9565

MAPE 10.7343 4.1052 3.8593

Table 4 DNN-based prediction evaluation metrics for UPV

item first experiment (60-40) second experiment (70-30) third experiment (80-20)

MSE 0.0250 0.0149 0.0110

PSNR 64.1514 66.4000 75.0843

R-value 0.9761 0.9834 0.9842

MAPE 7.4453 6.0586 5.8039
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first experiment. Figure 18 also shown the LSTM-based
predicted and actual results of the UPVs for all experi-
ments. The first column of Fig. 18 illustrated the results for
the first experiment. The second and third columns shown
the predicted and actual results for the second and third
experiments, respectively. As seen in Fig. 18, the best fit
was obtained for the third column. Figures 19 and 20
shown the regression plots obtained for LSTM-based
predicted and actual results for the CS and UPV. The
highest R square value for the CS and UPV was found as
0.9760 and 0.9924 in the third experiment, respectively. In
Fig. 21 and 22, the training and testing processes of the
LSTMmodel for the CS and UPV were given for the 80-20
training-testing rates. Since the best performance was

obtained in 80-20 rate, the training and testing processes of
this rate was given. The comparison of the computational
times of the DNN and LSTM for both the CS and UPV
predictions were tabulated in Table 7. As seen in Table 7,
the DNNs computation time was obtained less than the
LSTM computation time for all predictions.

4 Conclusions

In this study, DL models were devised to predict the CS
and UPV of concrete containing silica fume subjected to
high temperatures. For this purpose, the stacked auto-
encoders and LSTM networks, which were well known DL

Table 5 LSTM-based prediction evaluation metrics for CS

item first experiment (60-40) second experiment (70-30) third experiment (80-20)

MSE 0.0620 0.0418 0.0288

PSNR 59.2055 61.9193 63.5427

R-value 0.9332 0.9319 0.9760

MAPE 10.4899 9.0691 8.7020

Table 6 LSTM-based prediction evaluation metrics for UPV

item first experiment (60-40) second experiment (70-30) third experiment (80-20)

MSE 0.0155 0.0117 0.0109

PSNR 66.2263 67.8183 69.6375

R-value 0.9797 0.9889 0.9924

MAPE 8.6751 8.4446 8.1583

Table 7 The comparison of computational times of DNN and LSTM

item the computational times (s)

DNN LSTM

CS (third experiment) 54.23 (19 Epochs) 334 (800 Epochs)

UPV (third experiment) 51.12 (17 Epochs) 341 (800 Epochs)

Fig. 17 Illustration of the LSTM-based predicted and actual results of CS. (a) First experiment (60-40); (b) second experiment (70-30);
(c) third experiment (80-20).
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Fig. 18 Illustration of the LSTM-based predicted and actual results of UPV. (a) First experiment (60-40); (b) second experiment (70-30);
(c) third experiment (80-20).

Fig. 19 The regression plots for the LSTM-based predicted and actual results for CS. (a) First experiment (60-40); (b) second
experiment (70-30); (c) third experiment (80-20).

Fig. 20 The regression plots for the LSTM-based predicted and actual results for UPV. (a) First experiment (60-40); (b) second
experiment (70-30); (c) third experiment (80-20).
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Fig. 21 The training and testing processes of the LSTM network model (third experiment) for CS. (a) RMSE; (b) loss.

Fig. 22 The training and testing processes of the LSTM network model (third experiment) for UPV. (a) RMSE; (b) loss.



methods, were used in this study. The obtained results were
evaluated based on various statistical measures. The input
data set was divided into training and testing data sets
owing to the limited number of samples. Three different
division rates were selected as 60% training-40% testing,
70% training-30% testing, and 80% training-20% testing.
The results showed that the best prediction performance
was obtained from the models used the 80% training-20%
testing. In addition, the 70% training-30% testing out-
performed the 60% training-40% testing. Moreover, when
we compared the performances of the stacked autoenco-
ders and LSTM networks, it was observed that the LSTM
network outperformed the stacked autoencoders. The
prediction accuracy for the CS and UPV of the LSTM
network were found to be 97.60% and 99.24%, respec-
tively. It was also observed that the UPV prediction results
were better than the CS prediction results. The LSTM
obtained impressive results in the estimation of the CS and
UPV of concrete containing silica fume subjected to high
temperatures. Furthermore, this study found that LSTM
has a very good prediction ability with little experimental
data. The predicted results showed that DL has a great
potential in civil engineering applications.
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