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ABSTRACT Shear stress distribution prediction in open channels is of utmost importance in hydraulic structural
engineering as it directly affects the design of stable channels. In this study, at first, a series of experimental tests were
conducted to assess the shear stress distribution in prismatic compound channels. The shear stress values around the
whole wetted perimeter were measured in the compound channel with different floodplain widths also in different flow
depths in subcritical and supercritical conditions. A set of, data mining and machine learning algorithms including
Random Forest (RF), M5P, Random Committee, KStar and Additive Regression implemented on attained data to predict
the shear stress distribution in the compound channel. Results indicated among these five models; RF method indicated
the most precise results with the highest R2 value of 0.9. Finally, the most powerful data mining method which studied in
this research compared with two well-known analytical models of Shiono and Knight method (SKM) and Shannon
method to acquire the proposed model functioning in predicting the shear stress distribution. The results showed that the
RF model has the best prediction performance compared to SKM and Shannon models.
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1 Introduction

In the design of hydraulic structures, the boundary shear
stress distribution is an essential factor to understand most
of the flow characteristics such as the flow resistances,
sediment transport, and cavitation problems. It is suggested
that, the stress distribution depends on some parameters
such as the flume geometry, the hydraulic condition, the
boundary roughness, particularly the streamwise velocity
component and the secondary flow pattern [1–5]. Since the

compound cross section is the nearest section to the rivers,
understanding the distribution of shear stress along the
periphery of compound channels is essential. Furthermore,
studying the river morphology and engineering the river
bed and banks is dependent on it. In addition, analysis and
design of flood control structures depends on extended
knowledge on the distribution of shear stresses in the
flooding route. Literature includes various investigations
considering different methods and case studies [6–10].
Because of the difficulty and time-consuming of direct and
indirect shear stress measurement, many analytical, semi-
analytical, and numerical methods have been currentlyArticle history: Received Jun 27, 2019; Accepted Jul 27, 2019

Front. Struct. Civ. Eng. 2020, 14(5): 1097–1109
https://doi.org/10.1007/s11709-020-0634-3



developed [11–17]. Rezaei and Knight [18] modified the
Shiono and Knight method (SKM) to predict the shear
stress distribution in the compound channel with non-
prismatic floodplains. Sheikh Khozani and Bonakdari [19]
compared five different analytical models to estimate the
shear stress distribution in compound channels with
prismatic rectangular shapes. They investigated the
performance of each model in estimating shear stress in
each section of the compound channel. They deducted that
method of the Tsallis entropy could estimate good results
with fewer calculations.
Nowadays applying soft computing and data mining

methods in forecasting different hydraulic and hydrology
phenomena are in progress [20–28].
In estimating shear stress distribution Sheikh Khozani

et al. [29] utilized the Randomize Neural Network (RNN)
model in circular channels and estimated their results with
results of the Shannon entropy. These researchers proposed
a matrix-based equation. Khuntia et al. [30] carried out a
model of neural networks to predict the force applied to the
walls in compound channel cross-sections. Sheikh Kho-
zani et al. [31] applied different data mining models to
estimate apparent shear stress in compound channels. They
deducted that by using the Bagging-M5P model the more
accurate results of apparent shear stress will be obtained.
Based on the knowledge of authors there is few studies

which estimated the shear stress distribution in compound
channels by using data mining models. Therefore, a set of
experiments were done in different flow depths and flow
conditions then the extracted data was used to forecast the
shear stress distribution in the smooth compound channel.
About 1812 data of shear stress applied to five different
models as Additive Regression (AR), M5P, KStar,
Random Forest (RF), and Random Committee (RC)
models. The performance of each model in prediction of
the distribution of shear stress is investigated, and the most
accurate model is selected. Also, the output of the most

appropriate model is compared with two analytical models
as SKM and Shannon model.

2 Apparatus and proceeding of
experiments

In this study, the experiments are conducted utilizing a
flume of 18 m length. All experiments were performed in
the flume with a simple rectangular cross-section com-
pound channel. The flume width and depth are 1200 and
400 mm, respectively. The bed has a slope of S0 = 2.003 �
10–3. The main channel dimensions are 398, 50, and
400 mm for width, depth, and floodplains, respectively.
The main channel has been constructed with PVCmaterial.
The modulus floodplain widths for the L-shaped aluminum
sections in prismatic compound channels are 100, 200,
300, and 400 mm. In this study, the distribution of shear
stress in the prismatic compound channel with 100 mm
floodplain width is investigated (see Figs. 1 and 2).
In the experiments, the uniform flow is controlled by a

series of adjustable tailgates located in the end of the flume.
OPC denotes, overbank flow in the channel, the first three
numbers after OPC refer to the floodplain width and two
code numbers denoted the flow discharge. Local boundary
shear stress was measured by using a Preston tube of
4.77 mm outer diameter, at the wetted channel perimeter at
25 mm transverse intervals on the bed and 10 mm vertical
intervals on the walls. Note that, the above measurements
were performed at one section (14 m from the channel
inlet). The range of hydraulic parameters of the experi-
mental data are presented in Table 1. The shear stress
distribution was measured in different width of the
floodplain.
According to the results of different research the shear

stress distribution in an smooth compound channel is
related to geometry of channel (the width of floodplain,

Fig. 1 General view of the experimental flume.
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Bfp, Bmc, whole channel wetted perimeter (L)), the
transverse coordinate (y), bankfull depth (h), depth of
flow over main channel (H), slope of channel bed (S0), flow
velocity (V), fluid density (r), gravitational acceleration
(g), and hydraulic radius (R) then the dimensionless shear
stress can be expressed as a function:

τ
�gRS

¼ y

L
,
Bfp

Bmc
,Fr,

H

h

� �
:

In this study, the y/L, Bfp/Bmc, Fr, and H/h are as input
variables which applied to each model and the dimension-
less shear stress is the output variable.

3 Material and methods

3.1 Data mining methods

Economist Michael Lovell who used the term “data
mining” for the first time in the Review of Economic
Studies (1983). Data mining is a process which discovers
trends and patterns [32]. Data mining is a subset of
statistics and computer science with the mission of
discovering patterns in data sets with a goal to extract
trends and information from a data set and to prepare the
extracted information into a required structure for further
application [33].
On the other hand, in addition to the analysis step, it

contains data management, inference consideration, pre-
processing and post-processing of data, visualization and
interestingness metrics [30]. Data mining, unlike data
analyzing, employs statistical or machine learning techni-
ques to estimate, predict and to model patterns of the target
data set [34]. Most common applications of data mining
methods are association learning, anomaly detection,
cluster detection, classification, and regression.

3.1.1 Randorn Forest model

RFs are methods for regression and classification and
related tasks with constructing a multitude of decision
trees. RFs are considered in ensemble learning method
category. This method was first introduced by Guo et al.
[35] who implemented the stochastic discrimination to
classify to the proposed by Eugene Kleinberg using the
random subspace method [36]. An extension of the RFs
algorithm has been registered as a trademark [37]. In
another study by Sun et al. [38], a new RFs algorithm has
been proposed for classification based on cooperative
game theory, on the other hand, the evaluation of each
feature power was performed using Banzhaf power index
which was traversing possible coalitions of the feature. In
another study, Chen et al. [39] proposed an adaptive
variable step method based on RFs. This method from one
hand was able to accelerate the training process and on the
other hand, can decrease the gain of calculations of
information. Based on evidence and documentation, the
proposed approach was suitable to be applied in the most
decision tree-based models.
In this study the optimum parameter settings of RF

models including of batchsize, maximum depth of tree,
number of decimal places, number execution slots, number
of features, number of iterations, and number of seeds are
100, 0, 2, 1, 0, 100, and 4, respectively.

3.1.2 M5P model

M5P algorithm is first introduced by Quinlan [40]. This
method is the upgraded version of the M5 algorithm.
Model trees can effectively handle large data sets, and in
case of dealing with missing data, they are robust.
Based on Fig. 3, which shows the schematic diagram of

the M5 algorithm, the process first split the input data (or
input space) into subspaces.
Figure 3 demonstrates the input space which has been

divided into subspaces S1, S2, and S3. The minimization
of the variation is performing by the use of linear
regression approaches. After this step, in order to create
a tree-like structure, information of the previous step is
imported to build several nodes. In this step, the standard
deviation reduction (SDR) is employed to reduce the error
at the node (Eq. (1)) [41]:

Fig. 2 The cross-section of prismatic compound channels
illustrating various floodplain widths.

Table 1 The range of the main hydraulic parameters in the prismatic

compound channel

case expt. no. H (mm) Q (s–1) Re (�10–3)

1 OPC100 52.78–101.50 12.04–39.92 70.77–199.45

2 OPC200 52.75–104.52 12.03–50.03 49.26–175.29

3 OPC300 53.26–97.37 12.02–50.07 43.21–158.58

4 OPC400 53.89–93.99 12.02–50.10 34.04–128.08
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SDR ¼ sdðSÞ –
X
i

Si
jSj � sdðSiÞ, (1)

where S = data set which reaches to the node, Si =
subspaces, sd = the standard deviation.
Lower SDR than the expected error creates over-training

problems. To overcome this problem, there is a need for a
smoothing process for the combination of all the models
from the root to the leaf. This establishes the final model of
the leaf. Finally, the resulted values of data from leaf are
combined with the predicted values using linear regression
for that node (Eq. (2)) [42]:

E# ¼ neþ ka

nþ k
, (2)

where E# = predicted value for the next higher node, e =
predicted value for the current node, a = model prediction
value, n = quantity of the training samples, k = constant
value.
In this paper the optimum parameter settings of M5P

models including of batchsize, number of decimal places,
number of instance, and number of seeds are 100, 0, 2, 4,
and 3, respectively.

3.1.3 KStar model

KStar model or in other word K* algorithm as an Instance-
based Learner and a memory-based classifier was
presented by Cleary and Trigg [43] in a conference
proceedings of machine learning. The distance metric for
K* technique has been performed by employing the
entropy concept. Therefore, it can be claimed that the
transformation probability occurs in a “random walk
away” manner. Summing the probabilities classifies the
K*. Generally, there is not enough evidence about how K*
faces class noisy and attribute, and with the attributes
mixed values in the data sets [44].
To specify the K* technique, we have (Eq. (3) to

Eq. (5)):

0£
p tuð Þ
pðtÞ £1, (3)

X
u

p tuÞ ¼ pðtÞ,ð (4)

pðAÞ ¼ 1: (5)

It satisfies Eq. (6) as a consequence:X
t 2P

p tuÞ ¼ 1:ð (6)

Equation (7) defines the probability function P*:

P*ðbjaÞ ¼
X

t 2P; tðaÞ¼b

pðtÞ: (7)

The following properties have been satisfied by P*:X
b

P*ðbjaÞ ¼ 1,

0£P*ðbjaÞ£1:
(8)

Finally, the K* function will be defined as Eq. (9):

K*ðbjaÞ ¼ – log2P
*ðbjaÞ: (9)

In this study the optimum parameter settings of KStar
models including of batchsize, global blend, and minimum
number of places, are 100, 1, and 1, respectively.

3.1.4 Additive Regression model

This method is a nonparametric regression method which
was first introduced by Ref. [45]. This method is known as
an essential part of the alternating conditional expectations
algorithm. The alternating conditional expectations algo-
rithm employs a one-dimensional smoother (fjðxijÞ) in
Eq. (10)) to create a class of non-parametric regression
models (Eq. (10)). This make the method smoother than a
p-dimensional method. This technique is also more flexible
compared with that for a standard linear model, but is more
interpretable compared with that for a general regression
surface. Multicollinearity, overfitting and model selection
are consodered as application fields for an additive
reggression method.
By considering fyi,  xi1,:::,  xipg, (i = 1 to n) as data set for

n units, which xi indicates estimators and yi reperesents the
outcome value, the additive model is as Eq. (10):

E½yijxi1,:::,xip� ¼ Y ¼ β0 þ
Xp
j¼1

fjðxijÞ þ ε: (10)

Fitting the additive regression method can be performed
by the use of the backfitting algorithm presented by
Yoshida [46] who employed a semiparametric method to
explore the structure of AR models.
The optimum parameter settings of number of itration

and shrinkage of AR models are 12 and 1, respectively.

Fig. 3 The schematic diagram of M5 algorithm.
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3.1.5 Random Committee model

RC belongs to the category of committee machines which
works based on ensemble of predictors, e.g. ANNs,
decision trees [47]. Thus, it is considered as an ensemble
classifier which works on the basis of classification for
accoplish the training. It is made using a learning
mechanism which predicts the committees of the new
inputs. The new imputs are generated through the
integration of the estimation of every single committee
members. The RC functions as a meta-learning technique
using a number of randomized classifiers. The average of
estimation achieved each classifier of RC provides the final
classification result.
Hu and Hwang [47] documented the concept of RC. He

described the architecture of the gating and expert
networks where some base classifiers are constructed
using a different number of random seeds. Furthermore, an
estimation average generated through every base classifier
form the final value for the prediction (see Fig. 4).

By assuming x as input variable and y as output variable
vectors, f ðxÞ and Pðyjf ðxÞÞwill be function and condi-
tional density respectively. By considering X q ¼ fxq1,:::,
xqNQg as a set of NQ test points and let f q ¼ ff q1 ,:::,f qNQg as
the vector of the corresponding unknown response
variables and by spliting up the input data set into M sets
of data D ¼ fD1,:::,DMg and by denoting the data which

are not in Di as D
i ¼ D=Di, we will have in general:

Pðf qjDi
,DiÞ / Pðf qÞPðDijf qÞPðDijDi

,f qÞ: (11)

It can be approximated Eq. (12):

PðDijDi
,f qÞ � PðDijf qÞ: (12)

Now the combination of Bayes’ formula and approx-
imation generates Eq. (13):

Pðf qjDi – 1,D
iÞ � Const� Pðf qjDi – 1ÞPðf qjDiÞ

Pðf qÞ , (13)

approximate predictive density is calculated as Eq. (14):

P̂ðf qjDÞ ¼ Const�
∏
M

i¼1
Pðf qjDiÞ

Pðf qÞM – 1 : (14)

In this case, Ê and ^cov are estimated based on P̂ðf qjDÞ
as Eq. (15):

Êðf qjDÞ ¼ 1

C

XM
i¼1

covðf qjDiÞ – 1Eðf qjDiÞ, (15)

with

C ¼ ^covðf qjDiÞ – 1

¼ – ðM – 1ÞðEqqÞ – 1 þ
XM
i¼1

covðf qjDiÞ – 1: (16)

The above integration of the committee members
predictions ressembles the Bayesian committee machine
[47].
The optimum parameter settings of RC models of

Batchsize, number of decimal places, number of execution
slots, number of itration, and number of seed are 100, 1, 1,
15, and 1, respectively.

3.2 Analytical models

3.2.1 SKM model

The Navier-Stokes equation for a fluid element in steady
uniform flow can be written as:

� v
∂u
∂y

þ w
∂w
∂z

� �
¼ �gS0 þ

∂τyx
∂y

þ ∂τzx
∂z

, (17)

where S0 is bed slope, u, v, and w are local velocities. The
τyx and τzx represent the Reynolds stresses. Furthermore, g
and r are gravitational acceleration and fluid density,
respectively. An analytical solution for the Navier-Stokes
equation to predict the lateral variation of the depth-
averaged velocity in compound channels was proposed
earlier by Shiono and Knight [11]. It accounts for the 3D
flow by the use of depth-integrated parameters to simplify
its use as follow:

�gS0H – �
f

8

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
U 2

d þ ∂
∂y

�l�H2

ffiffiffi
f

8

r
Ud

∂Ud

∂y

" #

¼ ∂
∂y
½Hð�VUÞd�, (18)

Fig. 4 Architecture of the gating and expert networks.
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where s is the channel side wall slope. H, Ud, l
�, f, and y

are the local flow depth, the depth-averaged velocity, the
dimensionless eddy viscosity, the Darcy-Weisbach friction
factor and the lateral coordinate, respectively. Shiono and
Knight [11] proposed an analytical solution, initially
ignoring the secondary flow term on the other side of the
Eq. (18). They concluded that by ignoring the current
secondary term, the velocity profile could be determined
relatively accurate. By increasing the bed friction, f, or the
turbulent friction, l�, the relationship between the depth-
averaged velocity and bed shear stress might be jeopar-
dized in such a way that it became impossible to get a
prediction of both profiles accurately at the same time.
Shiono and Knight [48] proposed a secondary current

model in order to improve the analytical results. From
experimental results, they came to conclusion that within
certain regions of the flow, the depth-averaged term on the
right-hand side of differential Eq. (18) varied linearly in the
y-direction on the floodplains and in the main channel, in
such a way, that its derivative could be replaced by the
constant, G, in the main channel and on the floodplains.
Hence,

Γ ¼ ∂
∂y
½Hð�UV Þd�, (19)

�gS0H – �
f

8

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
U2

d þ ∂
∂y

�l�H2

ffiffiffi
f

8

r
Ud

∂Ud

∂y

" #
¼ Γ:

(20)

For a flat bed region (s↕ ↓0), the differential Eq. (20)
may be written as follow

�gHS0 –
1

8
�fU 2

d þ ∂
∂y

�l�H2 f

8

� �1=2

Ud
∂Ud

∂y

" #
¼ Γ: (21)

According to Shiono and Knight [48], the analytical
solution of Eq. (21) for a prismatic compound channel with
a flat bed region and vertical side walls is expressed as
follows:

Ud ¼ ½A1e
γy þ A2e

– γy þ k�1=2, (22)

where k ¼ 8gS0H

f
ð1 – βÞ; γ ¼

ffiffiffiffiffi
2

l�

r
f

8

� �1=4 1
H

and

β ¼ Γ
�gS0H

.

At an interface between selected panels, different
boundary conditions can be used to determine the
unknown parameters A.
Having the depth-averaged velocity, the bed shear stress

can be calculated as:

τb ¼
�fU2

d

8
: (23)

It should be noted that the SKM is not able to model
shear stress distribution on the rectangular compound
channels walls.

3.2.2 Shannon model

Based on the Shannon entropy concept, Sterling and
Knight [49] extended equations to estimate shear stress
distribution in channels. They proposed equations for
predicting shear stress distribution along the wetted
perimeter in the circular channel without flat bed. Also
they presented equations to forecast the shear stress
distribution in wall and bed of trapezoidal and circular
channels with sediment separately. Sheikh Khozani and
Bonakdari [19] used these models for estimating shear
stress distribution to compare with other analytical models.
The suggested equations by Sterling and Knight [49] are as
bellows:

τw ¼ 1

lw
ln 1þ

�
elwτmaxðwÞ – 1

�2ðy – ywÞ
Pw

� �
, yw£y£

Pw

2
,

(24)

τb ¼
1

lb
ln 1þ

�
elbτmaxðbÞ – 1

�2ðy – ywÞ
Pb

� �
,

Pw

2
£y£

Pw

2
þ yw, (25)

where τw and τb are shear stress values for wall and bed of
floodplain or main channel respectively, τmaxðwÞ and τmaxðbÞ
are the maximum shear stress values for wall and bed,
respectively. Pb and Pw are the wall and bed wetted
perimeter, respectively, yw is an offset taken as 5 mm in the
study of Sterling and Knight [49] lw and lb are the
Lagrange multipliers related to wall and bed of compound
channel subsections, respectively, which calculated as:

lw ¼ τmaxðwÞelwτmaxðwÞ

elwτmaxðwÞ – 1
– �gRS0

" # – 1

, (26)

lb ¼
τmaxðbÞelwτmaxðbÞ

elbτmaxðbÞ – 1
– �gRS0

" # – 1

, (27)

which r is the fluid density, g is the gravity acceleration, R
is the hydraulic radius and S0 is the channel slope. To
compute the maximum shear stress distribution, the
proposed relations by Knight et al. [50] were utilized in
studies of other researchers such as [51–53].
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4 Models performance evaluation

According to Dawson et al. [54], using one statistical
criterion is not suitable for evaluating a model. To
investigate the performance of each model for estimating
the shear stress distribution in compound channels, four
commonly used criteria were utilized. These applied
criteria are coefficient of determination (R2), Root Mean
Square Errors (RMSE), Mean Absolute Error (MAE),
Nash-Sutcliffe Efficiency (NSE), and BIAS. These statis-
tical indexes are calculated as:

R2 ¼ 0BBBBB@ Xn
i¼1

xio – xioð Þ xip – xip
	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xio – xioð Þ2
s Xn

i¼1

xip – xip
	 
2 1CCCCCA2

, (28)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðxip – xioÞ2

n
,

vuuut
(29)

MAE ¼ 1

n

Xn
i¼1

jxip – xioj, (30)

BIAS ¼

Xn
i¼1

xip – xio

n
, (31)

NSE ¼

Xn
i¼1

ðxip – xioÞ2

Xn
i¼1

xip – xip

� �2
, (32)

where xip is the predicted shear stress value by models, xio
is the observed shear stress value in the laboratory, xio and
xip are the mean values of shear stress values which are
observed and predicted, respectively, and n is the number
of samples.
These indexes were used by Sheikh Khozani et al. [31]

to investigate the model performances in modeling
apparent shear stress in compound channels.

5 Results and discussion

5.1 Select the best data mining model

All five mentioned models were applied to the shear stress
distribution data which were measured in a straight

rectangular compound channel. About 1812 data were
used in the modeling procedure; 70% were used for the
training stage, and 30% for the testing stage. The results of
the testing stage are shown in Fig. 5 as a scatter plot and a
hydrograph. According to the results shown in this figure,
the AR Model predicted the worst results of shear stress
distribution with R2 of 0.6745. As seen in Fig. 5 the AR
Model predicted the same values of shear stress in different
y/P in each test. Moreover, based on the results of
hydrograph this model could not estimate shear stress in
the whole wetted perimeter. The M5P and KStar models
show similar results. As shown in hydrograph, these
models are weak in predicting the maximum and minimum
shear stresses in walls and beds of main channel and
floodplains, but for other y/P they provided more accurate
results than the AR Model. The RC and RF models’
predictions for the maximum and minimum shear stress
values are better than those of other models. It can clearly
be observed from the scatter plot of Fig. 5 that the RF
Model with R2 of 0.9003 demonstrated more precise results
than the AR, KStar, M5P, and RC models. Therefore, the
predictions of the RF Model were compared with two
mentioned analytical models (the SKM and the Shannon
models) in the next section.
The results of statistical criteria for comparing all five

data mining models are presented in Table 2. As seen in
this table the performance of RF model is superior to those
of other models with the lowest RMSE of 0.971. In
addition, the AR model demonstrated the worst results in
estimating shear stress distribution in compound channels
with RMSE of 0.1707. Based on the results of Fig. 5 and
Table 2, the RF model was selected as the best model
among all mentioned models to obtain the most accurate
prediction values of shear stress distribution in compound
channels.

5.2 Comparison of the models

To estimate the shear stress distribution in a prismatic
compound channel with rectangular cross-section five
different data mining methods were investigated. Based on
the results, the RF model performed superior to those of
other models in all subsections of the compound channel.
In this section, the performance of the RF model is
compared with the ability of the Shannon and SKMmodels
in forecasting the shear stress distribution. Figure 6
demonstrates the comparison between two analytical
models and the RF model. As seen in Fig. 6, the SKM
model shows better performance in predicting the shear
stress in the bed of the main channel than the bed of
floodplains. It is known that the SKM model can only
estimate the bed shear stress and this model is not able to
predict wall shear stresses. Based on the results of Fig. 6,
the SKM model overestimated values obtain for bed shear
stress of the main channel and underestimated values
calculate for the shear stress of bed of floodplains. The

Zohreh SHEIKH KHOZANI et al. Shear stress prediction by data mining models 1103
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accuracy of the SKM model predictions for the bed of the
main channel was decreased as the floodplain width
increased.
By contrast, in higher floodplain width the shear stress

predictions values for the bed of floodplain are more
precise. Also, when the width of floodplain increased, the
SKMmodel estimates the pattern of shear stress for the bed
of floodplain with higher accuracy as seen in Figs. 6(e),
6(f), 6(g), and 6(h). The performance of the Shannon
model is better than the SKM model. In all sub-sections,
the Shannon model predictions are overestimated, but this
model performs better for estimating wall shear stress than
bed shear stress. When the width of floodplains is equal to
100 mm, the performance of the Shannon model is the
same as the SKM model for main channel bed shear stress
to somewhat. As the width of floodplains increased, the
results of the SKM model become weaker than the
Shannon model. Among three mentioned models the RF
model illustrates the best results with higher accuracy as
seen in Fig. 6. By using the RF model in addition to the
most accurate predictions of shear stress distribution in the
whole wetted perimeter, the model could estimate the
pattern of shear stress distribution very well. In modeling
with the RF model only using the hydraulic parameters of
channel as y/L, Fr,H/h, and Bfp/Bmc, the shear stress values
can estimate in whole channel boundary. By contrast, in

the Shannon entropy it needs to compute the Lagrange
multiplier and the results are not accurate as the RF model.
In addition in the SKMmodel we can only estimate the bed
shear stress and it needs to calculate the average depth
velocity and computing the shear stress needs to time-
consuming procedure.
The statistical results of comparison between the RF,

Shannon and SKM models are tabulated in Table 3. As we
know, the lower values of RMSE and MAE indexes shows
the higher performance of models to forecast a specific
phenomenon. As mentioned before the SKMmodel predict
bed shear stress of floodplains and the main channel, the
results of the SKM model in Table 3 contains only these
predictions. According to the results of this table, the RF
model with lower values of RMSE and MAE indicates the
best results of estimating shear stress distribution in
compound channels. The Shannon entropy model per-
forms better than the SKM model in predicting shear stress
values. The values of NSE demonstrates the performance
of model which graded as follows: very good for
0.75<NSE£1, good for 0.65<NSE£0.75, satisfactory
for 0.5<NSE £0.65, acceptable for 0.4<NSE£0.5, and
unsatisfactory for NSE£0.4. As seen in Table 3 for the RF
model the obtained values of NSE are higher than 0.95,
therefore, the RF model has a perfect grade for estimating
shear stress values. For estimating shear stress distribution

Fig. 5 Measured vs. predicted shear stress values in the compound channel: (a) as a scatterplot for AR model in testing stage; (b) whole
dataset for AR model; (c) as a scatterplot for M5P model in testing stage; (d) whole dataset for M5P model; (e) as a scatterplot for KStar
model in testing stage; (f) whole dataset for KStar model; (g) as a scatterplot for RC model in testing stage; (h) whole dataset for RC
model; (i) as a scatterplot for RF model in testing stage; (j) whole dataset for RF model.

Table 2 Statistical parameters in the comparison between the soft computing methods

models RMSE MAE NSE BIAS

AR 0.1707 0.1322 0.6697 0.0107

M5P 0.1305 0.1003 0.8068 – 0.0085

KStar 0.1381 0.1091 0.7838 – 0.0182

RC 0.1301 0.0956 0.8079 0.0055

RF 0.0971 0.0673 0.8931 0.0249
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values in OPC-100, OPC-200, OPC-300, and OPC-400 the
results of the RF model are most precise with RMSE of
0.0166, 0.0255, 0.0338, and 0.0518, respectively, in
comparison with the Shannon and the SKM models.
Overall, based the results of Fig. 6 and Table 3 the RF

model is the most robust model among mentioned models
in this study for estimating shear stress distribution in
compound channels. It is worth addition that R2, RMSE,
MAE, NSE, and BIAS which are used to estimate how good
regression models are, in some cases, can overestimate (or

Fig. 6 The shear stress distribution prediction in the compound channel by RF, Shannon and SKMmodels for (a) OPC 100-30, (b) OPC
100-40, (c) OPC 200-35, (d) OPC 200-45, (e) OPC 300-30, (f) OPC 300-40, (g) OPC 400-40, and (h) OPC 400-50.
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underestimate) the training data. To overcome these issues
(overestimation and underestimation), Bayesian methods
can be used to improve the regression model [56–58].

6 Conclusions

In this research, the authors investigated the shear stress
distribution on the compound channel. A series of
experiments were performed in prismatic simple rectan-
gular cross-section compound channels of floodplain width
of 100, 200, 300, and 400 mm using flume of the
University of Birmingham. The results have used for five
different data mining methods to predict the shear stress
distribution by using AR, M5P, KStar, RC, and RF models.
The AR model with R2 of 0.6745 was not able to estimate
shear stress in whole wetted perimeter accurately. The
M5P and KStar models did not show appropriate results in
predicting the maximum, and minimum shear stresses in
walls and beds of main channel and floodplains, however,
for other locations of perimeter they showed more accurate
outcomes rather than the AR model. The maximum and
minimum shear stress values can be predicted better with
the RC and RF models in comparison with the other
models. The RF Model can predict the results with R2 of
0.9003 which is the most precise prediction among other
statistical models. Shannon and SKM analytical model
have been compared with RF model, the SKM model is
able to predict bed shear stress of floodplains and the main
channel better than wall shear stresses, however, Shannon
model can predict wall shear stresses more accurately. The
accuracy of the SKM model predictions for the main
channel bed decreases by increasing the floodplains width.
The shear stress predictions values for the floodplain bed
are more meticulous in broader floodplains. The results
showed that the RF machine learning model has the lower
values of RMSE and MAE in comparison with the two

famous accurate analytical models’ prediction of shear
stress distribution in the whole wetted perimeter. RF
modeling technique can estimate the shear stress values in
whole channel boundaries using the hydraulic parameters
of y/L, Fr, H/h, and Bfp/Bmc. By contrast, Lagrange
multiplier and average depth velocity were needed in the
Shannon entropy, and SKM model, respectively, and the
results were not as accurate as the RF model.
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