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ABSTRACT Research of reliability of engineering structures has experienced a developing history for more than 90
years. However, the problem of how to resolve the global reliability of structural systems still remains open, especially the
problem of the combinatorial explosion and the challenge of correlation between failure modes. Benefiting from the
research of probability density evolution theory in recent years, the physics-based system reliability researches open a
new way for bypassing this dilemma. The present paper introduces the theoretical foundation of probability density
evolution method in view of a broad background, whereby a probability density evolution equation for probability
dissipative system is deduced. In conjunction of physical equations and structural failure criteria, a general engineering
reliability analysis frame is then presented. For illustrative purposes, several cases are studied which prove the value of the
proposed engineering reliability analysis method.
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1 Introduction

Reliability based analysis and design of engineering
structures and infrastructure systems underlies the safety of
engineering systems. The pioneering investigations upon the
uncertainty in the objective world and using the probability
theory to deal with the engineering reliability assessment
could be dated back to the early 20th century [1–3]. Owing
to the outstanding contributions of Freudenthal [4], Cornell
[5], Lind [6], and Ang and Tang [7], the engineering design
paradigm based on the first-order second-moment (FOSM)
method was built up during 1960s to 1970s. This paradigm
was later developed rapidly and served as the foundations of
worldwide national design provisions, which facilitated the
establishment of the second-generation design theory of
engineering structures [8].
In fact, the crucial point of the second-generation design

theory of engineering structures is to implement the
approximate reliability analysis and design on the level
of structural components based on the decomposition
methodologies. This treatment consequently brings

forward the basic contradictions inherent in the structural
design theory [8]. To resolve these contradictions, great
efforts have been made, especially on the researches on
structural global reliability which can be traced back to the
middle of 1960s. For example, in 1966, Freudenthal et al.
[9] presented the upper bound of failure probability of
series systems. In 1975, Ang et al. [10] developed the
probabilistic network method for the analysis of structural
system reliability. In 1979, Ditlevsen [11] proposed the
formulation of narrow limit estimation method for
structural system reliability. Almost at the same time,
Thoft-Christensen and Murotsu [12] proposed the β-
branch method and branch limit method based on joint
probability, respectively. Although these methods
prompted the wide formation of community consciousness
on the research field of structural system reliability, the
problem of combinatorial explosion and the challenge of
failure probability correlation still remained open, resulting
in the situation that the research of structural system
reliability came into standstill since 1990s.
Actually, the problem of combinatorial explosion and

failure probability correlation comes from the methodol-
ogy research thought in which the main concern is focusedArticle history: Received Apr 2, 2019; Accepted Aug 19, 2019
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on the failure results of structures other than the physical
process of failure. During the first decade of 21th century,
the research of probability density evolution theory gained
eye-catching progresses, which brought a new dawn for
the settlement of analysis and design of engineering system
reliability. The thought of physical stochastic system
research established the ideological basis for integrating
the physical equation of engineering systems and the
generalized probability density evolution equation, and
pioneered a new way to implement the analysis and design
of global reliability of structural systems in practical sense
[13].
In the present paper, the theoretical foundation of

probability density evolution method is first introduced
in view of a broad background. Then a probability density
evolution equation for probability dissipative system is
deduced. In conjunction of the physical equation and
structural failure criteria defined by a specific problem, a
general engineering reliability analysis frame is presented.
To show the feasibility of the proposed method, several
case studies, including fatigue reliability of bridge
structural elements, global reliability of high-rise buildings
and functional reliability of water supply network, are
discussed as examples.

2 Theoretical foundation of probability
density evolution method

For a stochastic system, the principle of preservation of
probability supplies a theoretical foundation for deriving
the basic probability density evolution equation. This
principle states that: if the random factors involved in a
stochastic system are retained, then the probability will be
preserved in the state evolution process of the system
[13,14].
To clarify the principle, we start with the investigation

on a transform of a random function. Let v be a basic
random event and X(v) be a continuous variable with
probability density function (PDF) pX(x), namely

PrfX ð$Þ 2 ðx,xþ dxÞg ¼ dPrf$g ¼ pX ðxÞdx, (1)

where Pr{$} is the probability measure.
Assume there exists a one to one mapping f from X to Y,

that is

f : Y ¼ f ðX Þ, (2)

then the PDF of Y will be

pY ðyÞ ¼ pX ½f – 1ðyÞ�dx
dy
: (3)

Obviously, the above equation could be converted to

pY ðyÞdy ¼ pX ðxÞdx: (4)

Noticing that

PrfY ð$Þ 2 ðy,yþ dyÞg ¼ dPrf$g ¼ pY ðyÞdy, (5)

it is evident that

PrfY ð$Þ 2 ðy,yþ dyÞg ¼ PrfX ð$Þ 2 ðx,xþ dxÞg
¼ dPrf$g: (6)

This means that, in a mathematical transform, the
probability measure will be preserved since the random
events keep unchanged. This statement reveals the
principle of preservation of probability. The principle is
universally applicable to generic stochastic systems.
Noticing that a physical system can be described by a

mathematical operator, without loss of generality, there
exist

L
�
Y ,∂ðjÞY ,Θ,x,t,τ

�
¼ 0, (7)

where Lð$Þ denotes a general mathematical operator such
as a differential operator or an integral operator; Y is a
physical variable(s) which may be a vector, say in m
dimensions, changing with spatial position and time; Θ
denotes a random vector which is actually an uncontrol-
lable physical variables in the system; x and t are the spatial
position variable and time variable, respectively; t is an
general time evolution parameter denoting the evolution
direction of the system.
It is understood that, for a well-posed physical system

described by Eq. (7), the solution Y(t) is existent, unique
and continuously dependent on Θ. According to the
principle of preservation of probability, it can be then
deduced that the joint PDF of (Y, Θ) is governed by the
following probability density evolution equation [14,15].

∂pYΘðy,θ,τÞ
∂τ

þ
Xm
l¼1

_Y lðθ,τÞ
∂pYΘðy,θ,τÞ

∂yl
¼ 0: (8)

For a one-dimensional case, there exist

∂pYlΘðyl,θ,τÞ
∂τ

þ
Xm
l¼1

_Y lðθ,τÞ
∂pYlΘðyl,θ,τÞ

yl
¼ 0: (9)

This formulation provides a new understanding on the
relationship between the physical world and the random
world. Actually, if rewriting Eq. (9) as follows

∂pYlΘðyl,θ,τÞ
∂τ

¼ –
Xm
l¼1

_Y lðθ,τÞ
∂pYlΘðyl,θ,τÞ

yl
: (10)

We could realize such an important fact immediately: the
evolution of probability density of a stochastic system
relies on the change of physical state of the system! It
demonstrates in an elegant manner that the evolution of
probability density obeys a rigorous physical law instead
of being rule less. Obviously, this understanding comes up
with a new perspective about the real world.
The numerical procedure for solving the probability
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density evolution equation include the probability-assign
space partition, deterministic analysis of representative
samples and solving equation by finite difference method.
The number theoretic method (NTM) is suitable for
dealing with the partition of high-dimensional probability
space, and the TVD scheme is used for solving the
probability density evolution equation. More details of the
numerical procedure refer to the publication [13].
It is worth to point out that, for real engineering problem,

the probability distribution of random vector Θ may be a
practical operating process, for example, the Bayesian
estimation of a probability density function [16] or the
treatment of epistemic uncertainty [17].

3 Probability density evolution equation for
probability dissipative systems

For a stochastic system, the probability dissipation could
take place at any time in evolutionary process. Concerning
the first passage problems, for example, when the response
of the system crosses a specified level, the adherent
probability of the path will be dissipated, which results in a
probability-dissipated system. Another example is the
structural dynamic stability. Once the stability criterion is
violated, the corresponding probability of the path will be
dissipated, which also results in a probability-dissipated
system. Obviously, the probability density evolution
equation that governs such probability-dissipated systems
is important for obtaining the response of such systems.
Without loss of generality, we assume that the

probability dissipation take place in the time interval
[t, t+ Dt], the dissipated probability can be then denoted as

–H
�
YðtÞ

�
Pr
�
YðtÞ

�
. Here

H
�
Y ðtÞ

�
¼

0, YðtÞ =2ΩD,

1, YðtÞ 2 ΩD,

(
(11)

WD is the probability dissipation domain; H is the identity
indicator of probability dissipation. It is indicated that
when Y(t) reaches a critical state resulting in that the
physical quantity of interest enters into the domain WD, the
value of H turns to be one from the time instant t.
Therefore, the symbol H may be called as the screening
operator.
Using the description of probability density, the

dissipated probability can be then expressed as

δP ¼ –H
�
YðtÞ

�
Pr
�
YðtÞ

�

¼ –H
�
Yðθ,tÞ

�
!

þ1

–1pYΘðy,θ,tÞdydθ
� �

, (12)

where dP is the dissipated probability.
It is noted that all the randomness involved in Y(t) comes

from Θ, and the joint PDF of augmented system (Y(t),Θ)

can be represented as pYQ(y,q,t). Alternatively,
the dissipated probability in the form of the joint
PDF pYQ(y,q,t) is

δP ¼ –H
�
Yðθ,tÞ

�
!

Ωt�ΩΘ

pYΘðy,θ,tÞdydθ
� �

, (13)

where Wt and Wθ are the distribution domains of Y at time
instant t and of Θ, respectively.
If the dissipated probability at time instant t is taken as

the average probability dissipated during the time interval
[t, t + Dt], we can define the average joint PDF as

pYΘðy,θ,tÞ ¼
pYΘðy,θ,tÞ

Δt
: (14)

Obviously, when Dt! 0, the following relationship
exists

pYΘðy,θ,tÞ ¼ pYΘðy,θ,tÞ, (15)

which reveals that the average joint PDF dissipated during
the interval Dt is actually the joint PDF at the time instant t
when Dt approaches to zero.
Then, the dissipated probability could be rewritten as

δP ¼ –H
�
Yðθ,tÞ

�
$ !

Ωt�ΩΘ

pYΘðy,θ,tÞΔtdydθ
� �

: (16)

According to the principle of preservation of probability,
there exists

!
Ωtþdt�ΩΘ

pYΘðy,θ,tþdtÞdydθ –!
Ωt�ΩΘ

pYΘðy,θ,tÞdydθ:

¼ δP (17)

Notice that

Ωtþdt ¼ Ωt þ!∂Ωt

_ydtð Þ$nds, (18)

and

pYΘðy,θ,t þ dtÞ ¼ pYΘðy,θ,tÞ þ
∂pYΘðy,θ,tÞ

∂t
dt, (19)

will give

!
Ωtþdt�ΩΘ

pYΘðy,θ,t þ dtÞdyd�

¼!
Ωt�ΩΘ

pYΘðy,θ,tÞ þ
∂pYΘðy,θ,tÞ

∂t
dt

� �
dydθ

þ!
∂Ωt�ΩΘ

pYΘðy,θ,τÞ þ
∂pYΘðy,θ,tÞ

∂t
dt

� �
_yðθ,tÞdtð Þ

� �
$ndsdθ:

(20)

Substituting Eqs. (16) and (20) into Eq. (17) and
applying divergence theorem will yield
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∂pYΘðy,θ,τÞ
∂t

þ
Xm
l¼1

_ylðθ,tÞ
∂pYΘðy,θ,τÞ

∂yl

¼ –H
�
Y ðθ,tÞ

�
pYΘðy,θ,τÞ, (21)

where the relationship in Eq. (15) is introduced.
Equation (21) is called the generalized probability

density evolution equation for probability dissipated
system (GDEE-PD). Specifically, when m = 1, Eq. (21)
reduces to be

∂pYlΘðyl,θ,tÞ
∂t

þ _Y lðθ,tÞ
∂pYlΘðyl,θ,tÞ

∂yl

¼ –H
�
Y ðθ,tÞ

�
pYlΘðyl,θ,tÞ, (22)

which can be called as the one-dimensional generalized
density evolution equation for probability dissipated
system.
Under the initial condition,

pYΘðy,θ,tÞjt¼t0 ¼ δðy – y0ÞpΘðθÞ, (23)

the partial differential equation Eq. (22) can be solved
cooperating with the physical equation such as Eq. (7). In
Eq. (23), y0 is the deterministic initial condition.
When the system variable Y(t) is considered in different

domain, Eq. (22) has different solution, there exist:
1) when Y(q, t) =2ZWD, H(Y(q, t)) = 0, Eq. (22) then

turns to be the generalized density evolution equation for
probability preserved system

∂pYlΘðyl,θ,tÞ
∂t

þ _Y lðθ,tÞ
∂pYlΘðyl,θ,tÞ

∂yl
¼ 0, (24)

where the nonzero solution pYlΘðyl,θ,tÞ can be obtained.
2) when Y(q, t)2ZWD, indicating that Y(q, t) arrives at

its criticality, H(Y(q, t)) = 1, Eq. (22) becomes

∂pYlΘðyl,θ,tÞ
∂t

þ _Y lðθ,tÞ
∂pYlΘðyl,θ,tÞ

∂yl

¼ – pYlΘðyl,θ,tÞ, (25)

which indicates that increments of the joint PDF is a
negative joint PDF, on the other words, it means
probability dissipation. Therefore, Eq. (25) has a zero
solution, i.e., pYlΘðyl,θ,tÞ = 0.

4 Structural system reliability analysis

The above-mentioned theoretical background actually
supplies a broad possibility to solve engineering reliability
problem. In fact, the screening operator H may be defined
in a more general form as follows

H½f ðY ðθ,tÞÞ� ¼
0, f

�
Yðθ,tÞ

�
2 ΩS

1, f
�
Yðθ,tÞ

�
2 ΩD

8><
>: , (26)

where Y(q, t) is structural response; f($) is a general
function which relies upon the specific failure criteria of
structures; WS is the safety domain of structures and WD is
the failure domain of structures. Obviously, WS∩WD =Æ.
On the other hand, for general engineering systems,

when the mechanical behavior is concerned, Eq. (7) can
be expressed as a set of solid mechanics equation as
follows

r�þ b ¼ �€u þ η _u,

ε ¼ 1

2
ðruþrTuÞ,

_� ¼ Gð _εÞ,

8>><
>>: (27)

where r is the partial differential operator, s is the stress
tensor, b is the body force, r is the density of material, h is
the viscous damping coefficient, ε is the strain tensor, u is
the displacement vector, the over dot denotes differentia-
tion in terms of time. G($) denotes a general function or
operator.
Then, taking a representative physical quantity (for

example, the displacement of a specified element of the
structure, Up(t)) as the observed variable, a set of structural
reliability equations could be established:

r�þ b ¼ �€u þ η _u,

ε ¼ 1

2
ðruþrTuÞ,

_σ ¼ Gð _εÞ,
∂pUpΘðup,θ,tÞ

∂t
þ _U pðθ,tÞ

∂pUpΘðup,θ,tÞ
∂up

¼

–H f
�
uðθ,tÞ

�h i
pUpΘðup,θ,tÞ,

pUpΘðup,θ,tÞjt¼t0 ¼ δðup – up0ÞpΘðθÞ:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(28)

Solving these equations will derive the joint PDF
pUpQ(up, q, t) and the PDF of Up(t) can then be obtained by

pUp
ðup,tÞ ¼ !

ΩΘ

pUpΘðup,θ,tÞdθ: (29)

While the reliability of the structure corresponding to the
specified failure criteria will be

RðtÞ ¼ !
Ωup

pUp
ðup,tÞdup: (30)

To verify the applicability of the proposed method, three
typical cases will be studied in the following sections. The
three cases involve the fatigue reliability of bridge
structures considering the uncertainty inherent in structural
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properties, the global reliability of high-rise buildings and
the functional reliability of water supply network con-
sidering the uncertainty inherent in seismic ground
motions, respectively. The random inputs no matter as a
random field for the first case or as a random process for
the latter two cases are both represented by the stochastic
harmonic functions [18,19].

4.1 Fatigue reliability of bridge structures

Most structures are subjected to cyclic loads during their
service life, such as bridge decks, wind-turbine blades,
pavements of high way and airport, etc. In many
circumstances, fatigue or time-delayed damage will occur
in these structures. A number of investigations show that,
especially for bridge structures, the fatigue life has a
significant variation. Therefore, the fatigue life prediction
is very important for such kind of structures.
A stochastic damage constitutive model has been

developed [20], in which the basic constitutive equation
of concrete materials is given by

σ ¼ ðI –DþPþ –D –P – Þ : C : ðε – εpÞ, (31)

where I is a fourth order unit tensor, D+ , D– are the tensile
and compressive damage variables, respectively, P+ , P–

are the fourth positive and negative projection tensor, εP is
the plastic stress tensor, C is the fourth tensor of initial
modulus of elasticity.
The damage variable is defined as

D� ¼ !
1

0
½1 –HðEs –Ef ÞHðEs – Y Þ�dx,

Ef ¼ !
t

0
C0e

– κdY
�
Y –gð#Þ

� Y

Γe – β#

� �p

dt,

Es ¼
1

2
E0Δ

2ðxÞ,

8>>>>>><
>>>>>>:

(32)

where H($) is Heavide’s function, Es denotes the inherent
energy of the representative volume element, Ef is the total
energy dissipation at mesoscale, k is a material constant, Y
denotes the damage energy release rate conjugated with
damage variable in function of Helmholtz free energy, J is
an equivalent accumulation strain, b, C0 are constant
coefficients, g($) is the modified surface energy, G is the
representative volumetric homogenized surface energy, p
is a critical exponent, E0 denotes the initial elastic modulus
and Dx denotes the denotes one-dimensional random
fracture strain field.
Integrating the constitutive equation with equilibrium

equation and geometric equation will give the basic
physical equation such as Eq. (7). While the screening
operator H may be defined in a damage criteria form as
following

H½Dmaxðθ,tÞ� ¼
0, Dmaxðθ,tÞ£½d�,
1, Dmaxðθ,tÞ£½d�,

(
(33)

where [d] is the permitted damage.
Then the basic fatigue reliability equation of concrete

structures is summarized as follows

rσ þ b ¼ �€u þ η _u,

ε ¼ 1

2
ðruþrTuÞ,

σ ¼ ðI –DþPþ –D –P – Þ : C : ðε – εPÞ,
∂pUpΘðup,θ,tÞ

∂t
þ _U pðθ,tÞ

∂pUpΘðup,θ,tÞ
∂up

¼

–H f
�
uðθ,tÞ

�h i
pUpΘðup,θ,tÞ,

pUpΘðup,θ,tÞjt¼t0 ¼ δðup – up0ÞpΘðθÞ:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(34)

After obtaining the joint PDFpUpΘðup,θ,tÞ, the fatigue
reliability of the structures can be derived by Eqs. (27) and
(28).
For illustrative purposes, the fatigue life analyses of high-

speed and heavy-load railway bridges are addressed as
numerical examples. In China, the axial load of train
increases from 23 tons to 30 tons after the ordinary railway
changed to the heavy-load train. For this reason, the fatigue
performance of existing prestressed concrete bridges
distributed along the railway needs to be evaluated. Here
the simply-supported beams commonly used in the railway
lines are addressed, of which the fatigue damage evolution
of the concrete in the compression zone is investigated. The
average damage of the concrete in the compression zone of
the beam is taken as basic damage variable and the threshold
of fatigue damage is taken as the damage level correspond-
ing to the compressive residual strain which is 0.4 times of
the axial compression strength. Using the above-mentioned
principles, the fatigue reliability and service life prediction
of the heavy-load railway bridge element are carried out.
Some results are shown in Figs. 1 to 3.
The quantitative results of fatigue reliability are listed in

Tables 1 and 2. It is seen that integrated with physical
equation and GDEE-PD, the life-cycle fatigue analysis of
structures could implement the elegant assessment of
fatigue reliability and accurate prediction of life-cycle
period.

4.2 Global reliability of high-rise buildings

As discussed in the section 1, global reliability assessment
of structures has been a challenging issue in the past 40
years. Taking high-rise buildings as studied object, a series
of researches were carried out in recent years. In the
research, an energy-based structural collapse criterion is
proposed for the collapse assessment of structures [21].
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Meanwhile, to address the uncertainty propagation in a
complex nonlinear dynamic system, the PDEM is adopted
as a feasible solution [21,22].
In fact, for general structures, there are different levels of

structural failure criteria, each of them correspond its own
screening operator H. For example, for the beam or
column failure of structure, H can be defined in a moment
criteria form as follows

H½Mmaxðθ,tÞ� ¼
0 Mmaxðθ,tÞ£½Mu�
1 Mmaxðθ,tÞ£½Mu�

(
, (35)

whereMmax is the maximummoment in a beam or column;
Mu is the limit moment of a beam or column.
In this level, structural reliability assessment is focused

on the structural elements. Appling for the equivalent
extreme-value principle [23], the global reliability can be
evaluated. On the other hand, when considering the seismic
collapse probability analysis for large complex reinforced
concrete structures, an energy-based structural collapse
criterion may be introduced, andH can be defined based on
an energy-based structural collapse criterion as follows

H½Sðu,θ,tÞ� ¼
0, Sðu,θ,tÞ£0,

1, Sðu,θ,tÞ£0,

(
(36)

where

Sðu,tÞ ¼ Eef f_inpðu,tÞ –Eef f_inpðu,tÞ, (37)

Eef f_inpðu,tÞ ¼ !
t

0
FTðtÞduðtÞ –!

t

0
_uTðtÞC _uðtÞdt,

–!
t

0
!

V
σ : _εpdV

� �
dt, (38)

Fig. 2 Contour of probability density of fatigue damage.

Fig. 3 Fatigue reliability of the concrete beam.

Table 1 Fatigue reliability of different fatigue life

fatigue cycles fatigue reliability

2000000 0.9932

2500000 0.9342

3000000 0.8788

3500000 0.7744

4000000 0.6500

4500000 0.4057

5000000 0.2405

Table 2 Fatigue life of different fatigue reliability

fatigue reliability fatigue cycles

0.99 2046644

0.95 2301441

0.90 2857590

0.80 3400167

0.70 3845917

0.60 4139996

0.50 4315190

Fig. 1 Probability density of fatigue damage under different
cycles of loadings.
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Eef f_intrðu,tÞ ¼ jf Tðu,tÞuðtÞ –!
V
σ : _εedV j, (39)

where Eeff_inp(u, t) is the effective external work to
the system at any time t; s is the stress tensor; _εe is the
elastic strain rate tensor; V denotes the solution domain;
Eeff_intr(u, t) denotes the absorbing energy that belongs to
the structural system induced by the vibration of the system
at time t; _εp is the plastic strain rate tensor.
Then by employing the above analytical principle, the

basic governing equation for analyzing the global
reliability will be as follows

rσ þ b ¼ �€u þ η _u,

ε ¼ 1

2
ðruþrTuÞ,

σ ¼ ðI –DþPþ –D –P – Þ : C : ðε – εPÞ,
∂pUpΘðup,θ,tÞ

∂t
þ _U pðθ,tÞ

∂pUpΘðup,θ,tÞ
∂up

¼
–H ½Sðu,θ,tÞ�pUpΘðup,θ,tÞ,
pUpΘðup,θ,tÞjt¼t0 ¼ δðup – up0ÞpΘðθÞ:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(40)

Obviously, after solve above equations, the global
reliability of structures can be derived by Eqs. (27) and (28).
For illustrative purposes, an 18-storey high-rise RC

frame-shear wall building which is located in Shanghai is
taken as an example. The finite element model of the
structure is shown in Fig. 4, and totally 53372 elements are
involved. The stochastic dynamic analysis herein is only in
terms of the random seismic input while taking no account
of the uncertainty from structural properties. In this regard,
the mean values of all the material properties are adopted in
the analysis.
Based on the numerical platform developed for

stochastic analysis of structures, the nonlinear seismic
responses of the structure under stochastic ground motions
are attained manifesting with quite different failure paths
and patterns. Two typical structural collapse processes and
modes are depicted in Fig. 5. It can be seen that, because of
coupling effect of developing process of nonlinearity and
stochastic input, the initial damage locations and occur-
rence time as well as the subsequent damage evolutions of
the structure will be a typical random process, and
therefore providing different structural collapse modes.
Figure 6 shows three typical PDFs of the inter-story drift

ratio (ISDR) at certain instants of time. It is seen that the
PDFs are quite different from those widely used regular
probability distributions. These results indicate that the
structural response process is a complex stochastic damage
evolution process and should be investigated from the
development process of nonlinearity.
The global reliabilities against collapse of the structure

are pictured in Fig. 7. It can be seen that the reliability is
changing with time along the seismic process.

4.3 Functional reliability of water supply network

The water supply network is a kind of infrastructure system
for modern cities, which include buried pipes, pumps, and
valves, etc., to deliver water from sources to customer.
Many previous earthquake investigations showed that the
seismic performance of water supply network is very fragile.
Applying above principle to the serviceability analysis of
water supply network under earthquakes, the service
reliability (also known as functional reliability) under and
after an earthquake could be derived quantitatively.
For a water supply system, the basic physical equation is

the transient flow analysis equations which are constructed
by a momentum equation and a continuity equation

1

gA

∂QðtÞ
∂t

þ V ðtÞ∂QðtÞ
∂x

� �
þ ∂HðtÞ

∂x

þfQðtÞjQðtÞj1 –m ¼ 0, (41)

∂HðtÞ
∂t

þ V ðtÞ∂HðtÞ
∂x

þ a2

gA

∂QðtÞ
∂x

¼ 0, (42)

where g is the acceleration of gravity; A is the cross
sectional area of the pipe; Q is the flow rate in pipeline;
V is the fluid velocity; H is the pressure head; f and
m are two coefficients of friction resistance, which depend
on different hydraulic loss models; a is the propagation
velocity of small disturbances in a pipe.

Fig. 4 The finite element model of an 18-storey building.
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Using the characteristic line method, the flow rate in
pipeline and the flow pressure of each node can be derived
from the above differential equations. However, since the
seismic ground motion is a stochastic process, the pipeline
damage and leakage after an earthquake are both random
events. Taking the critical random variables associated with
ground motions and pipe systems as Q, and taking flow
pressure at each node of water supply network as an analytical

variable, the functional reliability of water supply network can
be then derived by solving the following equations

Fig. 5 Typical collapse processes and failure modes of the high-rise building. (a) Sample 1; (b) Sample 2.

Fig. 6 Typical PDFs of the ISDR responses at certain instants of time.

Fig. 7 Global reliability of structures by energy criterion.
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1

gA

∂QðtÞ
∂t

þ V ðtÞ∂QðtÞ
∂x

� �
þ ∂HðtÞ

∂x
þ fQðtÞjQðtÞj1 –m ¼ 0,

∂HðtÞ
∂t

þ V ðtÞ∂HðtÞ
∂x

þ a2

gA

∂QðtÞ
∂x

¼ 0,

∂pHlΘðhl,θ,tÞ
∂t

þ _H lðθ,tÞ
∂pHlΘðhl,θ,tÞ

∂up
¼ –H½Hðθ,tÞ�pHlΘðhl,θ,tÞ,

pHlΘðhl,θ,tÞjt¼t0 ¼ δðhl – hl0ÞpΘðθÞ, l ¼ 1,2,:::,n,

8>>>>>>>>><
>>>>>>>>>:

(43)

where

H½Hlðθ,tÞ� ¼
0, Hlðθ,tÞ£½hl�,
1, Hlðθ,tÞ > ½hl�,

(
(44)

where [h] is demand water pressure at the node No. l.
Different from the structural global reliability analysis,

the functional reliability analysis of water supply network
requires solving the probability density evolution equation
for each node of the network. Miao et al. [24] presented a
case study for a small-size network shown in Fig. 8. In this
network, all pipes are gray cast iron pipes. The length of
pipe segments is 6 m. The network is located in type-II site
and the soil is soft clay with the undrained shear strength of
22.93 kPa. The stiffness of axial and lateral soil springs can
be gained according to the ALA seismic guidelines. Then
based on the above analytical equations, the PDFs of the
dynamic water head can be derived. Figure 9 shows the
probability density surface and the probability density
contour of the water pressure at a specific node. Figure 10

shows the cumulative probability density (CDF) of the
water pressure at the node, where the comparative curves
between physical equations invoked by non-steady flow
(dynamic) and by steady flow (steady) are included, which
prove the value of physical equations in the probability
density evolution of stochastic systems.

5 Conclusions and remarks

The research on the reliability of engineering structures has
experienced a developing history for more than 90 years. A
series of excellent scientific supposes, innovations and
explorations were born in this process. Physically based
system reliability research, as a new approach, will serves
as a new link in this historical process. Connecting
different types of physical equations with general prob-
ability density evolution equation, to give a set of basic
governing equation for stochastic systems, provides a
broad possibility for exploring the analysis, design and
control of stochastic systems in different research fields.
The cases provided in this paper could be viewed as several
starting points associated with the new developing path
invoked by the principle. We believe without any doubts
that following this path, not only the third-generation
design theory of engineering structures can be established,
but also the initiative and academic self-consciousness can
be gained in the process of scientifically recognizing and
reflecting the objective world.Fig. 8 Schematic of a small-size pipe network.

Fig. 9 Probability density evolution of water head at the node No. 7. (a) Probability density surface; (b) probability density contour.
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